首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Waterproof breathable layered fabrics allow water vapor passing through, but resist liquid water to pass. This ability of the fabrics to protect rain and snow water while allowing sweat vapor to evaporate from inside to outside atmosphere, leads them to be used as outdoor sportswear or protective clothing. The big challenge of enhanced hydrostatic resistance of these fabrics with proper breathability and thermal comfort has widened the research scope. This study presents an experimental investigation on hydrostatic resistance and thermal behavior of layered waterproof breathable fabrics. Six different types of hydrophobic and hydrophilic membrane laminated layered fabrics were evaluated by varying different fabric parameters in the experiment. Hydrostatic resistance and water vapor permeability of the laminated fabrics were measured by SDL ATLAS Hydrostatic Head Tester and PERMETEST respectively. Thermal properties were evaluated by ALAMBETA instrument. Moreover, FX-3300 air permeability tester was used to measure air permeability which represents the porosity of the fabrics and computer based See System software was used for water contact angle measurement on the outer fabric surface in order to determine the hydrophobic and hydrophilic properties. This experiment clearly discusses the influence of different fabric characteristics and parameters on hydrostatic resistance and thermal properties of the breathable laminated fabrics. The results show that fabric material composition, density, thickness, and hydrophobic and hydrophilic membranes have significant effects on hydrostatic resistance, breathability and thermal properties of different laminated fabrics.  相似文献   

2.
A porous complex structured woven fabric was manufactured to maximize the moisture transition ability of the prepared fabric by increasing the absorptive property of the fabric through surface modification using plasma, which is a dry modification method. Porous single and complex structured woven fabrics were produced by applying pattern, porosity, and plasma technology, including fabric patterning based on the sheath/core complex structure, the formation of porosity by removing the weft thread or warp thread, and hydrophilic surface treatment using plasma and the improvement in water absorption of different fabrics by the porous and plasma treatment was investigated. Therefore, two different types of fabrics were prepared. One is the porous single structured FAB-SINGLE fabric which was taken out in the direction of the Polyester (PET) warp thread of a general single structure to form a porous. Another is FAB-COMPLEX fabrics that the water-soluble polylactic acid (PLA) yarns with a 1.7 to 2.0 times longer absorption distance than that of PET yarns were inserted into the weft threads, and the PLA yarns were dissolved in a solvent to form the porous complex fabric. And then the physical properties and water absorption of the two types of fabric were compared after the plasma treatment. The results showed that when the FAB-SINGLE fabric, which has porosity induced by the removal of the warp threads in a certain gap, was plasma treated for 5 min, the contact angle was decreased to the extent that a measurement of the contact angle was impossible, whereas the fabric that had not undergone a plasma treatment had a contact angle of 123.6 o. The contact angle of the FABCOMPLEX with porosity caused by the dissolution of the PLA yarns was reduced from 76.8 o to 0 o after 3 minutes of a lowtemperature plasma treatment, indicating that the hydrophilic property was increased. In addition, the water absorption measurements showed that the absorption height was increased from 2.3 cm of the fabric sample that had not been treated with plasma to the highest absorption height of 8.3 cm, suggesting that the water absorption also increased with the improvements in moisture transition ability by the plasma treatment. The physical tensile strength of the fabrics was not changed by the plasma treatment, despite the changes on the fabric surface, suggesting that the combination of double complex structures and the plasma treatment helped improve the water absorption.  相似文献   

3.
利用KES型织物手感仪、YG541B型织物折痕回复性测试仪、YG811型织物悬垂仪、Y561型织物透气仪测试天丝苎麻织物的手感风格和服用性能,并与典型的天丝织物、苎麻织物、涤麻织物和棉织物进行了风格对比,为天丝苎麻类产品的开发提供科学依据。  相似文献   

4.
Warp and weft knitted fabrics comprising polyethylene terephthalate/Co-PET sea-island bicomponent fibers were fabricated in this study. The knitted fabrics were treated in alkali solution to develop knitted fabrics composed of nano-scale filaments. The structural change and water transport behavior of the alkali-treated knitted fabrics were then compared. Results revealed that the filament diameters decreased from 20 µm to 850 nm after alkali treatment. The porosities of warp and weft knitted fabrics decreased by 4.8 % and 10.1 %, respectively, whereas their area densities increased by 68.8 % and 67.2 %, respectively. The wicking height and wicking rate of both types of fabric composed of microfilaments increased with prolonged alkali-treatment time. However, the water absorption properties such as absorption capacity and absorption rate of the knitted fabrics composed of nano-scale filaments significantly increased because of their low porosity and high area density.  相似文献   

5.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

6.
The purpose of this study was to classify various fabrics into some meaningful groups and to predict the fabrics’ acoustic characteristics using their mechanical properties. Two hundred seventeen fabrics, fifty one knitted fabrics, fifty nine woven fabrics and one hundred and seven vapor permeable water repellent fabrics, were used as test specimen. Fabric frictional sounds of the specimen were measured with a MAFN(Measuring Apparatus for Fabric Noise, Patent: No, 2001-73360). Sound Pressure Level(SPL), psychoacoustic parameters such as Loudness(z) and Sharpness(z) of the specimen were obtained by the sound quality system. KES-FB system was used for mechanical property measurements. Cluster analysis was used to classify the specimen and discriminant analysis was used to predict the clusters. Linear regression analysis was used to suggest the equations to predict the acoustic properties using mechanical properties.  相似文献   

7.
This work deals with the study of acoustic performance of struto nonwovens and their relation to fabric air permeability. In order to achieve the objective of the research, sound absorption coefficient of struto nonwovens was determined via impedance tube method, the average value of sound absorption coefficient (α?) was calculated. Air permeability of struto nonwovens was examined by using FX3300 Textech Air Permeability Tester. Results showed that struto nonwoven exhibited good absorption ability at frequency bands 3000-6400 Hz while it was ineffective for frequency lower than 3000 Hz. Struto nonwovens with high GSM and fabric thickness showed better acoustic performance and lower air permeability. It was observed that α? was inversely proportional to air permeability, with correlation coefficient 0.95. It was concluded that air permeability can be used as a criterion of sound absorption behavior of struto nonwovens. A lower air permeability suggests a better sound absorption performance for struto nonwoven fabrics.  相似文献   

8.
Compressive shrinkage or compressive shrinkage finishing is one of the most important finishing procedures in the textile industry to improve the dimensional stability of cotton fabrics. Study of the physical and mechanical properties of compressive shrinkage finished fabrics could be useful for optimizing the treatment conditions. This research was carried out in a production line of a recognized garment company on cotton woven fabrics with two different woven patterns (twill and plain). The samples were first dyed with reactive and sulfur dyes in a jigger dyeing machine and finished with a silicone softener. The dried fabrics were then processed in a compressive shrinkage machine. Several physical and mechanical properties of the samples were evaluated including area shrinkage, crimp percentage, thickness, abrasion resistance, drapeability, mechanical and colorimetric properties. The results showed that the thickness of all treated samples increased due to compressive shrinkage. The fabrics were analyzed with a Martindale Abrasion Tester to determine the abrasion resistance. Interestingly, we noted an increase in the abrasion resistance. After the compressive shrinkage process, the strength of the plain woven fabrics decreased in the warp direction, but increased for twill woven cotton fabrics. On the contrary, the strength of all samples increased in the weft direction. Colorimetric evaluation of the samples showed that the effect of compressive shrinkage on the color of all samples was negligible.  相似文献   

9.
The paper focuses on the application of ultrasonic energy in textile laundering. In recent years, there has been an increasing interest in ultrasonic energy application in textile industry; however, the effect of ultrasonic laundering on the thermophysiological properties of knitted fabrics has not been studied yet. This study was conducted by using polylactic acid (PLA), cotton, polyethylene terephthalate (PET), and poly acrylic (PAC) fibres containing yarns and their blends. Knitted fabrics, single pique, were made from these yarns by using weft knitting machine. The fabrics were washed ten times for 15 and 60 minutes under 40 °C by using conventional and ultrasonic washing methods. The main aim was to determine the effect of washing methods on the thermophysiological properties of the fabrics. It is also aimed to analyse and evaluate the thermophysiological properties of the PLA fabrics. The incorporation of 100 % PLA and cotton/PLA yarns into single pique knitted fabrics has been attempted to produce for the first time and studied their thermal comfort properties. The results show that the washing processes have a critical importance for the tested fabrics in terms of thermal conductivity, thermal resistance, thermal absorbtivity, water vapour permeability, and heat loss. It has been also demonstrated that the fabric cleaning by using ultrasonic method enhanced the properties of tested fabrics such as thermal conductivity and % recovery. It was also noted that 15 minutes ultrasonically washed fabrics had significantly lower thermal resistance as compared to conventionally washed fabrics.  相似文献   

10.
This paper proposes a new model capable of predicting frictional sounds of woven fabrics, knitted fabrics and vapor permeable water repellent fabrics by measuring the relationships between their sound parameters and mechanical properties. We conducted an experiment in which fabric frictional sounds were recorded and analyzed. A total of 217 specimens consisting of woven fabrics, knitted fabrics, and vapor permeable water repellent fabrics were sampled, and their frictional sounds recorded using a Sound Quality System. Sound parameters of fabrics including SPL (Sound Pressure Level), Loudness (Z), Sharpness (Z), and mechanical properties by Kawabata Evaluation System (KES) were obtained. The relation between sound parameters and mechanical properties were analyzed by multiple regressions. Specimens were divided into 3 clusters using mechanical properties selected by stepwise selection method, and the mechanical properties of each cluster were investigated. Specimens were classified into clusters having high level of SPL and Loudness (Z), high level of Sharpness (Z), and middle level of Loudness (Z) and Sharpness (Z), which means that sound parameters are well verified by mechanical properties of the specimens. Mechanical properties relevant to each sound parameter were mapped on two dimensional spaces by integrated graphical presentation. SPL showed high positive correlation coefficients with MMD and LT. Loudness (Z) was well predicted by 2HG5 and Sharpness (Z) by MIU.  相似文献   

11.
The purpose of the research is to investigate the fabric structure (with gripping yarns) in influencing ballistic performance aiming to improve the ballistic performance of the currently used body armour materials. Thirteen different fabrics having gripping yarn were designed along fabric warp and/or weft directions. Their ballistic performance in terms of energy absorption has been studied and comparisons made among the single layered fabrics and between the two double layered fabrics, as well as to the conventional used a plain woven fabric for both cases. It was found that fabrics with gripping yarns have improved fabric ballistic performance. The inter-jointed two-layer fabric performed better than the un-jointed two-layer fabric, and it showed a 16.6 % increase in the energy absorption. The implication of the research is that body armour can be made lighter without reducing ballistic impact performance by using gripping yarns.  相似文献   

12.
In order to impart barrier properties against water and microorganisms on breathable three dimensional spacer fabrics as medical or technical textiles, fabric samples were treated with two water repellent agents and a quaternary ammonium salt namely cetyltrimethylammonium bromide (CTAB), using pad-dry-cure method. Two different water repellent agents based on hydrocarbon and acrylic copolymer were used. The water repellent property of samples was tested by Bundesmann and contact angle tests. Antimicrobial activity of samples was analyzed quantitatively according to AATCC 100. Simultaneous finishing of samples was done with 3 % CTAB and 4 % fluoroalkyl acrylic copolymer. To study the effect of various treatments on comfort related properties, air and water vapor permeability, water repellency and compression were measured. The results showed that the antimicrobial and water repellent spacer fabrics can be achieved applying selected material without significant changes on their comfort properties. Also a regression model was presented to predict the water vapour permeability of knitted spacer fabrics based on course density (CPC) changing.  相似文献   

13.
Sound absorption property, viscoelastic property and the effect of plasma treatment of four automotive nonwoven fabrics on these properties are discussed in this research paper. Needle-punched fabrics used for vehicle headliner include 2 polyester fabrics made of hollow polyester fibers or solid polyester fibers, and 2 polypropylene-composite cellulose fabrics made of jute fibers or kenaf fibers, manufactured with the same web structure of apparent fabric density and fabric thickness. Hollow polyester fiber fabric has the highest sound absorption and the highest loss factor, the second highest is jute fiber fabric. The viscoelastic property is found to be related to the sound absorption property of fabric. The plasma treatment on nonwoven fabrics changes their sound absorption and viscoelastic property as well as their fabric weight and pore size. Hollow polyester fabric shows the increased sound absorption and viscoelastic property after the treatment with the increased pore sizes, while regular polyester fabric displays insignificant changes. The cellulose fabrics are more affected by plasma treatment compared to the polyester fabrics in terms of fabric weight loss and pore size, and jute fabric is more affected than kenaf fabric due to fiber weakness. The jute fabric demonstrates the decreased sound absorption and viscoelastic property, while kenaf fabric shows the increased sound absorption with the unchanged viscoelastic property after the treatment.  相似文献   

14.
Cotton fabrics exhibiting superhydrophobic and antibacterial properties were prepared through a non-solvent induced phase separation method using hydrophobic poly(vinylidene fluoride) (PVDF) and its hybrids with photocatalytic zinc oxide nanoparticles (nano-ZnO) as surface modifying agents for cotton fabric. The effects of coagulating medium and temperature on microstructural morphology and surface hydrophobictity of the cotton fabrics were investigated by FE-SEM observation and contact angle measurement. Superhydrophobic cotton fabrics exhibiting water contact angle higher than 150 ° could be obtained by coating the fabrics with solutions of PVDF and nano-ZnO followed by coagulation in ethanol as non-solvent. This phenomenon is considered to be originated from both chemically hydrophobic PVDF layer and physical micro- and nano-bumps formed on the surface of cotton fabric, which are essential requirements for Lotus effect. Moreover, antibacterial properties could be synergistically obtained by utilizing photocatalytic effect of nano-ZnO.  相似文献   

15.
This study evaluated the potential application of an atmospheric plasma (AP) treatment as a pre-treatment for digital textile printing (DTP) of polyester (PET) fabrics and cotton, in order to determine its viability as an alternative to the usual chemical treatment. The surface properties of the AP-treated fabrics were examined through scanning electron microscopy (SEM) and contact angle, and the physical properties, such as electrostatic voltage and water absorbance, were tested. The properties of cotton and PET with the AP treatment were found to be dependent on number of repetitions and electric voltage. Although no remarkable surface differences were observed by SEM in the fabrics before and after treatment, the static contact angle of the PET after AP treatment was decreased from 85 ° to 24 ° at wave. In addition, the charge decay time decreased as the voltage and number of treatments increased. The absorption height of PET changed after exposure to 7 mm with increasing measurement time. The K/S with and without the AP pre-treated and DTP finished cotton was better than that with the usual chemical modification. In PET, the 0.5 kW and 1 time AP-treated specimen showed the highest K/S values.  相似文献   

16.
Calcium alginate nonwoven fabrics were gelation-modified by two-stage with aqueous HCl solution and then ethanolic NaOH solution. The structure and crystallinity properties of the samples were characterized by FT-IR, SEM, and XRD. The preparation conditions and modification mechanism were investigated. The results indicated that the crystal structure of calcium alginate fibers was destroyed; the crystallinity and calcium ion content decreased after HCl treatment. This resulted from the formation of ester bonds among the hydrolytic molecules after NaOH treatment. The best gel performance was obtained at the HCl concentration of 0.05-0.1 wt% with the NaOH concentration in ethanol of 2–4 mol/l. The liquid absorption of nonwoven alginate fabrics increased by 145 %. The water capability increased by 2673 % after modification, while the thickness, mass per unit area, permeability, and tensile strength of nonwoven alginate fabrics changed little.  相似文献   

17.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

18.
The photo-induced reactivity of lyocell fabrics containing two water-soluble photoinitiators and multifunctional acrylate was characterized by the UV absorption and photoluminescence properties. The relative quantum yields of the fluorescence and phosphorescence were analyzed at three exciting wavelengths and the proportional constants were compared. The fabrics containing [2-(acryloyloxy)ethyl](4-benzoylbenzyl)dimethylammonium bromide (PIA) and 1,3,5-triacryloylhexahydro-s-triazine (TAF) exhibited smaller relative quantum yields than the fabrics containing [3-(3,4-dimethyl-9-oxo-9h-thioxanthene-2-yloxy)-2-hydroxypropyl]trimethylammonium chloride (PIB) and TAF. The modified cellulose fabrics with tertiary amine also had smaller relative quantum yields than regular fabrics. We found that the cellulose/PIA/TAF system was a more photoactive process than the cellulose/PIB/TAF system and that the AM/PI/TAF system was more active than the regular/PI/TAF system. Furthermore, a TAF molecule was proved to have photo-reactivity with cellulose by a comparison between the proportional constants in the fluorescence quantum yields of PI/TAF solutions and cellulose/PI/TAF fabrics. These fabrics were irradiated by a high-power UV system with an electrodeless lamp. FTIR-ATR spectra showed that TAF molecules were successfully introduced to the surfaces of the irradiated fabrics. Thermogravimetric analysis showed that the thermal stability increased and the degree of thermal depolymerization decreased with the addition of PI and TAF; therefore, it was inferred that TAF molecules were cross-linked between adjacent cellulose chains to some degree. These results agreed well with the ESCA data; the N1s/C1s ratios increased and O1s/C1s ratios decreased with the TAF addition. The water retention value (WRV) decreased because of the drop in swellability of the cross-linked fabric and the moisture regain value (MRV) decreased because the total water absorption sites diminished. In particular, the irradiated cellulose/PIA/TAF fabrics exhibited more distinct effects than the irradiated cellulose/PIB/TAF fabrics and the AM/PI/TAF fabrics were more photoactive in this UV-irradiation system than regular/PI/TAF fabrics.  相似文献   

19.
Moisture management behavior is a vital factor in evaluating thermal and physiological comfort of functional textiles. This research work studies functional 3 dimensional (3D) warp knitted spacer fabrics containing high-wicking materials characterized by their profiled cross section. These spacer fabrics can be used for protective vest to absorb a user’s sweat, to reduce the humidity and improve user’s thermal comfort. For this reason, different 3D warp knitted spacer fabrics were produced with functional fiber yarns in the back layer of the fabric (close to the body) and polyester in the front and middle layers (outer surface). Comfort properties such as air and water vapor permeability and wicking and other moisture management properties (MMP) of different fabric samples were measured. It is demonstrated that by using profiled fibers such as Coolmax fiber, moisture management properties of spacer fabrics can be improved, enabling them to be use as a snug-fitting shirt worn under protective vests with improved comfort.  相似文献   

20.
Four kinds of natural dying solutions (natural colorant extracts) were obtained by extraction from gardenia, coffee sludge, Cassia tora. L., and pomegranate using water at 90°C for 90 min with a liquor ratio (solid natural colorant material/solvent water, weight ratio) of 1/10. The dyeing, colour fastness, and deodorizing properties of cotton, silk, and wool fabrics dyed with natural colorant extracts were compared. It was found that these properties were significantly dependent on the concentration of extracts, the structure of colorant, and the kind of fabrics. The order of colour strength (K/S) is Cassia tora. L., pomegranate, coffee sludge, and gardenia. Colour fastness (light, water, and perspiration fastness) was in the range of 2nd–5th grades. The deodorizing performance of fabrics dyed with various natural colorant extracts was in the range of 50–99 %. The deodorizing performance increased in the order of gardenia < Cassia tora. L. < coffee sludge < pomegranate. Especially, the deodorizing performance of all fabrics dyed with pomegranate was found to be highest at 99 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号