首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Irrigation with saline water is one of the major problems in citrus crop in arid and semi-arid regions. Because rootstock and fertilization play an important role in citrus salt tolerance, we investigated the influence of the nitrogen fertilization and rootstock on salt tolerance of 2-year-old potted Fino 49 lemon trees. For that, trees grafted on Citrus macrophylla (M) or Sour orange (SO) rootstocks were watered for 12 weeks with complete nutrient solution containing either 0 mM NaCl (control, C), 50 mM NaCl (S), 50 mM NaCl with an additional 10 mM potassium nitrate (S + N), or 50 mM NaCl with a 1% KNO3 (S + Nf) foliar spray application. Trees on M were more vigorous than trees on SO and saline treatments reduced leaf growth similarly in trees on both rootstocks. Trees on SO had a lower leaf Cl and Na+ concentration than those on M. Additional soil nitrogen (S + N) decreased leaf Cl concentration and increased leaf K+ concentration in salinized trees on both rootstocks. However, the salinity-induced reduction leaf growth was similar in S + N and S trees. This was due to osmotic effect, beside leaf Cl and Na+ toxicity, played an important role in the growth response of Fino 49 lemon to the salt stress. Additional foliar nitrogen in the S + Nf treatment also reduced leaf Cl concentration relative to the S treatment but trees from S + Nf treatment had the lowest leaf growth. Net assimilation of CO2 (ACO2ACO2), stomatal conductance (gs) and plant transpiration were reduced similarly in all three salt treatments, regardless rootstock. Salinity reduced leaf water and osmotic potential such that leaf turgor was increased. Thus, the salinity-induced ACO2ACO2 reductions were not due to loss of turgor but rather due to high salt ion accumulation in leaves.  相似文献   

2.
《Scientia Horticulturae》2004,102(1):75-89
‘Ellendale’ mandarin (Citrus reticulata Blanco) on seven commercially important rootstocks was assessed over a 26-year period on a site not previously planted to citrus. Tree yield data collected each season from 1969 to 1991 showed that yields were highest on ‘Lockyer’ rough lemon (C. jambhiri Lush) and lowest on ‘Emperor’ mandarin. Yields for the two citranges (C. sinensis (L.) Osbeck × Poncirus trifoliata (L.) Raf.), ‘Troyer’ and ‘Carrizo’, were intermediate, and somewhat higher than those for two selections of sweet orange (C. sinensis (L.) Osbeck), ‘Parramatta’ and ‘Joppa’. Linear regression was used to examine changes in yielding pattern across the 23 seasons of fruit production. This revealed that ‘Troyer’ was comparable with the rough lemon selections throughout most of the experiment and significantly higher than ‘Carrizo’ during certain periods in the middle of the experiment. Similarly, while ‘Joppa’ and ‘Parramatta’ produced near-identical results during most of the experiment, ‘Joppa’ out-performed ‘Parramatta’ toward the end of the experiment. ‘Emperor’ showed a low yield trend throughout the experiment, often more than 50 kg per tree per year less than the rough lemon and citrange selections. Detailed assessment of biennial bearing showed a significant pattern commencing when trees were approximately 15 years old and intensifying until the end of the experiment. However, rootstock had no effect on the biennial bearing behaviour of ‘Ellendale’ mandarin. Correlations of cumulative yields at each harvest date with the final cumulative yield (for 23 seasons of cropping) showed instability up until approximately the eighth year of cropping after which it increased steadily, suggesting that in similar experiments there may be only marginal value in assessing yields beyond about the 10th season. Fruit quality assessments made in two consecutive seasons showed expected trends, with rough lemon (both ‘Lockyer’ and ‘Mazoe’) producing the largest and heaviest fruit, with thicker rinds, lower juice content, and lower Brix. The citrange selections (‘Troyer’ and ‘Carrizo’) resulted in fruit quality comparable to the sweet oranges (‘Parramatta’ and ‘Joppa’), with ‘Troyer’ producing significantly higher Brix levels than any other rootstock. All rootstocks produced leaf nutrient levels close to the desirable range, with significant differences for the elements P, Mg, Ca, Mn, and B. These differences separated the seven rootstocks into categories consistent with their genetic relatedness.  相似文献   

3.
《Scientia Horticulturae》2005,105(4):457-465
Since environmental conditions and cultural practices vary from one area to another, yield, fruit quality, and tree health measurements were conducted over 9 years to evaluate the long-term adaptability and performance to local conditions of ‘Allen Eureka’ lemon (Citrus limon Burm.f.) budded on seven rootstocks in the Najran area of Saudi Arabia. Trees on Citrus macrophylla (CM), Volkamer lemon (VL), and Cleopatra mandarin (Cleo) were the most productive, while trees on Amblycarpa (Amb), rough lemon (RL), Citrus taiwanica (CT), and sour orange (Citrus aurantium L.) (SO) had the lowest yield. Fruit from trees on CM and VL were also the largest in size and had the thickest rind, but were among those that had the lowest juice content and lowest total soluble solids. None of the trees on Cleo, VL, or RL died until the 14th year. However, there was a high mortality rate and severe tree decline on SO, CT, and Amb.  相似文献   

4.
Drought and salinity are two of the most important factors limiting the lemon yield in south-eastern Spain. The effects of drought and salt stress, applied independently, on water relations, osmotic adjustment and gas exchange in the highest evapotranspiration period were studied to compare the tolerance and adaptive mechanisms of 13-year-old ‘Fino 49’ lemon trees, in immature and mature leaves. The study was carried out in an experimental orchard located in Torre Pacheco (Murcia). Three treatments were applied: Control, well-irrigated; drought-stress (DS), non-irrigated from 15th May to 7th July and salinity, irrigated with 30 mM NaCl from 1st March to 7th July. At the end of the experiment, only DS trees showed a decreased leaf stem water potential (Ψmd). Under DS conditions, both types of leaf lost turgor and did not show any osmotic or elastic mechanism to maintain leaf turgor. Osmotic adjustment was the main tolerance mechanism for maintenance of turgor under salt stress, and was achieved by the uptake of Cl ions. Gas-exchange parameters were reduced by DS but not by salinity, stomatal closure being the main adaptive mechanism for avoidance of water loss and maintenance of leaf turgor. Salinity gave rise to greater Cl accumulation in mature than in immature leaves. The increase of proline in immature leaves due to DS indicates greater damage than in mature leaves.  相似文献   

5.
《Scientia Horticulturae》2005,103(3):289-303
In a 2-year field study, strawberry cvs. ‘Elsanta’ and ‘Korona’ were exposed to three different levels of NaCl salinity supplied as aqueous solutions characterised by electrical conductivities of 0.3 dS/m, 2.6 dS/m, and 5.1 dS/m. Salinity in the rhizosphere reduced plant growth by up to 44% in ‘Korona’ and 90% in ‘Elsanta’. A rather distinct cultivar difference represented the reduction in leaf area per plant of 85% in the second year of experiment in ‘Elsanta’ compared to 29% in ‘Korona’. Strawberry can be regarded as a Na+ excluder, because Na+ content of both strawberry cultivars remained below 3 mg g−1 dry mass at all salinity levels. Cl content increased considerably, up to 70 mg g−1 dry mass in ‘Korona’ and 80 mg g−1 dry mass in ‘Elsanta’ plants. ‘Korona’ retained most of its Cl in roots and crowns, whereas in ‘Elsanta’ the maximum was detected in petioles. ‘Korona’ was able to accumulate up to 33% higher Cl content in the roots than ‘Elsanta’. Macronutrient deficiency due to NaCl salinity was not observed and in comparison to ‘Elsanta’, higher Cl content in roots of ‘Korona’ did not coincide with an impairment of macronutrient uptake. Salinity stress reduced fruit yield by up to 27% in ‘Korona’ and 64% in ‘Elsanta’. Fruit quality, characterised as taste, aroma, and texture by a consumer-type panel, decreased by more than 24% in ‘Elsanta’, but in ‘Korona’ differences were insignificant. Total soluble solids (Brix) and the ratio Brix/TA (TA, titratable acid) decreased significantly by about 20% in ‘Korona’ and 35% in ‘Elsanta’. To summarise, the ability of ‘Korona’ to retain Cl in the root system more effectively than ‘Elsanta’ resulted not only in a 41% lower leaf Cl content at the highest salinity level and a better growth under NaCl stress, but also in a relatively higher fruit yield and fruit quality.  相似文献   

6.
Somatic hybridization is a biotechnology tool that can be used in citrus breeding programs to produce somatic hybrids with the complete genetic combination of both parents. The goal of this work was to test the reaction of citrus somatic hybrids that may be useful as rootstocks to trunk and root infections caused by Phytophthora nicotianae van Breda de Haan (P. parasitica Dastur) and to citrus tristeza virus (CTV). The somatic hybrids evaluated were ‘Caipira’ sweet orange (Citrus sinensis L. Osbeck) + ‘Rangpur’ lime (C. limonia Osbeck), ‘Caipira’ sweet orange + ‘Cleopatra’ mandarin (C. reshni hort. ex Tanaka), ‘Caipira’ sweet orange + ‘Volkamer’ lemon (C. volkameriana V. Ten. & Pasq.), ‘Caipira’ sweet orange + rough lemon (C. jambhiri Lush.), ‘Cleopatra’ mandarin + ‘Volkamer’ lemon, ‘Cleopatra’ mandarin + sour orange (C. aurantium L.), ‘Rangpur’ lime + ‘Sunki’ mandarin (C. sunki (Hayata) hort. ex Tanaka), ‘Ruby Blood’ sweet orange (C. sinensis L. Osbeck) + ‘Volkamer’ lemon, ‘Rohde Red’ sweet orange (C. sinensis L. Osbeck) + ‘Volkamer’ lemon, and ‘Valencia’ sweet orange + Fortunella obovata hort. ex Tanaka. For P. nicotianae trunk and root infection assays, plants of the somatic hybrids, obtained from 9-month semi-hardwood cuttings, were evaluated and compared with diploid citrus rootstock cultivars after mycelia inoculation in the trunk or spore infestation in the substrate, respectively. ‘Cleopatra’ mandarin + sour orange, ‘Rangpur’ lime + ‘Sunki’ mandarin, ‘Cleopatra’ mandarin + ‘Volkamer’ lemon, ‘Ruby Blood’ sweet orange + ‘Volkamer’ lemon, ‘Rohde Red’ sweet orange + ‘Volkamer’ lemon, and ‘Caipira’ sweet orange + ‘Volkamer’ lemon had less trunk rot occurrence, whereas the somatic hybrids ‘Cleopatra’ mandarin + ‘Volkamer’ lemon, ‘Cleopatra’ mandarin + sour orange, ‘Caipira’ sweet orange + ‘Volkamer’ lemon, and ‘Caipira’ sweet orange + ‘Rangpur’ lime were tolerant to root rot. For CTV assays, plants of the somatic hybrids along with tolerant and intolerant rootstocks were budded with a mild strain CTV-infected or healthy ‘Valencia’ sweet orange budwood. Differences in average scion shoot length indicated that the hybrids ‘Cleopatra’ mandarin + sour orange and ‘Valencia’ sweet orange + Fortunella obovata were intolerant to CTV.  相似文献   

7.
The aim of this study was to evaluate the effects of low molecular mass antioxidants and NaCl salinity on growth, ionic balance, proline, and water contents of ‘Zard’ olive trees under controlled greenhouse conditions. The experiment was carried out by spraying 2 mM of ascorbic acid (Asc) and 3 mM of reduced glutathione (GSH) on the plants that were treated with two salinity levels (0 and 100 mM NaCl) on their root medium. Plant growth parameters (leaf fresh weight, leaf dry weight, leaf number, total fresh weight, and total dry weight) were significantly improved by Asc compared with growth parameters in GSH and control plants. Higher concentrations of Na+ and Cl were observed in salt-stressed plants, while Na+ and Cl concentrations were decreased in the olive leaves that were sprayed with Asc. Salinity in the root zone caused a considerable decline in both K+ concentration and K/Na ratio. K+ concentration and K/Na ratio were significantly increased by application of Asc on plant leaves. Salinity caused an increase in electrolyte leakage (EL) compared with the control plants. Lowest EL and tissue water content (TWC) was obtained in Asc-sprayed plants, whereas TWC was increased in salt-stressed plants. Plants were subjected to salt stress and showed a higher relative water content (RWC) than the control plants. Salt stress induced proline accumulation in olive leaves. In conclusion, exogenous application of Asc is recommended to improve tolerance of olive plants under saline conditions.  相似文献   

8.
Summary

The aims of this work are to describe the effects of pruning and planting density on growth and water relations of ungrafted and grafted sweet cherry trees. A trial with cherry rootstocks ‘Prunus avium’, ‘CAB 11E’, ‘Maxma 14’, ‘Gisela 5’ and ‘Edabriz’ was begun in 1997. Pruning severities were applied to the rootstocks (0, 30, 60 and 90% of the vegetative growth was removed corresponding to P1, P2, P3 and P4 treatments, respectively) after planting to two plant spacings (S1 = 0.25 × 1.0 m and S2= 0.45 × 1.5 m). Canopy, root growth and leaf water potential (ψleaf) were quantified throughout the growing season. Pruning significantly affected root length and root weight of the rootstocks. Uncut plants (P1) showed a heavier and expanded root biomass (231 g and 108 m) than the intensively pruned plants (P4) (187 g and 75 m). The greater root biomass was obtained with the spacing/pruning combination, S1/P1 (285 g), and the smaller with S1/P4 (180 g) and S2/P4 (176 g). ψleaf varied significantly between the rootstocks and plant spacing but not with pruning. ‘Maxma 14’ and ‘P. avium’ attained the lowest values of midday ψleaf, –2.28 and –2.04 MPa, but the highest values of predawn ψleaf, –0.29 and –0.25 MPa, respectively. Generally, with high density (S1), the rootstocks exhibited lower predawn and midday ψleaf. In 1998, cultivars ‘Burlat’, ‘Summit’ and ‘Van’ were grafted onto rootstocks and a trial was installed in 1999. Predawn and midday stem water potential (ψstem) on cherry trees, measured in 2002, were affected significantly by the rootstock/genotype combination. Cultivars grafted on ‘P. avium’ and ‘Maxma 14’ showed the less negative midday ψstem, –1.36 and –1.42 MPa respectively, so these rootstock genotypes perhaps induced a higher drought resistance to the scion. Recorded data show that the scion-rootstock interaction with regard to production performance under water deficits may be an important consideration in cherry tree planting strategies.  相似文献   

9.
Salinity is one of the major environmental factors limiting crop productivity. The effect of increasing salinity levels (0, 50, 100 mM NaCl) on growth, photosynthetic traits, leaf water potential, oxidative stress, enzymatic and non-enzymatic antioxidants was studied in Pusa Jai Kisan and SS2 cultivars of mustard (Brassica juncea L. Czern & Coss.) differing in ATP-sulfurylase activity at 30 days after sowing (DAS). The cultivar SS2 (low ATP-sulfurylase activity) accumulated higher content of Na+ and Cl in leaf than root. SS2 also showed greater content of thiobarbituric acid reactive substances (TBARS) and H2O2 and higher decrease in growth, photosynthetic traits and leaf water potential than Pusa Jai Kisan with increasing salinity levels. Contrarily, Pusa Jai Kisan (high ATP-sulfurylase activity) exhibited higher Na+ and Cl content in root than leaf, lower TBARS and H2O2 content and higher activity of catalase, ascorbate peroxidase and glutathione reductase. However, the activity of superoxide dismutase was greater in SS2 than Pusa Jai Kisan. Higher activity of ATP-sulfurylase in Pusa Jai Kisan resulted in increased content of glutathione, a reduced form of inorganic sulfur and an essential component of cellular antioxidant defense system. The lesser decrease in growth and photosynthesis in Pusa Jai Kisan was the result of lesser Na+ and Cl in leaf, higher turgidity and increased activity of antioxidant enzymes and glutathione content.  相似文献   

10.
The use of saline waters is an option for the irrigation of salt tolerant ornamentals as competition for high quality water increases. However, despite the importance of ornamental shrubs in Mediterranean areas, salt tolerance of such species has received little attention. The aims of our investigation were to quantify the growth response and any injury symptom of 12 widely cultivated ornamental shrubs to irrigation with saline water and to investigate any possible relation with the concentration of Na+ and Cl in the plants. Species were irrigated with different salinities (10, 40, and 70 mM NaCl) for a 120-day period. At the end of salt treatment, plants were sampled and dry biomass recorded; the relative growth rate (RGR) was also calculated. Root and leaf samples from each species were used to evaluate Na+, K+ and Cl concentrations. Growth rates were significantly reduced in Cotoneaster lacteus, Grevillea juniperina and Pyracantha ‘Harlequin’, which also showed the highest percentage of necrotic leaves. The increasing external NaCl lead to an increase of Na+ and Cl in roots and leaves of the different species, although less Na+ was accumulated than Cl: growth reduction well correlated with the concentration of Cl and/or Na+ in the leaves. The most sensitive species (i.e. C. lacteus, G. juniperina and Pyracantha ‘Harlequin’) had high concentrations of Na+ and/or Cl in their leaves and also showed a decrease in their leaf K+/Na+ ratios. Even though other species (i.e. Bougainvillea glabra, Ceanothus thyrsiflorus, Leptospermum scoparium, Leucophyllum frutescens and Ruttya fruticosa) demonstrated a high ion concentration in their leaves, they could be considered relatively salt tolerant as there was little growth reduction and few symptoms of injury in the leaves. In some other cases (i.e. Cestrum fasciculatum, Escallonia rubra and Viburnum lucidum) the observed tolerance was related to higher ion concentration in the roots compared to the leaves, probably indicative of a limited transport to the shoots. Only in Eugenia myrtifolia was the absence of symptoms associated with a limited Na+ and Cl uptake from the rhizosphere.  相似文献   

11.
Summary

Floral induction in tropical trees generally follows a check in vegetative growth. However, it is not easy to identify the environmental factors involved in flowering, which normally occurs during the dry season when temperatures are also often lower. The separate and combined effects of temperature and water supply on floral induction were investigated in ‘Hass’ avocado (Persea americana), ‘Lisbon’ lemon (Citrus limon). ‘Wai Chee’ litchi (Litchi chinensis) and ‘Sensation’ mango (Mangifera indica). Low temperatures (15°/10°C or 15°/10°C and 20°/15°C compared with 30°/25°C and 25°/20°C) generally decreased vegetative growth and induced flowering in well-watered avocado, litchi and mango. A pre-dawn leaf water potential (ψL) of ?1.7 to ?3.5 MPa compared with ?0.4 to ?0.7 MPa in control avocado and litchi, and a pre-dawn relative water content (R.W.C.) of 90-93% compared with 97% or above in control mango plants also reduced or eliminated vegetative growth, but did not induce flowering. Low temperatures (15°/10°C compared with 20°/5°C, 25°/20°C or 30°/25°C) and water stress (pre-dawn ψL of ?2.0 to ?3.5 MPa compared with ?0.7 to ?0.8 MPa in controls) reduced or eliminated vegetative growth in lemon. In contrast to the response in avocado, litchi and mango, flowering in lemon was very weak in the absence of water stress at 15°/10°C or outdoors in Brisbane in subtropical Australia (Lat. 28°S), and was greatest after a period of water stress. The number of flowers increased with the severity and duration of water stress (two, four or eight weeks) and was generally greater after constant rather than with cyclic water stress. In lemon and litchi, net photosynthesis declined with increasing water stress reaching zero with a midday ψL of ?3.5 to ?4.0 MPa. This decline in carbon assimilation appeared to be almost entirely due to stomatal closure. Despite the reduction in midday CO2 assimilation, starch concentration increased during water stress, especially in the branches, trunk and roots of lemon. Leaf starch was uniformly low. The number of flowers per tree in lemon was strongly correlated with starch in the branches (r2=77%, P<0.01) and roots (r2=74%, P<0.001). In litchi, starch was lower than in lemon roots and was not related to flowering.

In separate experiments to test the interaction between temperature and water supply, low day/night temperatures (23°/18° and 18°/15°C compared with 29°/25°C) reduced vegetative growth and induced flowering in avocado, litchi and mango. None of these species flowered at 29°/25°C or as a result of water stress (ψL of ?1.5 MPa compared with ?0.3 MPa for avocado and ?2.0 MPa compared with ?0.5 MPa for litchi, and R.W.C, of 90-93% compared with 95-96% in mango). In contrast, in lemon, flowering was very weak (<10 flowers per tree) in the absence of water stress (pre-dawn ψL of ?2.0 MPa compared with ?0.5 MPa) and was only heavy (>35 flowers per tree) after stressed trees were rewatered. There were slightly more flowers at 18°/15°C than at 23°/18° and 29°/25°C in control plants, but no effect of temperature in stressed plants. Starch concentration in the roots of avocado, lemon, litchi and mango was generally higher at 18°/15°C and 23°/18°C than at 29°/25°C. Water stress increased the starch concentration in the roots of lemon and litchi and decreased it in avocado. There was no effect in mango. There was a weak relation (r2=57%, P<0.05) between the number of flowers per tree in lemon and the concentration of starch in the roots. In contrast, there was no significant relationship between flowering and starch levels under the various temperature and water regimes in the other species. In another experiment, only vegetative growth in litchi and mango occurred at 30°/25°C and only flowering at 15°/10°C. Six weeks of water stress (pre-dawn ψL of ?2.5 MPa compared with ?1.0 MPa or higher in litchi, and R.W.C, of 90-93% compared with 95% or higher in mango) in a heated glasshouse (30°C days/20°C night minimum) before these temperature treatments did not induce flowering.

Temperatures below 25°C for avocado and below 20°C for litchi and mango are essential for flowering and cannot be replaced by water stress. The control of flowering in lemon over the range of day temperatures from 18°C to 30°C differed from that of the other species in being mainly determined by water stress. Flowering was generally weak in well-watered plants even with days at 18°C. Starch did not appear to control flowering.  相似文献   

12.
Summary

2,4-dichlorophenoxyacetic acid (2,4-D) isopropyl ester has been used extensively, since the 1950’s, to reduce mature fruit abscission in Citrus navel cultivars. However, this synthetic auxin is no longer registered for this purpose in the European Union (EU). 2,4-dichlorophenoxypropionic acid (2,4-DP) 2-ethylhexyl ester has been registered in the EU for use in citrus growing and can be an effective replacement for 2,4-D to reduce pre-harvest fruit abscission. Use of the 2-ethylhexyl ester of 2,4-DP sprayed before mature fruit abscission significantly reduced fruit drop in sweet orange (Citrus sinensis L. Osbeck) ‘Washington navel’ and ‘Navelate’. The magnitude of the response depended on the concentration applied. At 15 mg l–1, the percentage of abscised fruit was reduced by 50–75% compared to untreated trees, depending on the variety and the orchard. Increasing the concentration applied to 50 mg l–1 did not improve this response. The response to this auxin was as effective as that obtained with 2,4-D applied on the same day at the same concentration (15 mg l–1). 2, 4-DP treatment had no effect on skin colour or on the internal and external characteristics of the fruit at harvest.  相似文献   

13.
Faced with new challenges, such as emerging diseases, shortening of orchard longevity, and larger social and environmental demands from consumers, practices such as rootstock diversification, irrigation and high density plantings have become relevant for the Brazilian citrus industry. This research had the objective to evaluate the performance of irrigated and non-irrigated ‘Tahiti’ lime trees grafted on 12 rootstocks and one interstock. Plots were distributed following a randomized block design, with four replicates and one plant per plot. Rootstocks influenced plant vigor, especially ‘Flying Dragon’ trifoliate, which reduced tree height by approximately 47% compared to the ‘Rangpur’ lime. Trees that were budded on more vigorous rootstocks showed higher yield when grown without irrigation than with irrigation. The ‘1646’ citradia and ‘Morton’ citrange rootstocks performed particularly well. On the other hand, the plants on less vigorous rootstocks showed better performance in terms of yield under irrigation than the same combinations without irrigation, especially those grafted on the tetraploid ‘Carrizo’ and ‘Troyer’ citranges, ‘Swingle’ citrumelo, ‘Davis A’ trifoliate and ‘Flying Dragon’ trifoliate. Plants budded on the ‘1708’ citradia had high yields under irrigated and non-irrigated conditions. The effect of interstock on plant vigor was dependent of rootstock. Interstocked plants on ‘Davis A’ trifoliate were higher than those without interstock. On the other hand, interstocked plants on Catania 2 ‘Volkamer’ lemon were less vigorous than those without interstock.  相似文献   

14.
A single GA3-spray at petal-fall to the entire tree enhanced initial set in the ‘Navelate’ sweet orange (Citrus sinensis L. Osbeck), but this effect was transient and in most cases final yield was not increased. When followed by girdling, final yield was increased even in the most productive orchards, this effect being due to an increase in fruit number while fruit size was unaffected. The response was markedly dependent on the GA3 concentration, 5 mg l?1 giving the best results. Higher concentrations up to 20 mg l?1 even reduced yield compared to the untreated control trees. Chlormequat reduced the number of fruits finally cropped without affecting their size, an effect which may be explained through a reduction in the endogenous gibberellin levels.  相似文献   

15.
柑橘叶脉开裂症与矿质营养的关系   总被引:3,自引:2,他引:1  
 柑橘叶脉开裂症属于多病因的病症,缺Mg或缺B均可导致发病。对‘纽荷尔’脐橙[Citrus sinensis(L.)Osbeck‘Newhall’]的缺Mg叶脉开裂症病株,在生长季4月采用1.0%硝酸镁叶面喷施矫治2 ~ 3次,可有效降低病叶发生。通过福建柑橘产区普查,由缺Mg引起叶脉开裂症占86.2%,其次为B与Mg共同缺乏,缺B仅占2.3%。不同品种缺Mg叶脉开裂的感病顺序为:纽荷尔脐橙>琯溪蜜柚,其它发病品种还有金柑、早熟温州蜜柑、瓯柑。采用易感品种纽荷尔脐橙与抗性品种椪柑互为中间砧高接比对发现,纽荷尔脐橙对Mg和B的吸收能力低于椪柑,对K的吸收高于椪柑,这可能是纽荷尔脐橙易患叶脉开裂症的原因。缺Mg和缺B病症的最显著的区别为,缺Mg叶脉开裂多位于叶片顶部“∧”形黄化部位;缺B叶脉开裂症病叶呈绿色不黄化;Mg、B缺乏症的病叶主脉和侧脉明显开裂与全叶黄化,或叶脉开裂达基部“∧”形绿色区域。  相似文献   

16.
《Scientia Horticulturae》2001,88(2):107-120
Methyl jasmonate (MJ) and CMN-pyrazole alone and in combination were applied to ‘Hamlin’ and ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck) in seven separate experiments in the 1998/1999 and 1999/2000 growing seasons to induce abscission of mature fruit for mechanical harvesting. MJ alone significantly reduced fruit detachment force (FDF) of ‘Hamlin’ oranges at concentrations of 10 mM and higher. However, MJ at 20 and 100 mM caused significant defoliation. For ‘Hamlin’ oranges, the most effective treatments were those combining 10 mM MJ and 50 mg l−1 CMN-pyrazole, and 20 mM MJ and 25 mg l−1 CMN-pyrazole. ‘Valencia’ oranges did not respond to 10 mM MJ treatments alone or in combination with CMN-pyrazole, and required MJ at 20 mM in combination with CMN-pyrazole to loosen this late-maturing variety to below 50 N, but excessive defoliation occurred.  相似文献   

17.
《Scientia Horticulturae》2001,87(3):207-216
The responses of two rose rootstocks Rosa chinensis ‘Major’ and R. rubiginosa were investigated under salt stress. The distribution of chloride and sodium ions in all plant parts was determined. The salt treatments were applied through irrigation water containing 0, 5, 10, 20 and 30 mM NaCl. Necrosis on the leaves as a result of the NaCl treatments was observed with in rootstocks after two months. Leaf injury was more pronounced in R. chinensis ‘Major’ than R. rubiginosa. The rootstock R. rubiginosa showed a higher tolerance to the NaCl stress than R. chinensis ‘Major’. The survival of the plants under increased NaCl stress as well as the extent of leaf injury could be used in the determination of tolerance of the rose genotypes. The lower older leaves contained higher concentrations of Cl than the young upper leaves. Leaf samples had higher concentrations of Cl than stem samples taken from the same positions. The roots contained higher amounts of Cl than the stem samples. The plants accumulated higher amounts of Cl in comparison with Na+. The lower leaves of R. chinensis ‘Major’ had higher amounts of Na+ than in all other parts whereas R. rubiginosa had higher concentrations of Na+ in the roots than in all other parts.  相似文献   

18.
Nitrogen use efficiency (NUE) definitions, commonly used in literature, are evaluated in response to nitrate availability in four citrus rootstocks, Rough Lemon (Citrus jambhiri Lush) (RL), Sweet Orange (Citrus sinensis (L.) Osbeck) (SwO), Cleopatra Mandarin (Citrus reshni Hort ex Tan.) (CM) and Sour Orange (Citrus aurantium L.) (SO). The application of diverse definitions determine different characterizations in N-efficiency among rootstocks. Nitrogen utilization efficiency (NUtE) and nitrogen efficiency ratio (NER) determine equal level of nitrogen efficiency among all rootstocks. Total nitrogen accumulation (TNA), nitrogen uptake efficiency (NUpE), shoot dry weight (SDW) and total leaf area (TLA) response curves produce the same NUE characterization: SO and SwO were nitrate use efficient and inefficient rootstocks, respectively, while the RL and CM exhibit superior and inferior genetic potential, respectively.  相似文献   

19.
‘Swingle’ citrumelo [Citrus paradisi MacFaden × Poncirus trifoliata (L.) Raf.] has been extensively used as a rootstock in several citrus growing regions of the World, including Southern Brazil where ‘Rangpur’ lime (Citrus limonia Osbeck) is still the predominant variety despite being affected by several important pathogens. In this case, ‘Swingle’ citrumelo is used to produce nursery trees to establish new orchards or to be inarched in adult and healthy groves in order to change the rootstock. We report herein a system to produce trees on ‘Swingle’ citrumelo more rapidly by budding onto non-rooted cuttings, as well as assessing potential to rapidly multiply ‘Swingle’ through rooting of non-budded cuttings. Therefore, two potential products are described: budded trees and rooted rootstock cuttings. ‘Valencia’ sweet orange [Citrus sinensis (L.) Osbeck] was budded at different heights on cuttings derived from eight-month old rootstocks. Grafted and additional non-budded cuttings were then treated with indole-3-butyric acid (500 mg L−1) or left untreated before rooting. Three types of cuttings were evaluated: softwood, semi-hardwood and hardwood. The use of nursery trees derived from pre-budded hardwood cuttings of ‘Swingle’ citrumelo is an alternative grafting method on this cultivar. Softwood cuttings with one leaf pair were considered the most adequate material for rapid multiplication of ‘Swingle’ citrumelo by cutting. This could be particularly useful for inarching production or conventional budding after transplant of cutting-derived rootstocks.  相似文献   

20.
Changes caused by NaCl-induced salinity on several growth parameters and ions accumulation have been measured in five olive (Olea europaea L.) cultivars (‘Chemlali’, ‘Chetoui’, ‘Koroneiki’, ‘Arbequina I18’, and ‘Arbosana I43’) growing in a greenhouse in nutrient solution pot experiment. One-year-old plants were transplanted to sand–perlite (1:1) culture, and were irrigated with half-strength Hoagland nutrient solution containing NaCl at various levels (0.5, 50, 100 and 200 mM). Salinity induced significant decrease in growth parameters, but to a different extent in each cultivar. Leaf growth and total leaf area per plant were significantly affected by all salinity treatments in all studied cultivars, being ‘Arbequina I18’ the most sensitive cultivar. Leaf drop phenomenon was observed from 60 days after salt application at high salinity treatments, mainly in Arbequina I18. Contrary to leaf area, leaf thickness increased progressively during the experiment. ‘Chemlali’ developed thicker leaves at the two highest salinity treatments when compared to the other cultivars. Na+ and Cl concentrations were higher in roots than in shoots and leaves in most of the cultivars investigated. The effectiveness of Na+ exclusion mechanism in the roots differed significantly among studied cultivars, working effectively in ‘Chemlali’ (by inhibiting translocation of Na+ to the aerial part) and being much less efficient in ‘Arbequina I18’. Furthermore, leaf abscission can be considered as an additional tolerance mechanism of olive cultivars allowing the elimination of leaves that had accumulated Na+ and Cl ions. Tolerance to salinity stress was as follows: ‘Chemlali’ > ‘Chetoui’ > ‘Arbosana I43’ > ‘Koroneiki’ > ‘Arbequina I18’. This order of salt tolerance was indicated by lower reduction in plant growth parameters (shoot elongation, trunk diameter, total plant dry weight, internodes length, and total leaf area), the increase of leaf thickness, and by the effectiveness of the exclusion mechanism of Na+ and Cl in the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号