首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of silicon (Si) application on plant growth, pigments, photosynthetic parameters, chlorophyll a (Chl a) fluorescence parameters and nitrogen metabolism were studied in Cucumis sativus L. under cadmium (Cd) toxicity. Compared with the control, 100 μM CdCl2 treatment caused dramatic accumulation of Cd in cucumber leaves, greatly induced chlorosis, and the transmission electron microscope (TEM) analysis indicated that Cd treatment cucumber chloroplast showed obvious swollen, thylakoids and chloroplast membrane were seriously damaged, and could not be observed clearly. Application of Si reversed the chlorosis, protected the chloroplast from disorganization, and significantly increased the pigments contents, which might be mainly responsible for the higher photosynthetic rate and accumulation of biomass under Cd stress. Further investigation of chlorophyll a fluorescence indicated that Cd treatment decreasing photosynthesis was not due to stomatal restriction, while was closely related integrity damage or function lost of the photosynthetic machinery which can be concluded from the higher intercellular CO2 concentration (Ci) and lower Fv/Fm and ΦPSII. Application of Si alleviated the inhibited level of photosynthesis and Fv/Fm and ΦPSII by Cd, which might imply that Si plays important roles in protecting photosynthetic machinery from damaging. The Cd treatment also greatly inhibited the enzymes of nitrogen metabolism including nitrogen reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH), and Si supply decreased the inhibiting effects of Cd.  相似文献   

2.
The effects of exogenous application of abscisic acid (ABA) on anti-oxidant enzyme activities and photosynthetic capacity in ‘Sultana’ grapevine (Vitis vinifera L.) were investigated under cold stress. When vines had an average of 15 leaves, 0 (control), 50, 100, or 200 µM ABA was sprayed to run-off on all leaves of each plant. Twenty-four hours after foliar spraying with ABA, half (n = 5) of the water-only control vines and half (n = 5) of each group of ABA-treated plants were subjected to 4°C for 12 h, followed by a recovery period of 3 d under greenhouse conditions (25°/18°C day/night). The remaining plants in each treatment group were kept at 24°C. Cold stress increased H2O2 and malondialdehyde (MDA) concentrations in vine leaves, whereas all foliar ABA treatments significantly reduced their levels. Chilled plants showed marked increases in their total soluble protein contents in response to each ABA treatment. ABA significantly increased the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in cold-stressed grapevine leaves. In contrast, cold stress markedly decreased the rates of leaf photosynthesis (A) and evaporation (E), stomatal conductance (gs), and chlorophyll concentrations in leaves, but increased intercellular CO2 concentrations (Ci) in leaves. Treatment with all concentrations of ABA resulted in lower leaf A, E, and gs values, but higher Ci values at 24°C. However, following cold stress, ABA-treated vines showed higher leaf A, E, and gs values, but lower Ci values compared to control vines without ABA treatment. The application of 50–200 µM ABA allowed chilled vines to recover more quickly when re-exposed to normal temperatures, enabling the vines to resume their photosynthetic capacity more efficiently following cold stress. These results showed that, by stimulating anti-oxidant enzyme systems and alleviating cold-induced stomatal limitations, ABA reduced the inhibitory effect of cold stress on the rate of CO2 fixation in ‘Sultana’ grapevine plants.  相似文献   

3.
Nitric oxide (NO) serves as a bioactive molecule involved in antioxidant and anti-stress agent in tolerance responses to abiotic stress. Here, we investigated the effects of exogenous sodium nitroprusside (SNP), a NO donor, on both the ROS metabolism and functions of plasma membrane and tonoplast in tomato plants treated with 50 μM CuCl2. The copper stress markedly decreased shoot height, fresh weight, induced significant accumulation of H2O2, and led to serious lipid peroxidation in tomato plants. The application of 100 μM SNP significantly alleviated the growth inhibition, promoted ROS-scavenging enzymes, reduced H2O2 content in tomato plants, and alleviated the inhibition of H+-ATPase and H+-PPase in plasma membrane or tonoplast induced by CuCl2. While application of sodium ferrocyanide (an analog of SNP) and sodium nitrate or nitrite (the decomposition product of NO or its donor SNP) which did not release NO, did not show the effects of SNP; furthermore, the effects of SNP were reversed by addition of hemoglobin (a NO scavenger). All together, these results suggested that exogenous NO could be advantageous against copper (Cu) toxicity, and could confer tolerance to heavy metal stress in tomato plants.  相似文献   

4.
SUMMARY

Gas exchange and photosystem II (PSII) activities in the leaves of 2-year-old ‘Bluecrop’ highbush blueberry (Vaccinium corymbosum) were monitored during water stress and subsequent re-irrigation to investigate the effects of the intensity of water stress on changes in photosynthetic characteristics. The blueberry shrubs were not irrigated for 3 to 5 weeks, then re-irrigated daily up to 8 weeks. The decrease in soil water potential during water stress caused a progressive decrease in leaf water potential. Soil water potentials decreased to -0.26 MPa and -0.34 MPa at 3 and 5 weeks, respectively, following water stress, but recovered following subsequent re-irrigation, while the soil water potential in daily-irrigated shrubs was maintained at over -0.13 MPa throughout the experiment. Chlorophyll concentrations decreased with an increasing duration of water stress. Chlorophyll concentrations in leaves on shrubs subjected to water stress for 5 weeks did not recover following re-irrigation, unlike those subjected to water stress for 3 weeks. The leaves on shrubs subjected to water stress for 5 weeks maintained lower levels of chlorophyll during reirrigation. The net rate of CO2 assimilation (An) decreased significantly with an increasing duration of water stress. Reirrigation reversed the decrease in An in leaves on shrubs subjected to water stress for 3 weeks. Stomatal conductance (gs) exhibited a similar pattern to An. The actual quantum yield of photosystem II (ΦPSII) and the electron transport rate (ETR) also decreased significantly with an increasing duration of water stress, although the Fv/Fm ratio was not affected. ΦPPSII and ETR values in the leaves on shrubs subjected to water stress for 5 weeks did not recover after reirrigation, unlike those subjected to water stress for 3 weeks. Non-photochemical quenching increased with an increasing duration of water stress, but subsequent re-irrigation did not reverse the increase. These results indicate that the timing of re-irrigation of water-stressed ‘Bluecrop’ highbush blueberry is critical in order to maintain their photosynthetic capacity. Among the photosynthetic characteristics measured, ΦPSII and ETR could be used as sensitive indicators to assess the physiological status of leaves of ‘Bluecrop’ highbush blueberry growing under water stress conditions.  相似文献   

5.
Summary

Photosynthesis of tomato plants (Lycopersicon esculentum (L.) Mill. cv. F144) was studied under conditions of CO2 supplementation and salinity. The purpose of the study was to elucidate the mechanisms underlying the effects of salinity on the acclimation of tomato plants to CO2 supplementation. Plants were grown under either low (355.mmol mol–1) or elevated (1200.6.50 mmol mol–1) CO2 and were irrigated with low concentrations of mixed salts. The highest salinity level (E.C. 7 dS m–1) was that used to produce quality tomatoes in the Negev highlands, in Israel. During early development (three weeks after planting), the net photosynthetic rate of the leaves was much higher under elevated CO2, and other than a slight decrease in quantum yield efficiency as measured by fluorescence (DF/F 9 m ), no signs of acclimation to high levels of CO2 were apparent. Clear acclimation to high CO2 concentration was evide t ten weeks after planting when the net photosynthetic rate, photosynthetic capacity, and carboxylation efficiency of leaves of non-salinized plants were strongly suppressed under elevated CO2. This was accompanied by reductions in carboxylation efficiency, Rubisco activity and PSII quantum yield, and an increased accumulation of leaf soluble sugars. The reduction in photosynthetic capacity in the high CO2 plants was less in plants grown at the highest salinity level. This was correlated with an increase in the PSII quantum yield parameters (Fv/Fm) and DF/F 9 m ) but not with Rubisco activity which was affected by the CO2 treatments only. These results explain the effects of high CO2 on yields in tomatoes grown at high levels of salt (Li et al., 1999).  相似文献   

6.
钙对盐胁迫下西瓜光合特性和果实品质的影响   总被引:7,自引:0,他引:7  
张振兴  孙锦  郭世荣  童辉 《园艺学报》2011,38(10):1929-1938
 采用营养液水培方式,以小型西瓜(Citrullus lanatus Mansfeld)品种‘秀丽’为试材,研究了营养液增补Ca2+对盐胁迫(100 mmol · L-1 NaCl)下西瓜幼苗光合特性,叶绿素荧光,花粉萌发,果实品质的影响。结果表明,当营养液中Ca2+浓度由4 mmol · L-1升高到6 mmol · L-1时:①显著提高盐胁迫植株叶片的气孔导度(Gs)、胞间二氧化碳浓度(Ci)、净光合速率(Pn)、PSⅡ的最大光化学量子产量(Fv/Fm)、PSⅡ的实际光化学效率(ΦPSII)、相对电子传递速率(rETR)、光化学猝灭系数(qP)和非光化学猝灭系数(qN),降低气孔限制值(Ls)和光抑制(1–qP/qN);②显著提高盐胁迫果实质量及果实中抗坏血酸、可溶性固形物、可溶性总糖、可溶性蛋白质和游离氨基酸的含量,降低有机酸的含量;同时降低果实中Na+含量,提高果实中Ca2+、Mg2+、Fe、Cu、Mn含量;③明显促进盐胁迫花粉萌发和花粉管伸长。表明Ca2+可有效降低盐胁迫对光合作用的气孔限制,缓解盐胁迫对光合器官的伤害,使叶片保持较高的光合性能;促进盐胁迫下西瓜的生殖生长,有利于果实的生长发育及矿质营养平衡,进而改善果实品质。因此,Ca2+可通过调节光合代谢和生殖代谢来提高西瓜植株的耐盐性。  相似文献   

7.
8.
The effect of 80 mmol L−1 stress by excess of calcium nitrate [Ca(NO3)2] on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in leaves of grafted and non-grafted eggplant (Solanum melongena L.) seedlings were studied, in which grafted plants were grafted on a salinity tolerant rootstock (Solanum torvum Swartz). The results showed that on the 15th day of treatment, the biomass production reduction of non-grafted seedlings was significantly higher than that of grafted seedlings. Under stress by excess of Ca(NO3)2, superoxide anion radical (O2) producing rate, electrolyte leakage percentage, contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) of non-grafted seedlings were significantly higher than those of grafted seedlings, but activities of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) of grafted seedlings were significantly higher than those of non-grafted seedlings, moreover, contents of free, soluble conjugated and insoluble bound polyamines of grafted seedlings were significantly higher than those of non-grafted seedlings, and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.5.3.3) of grafted seedlings were significantly lower than those of non-grafted seedlings. The possible roles of antioxidant enzymes and polyamines in protective mechanism of grafted eggplant seedlings to stress by excess of Ca(NO3)2 were discussed.  相似文献   

9.
Diurnal patterns of photosynthesis in two-year-old Myrica rubra young trees under natural conditions were studied by measuring gas exchange, chlorophyll fluorescence parameters and D1 protein. When measured on a clear day, the diurnal changes of net photosynthetic rate (Pn), stomatal conductance (Gs) and apparent quantum yield (AQY) show two daily maxima; the maximum value occurred at about 09:00 h, then declined, and reached the lowest values at about 13:00 h then increased to reach the second maxima at about 15:00 h. However, with the consistent decline of Pn and Gs in the afternoon, the ratio of intercellular CO2 concentration (Ci) to atmospheric CO2 concentration (Ca) increased. In addition, carboxylation efficiency (CE) and RUBP regeneration declined as the afternoon progressed. In the morning, the maximum yield of fluorescence after dark adaptation (Fm) and maximal photochemical efficiency of PSII (Fv/Fm) decreased continuously until it reached its minimum at 13:00 h, while the reverse occurred in the later afternoon. The quantum yield of PSII (ΦPSII) declined after 09:00 h; in contrast, initial fluorescence (Fo) increased. A decrease in the rate of QA reduction and an increase in inactive PSII reaction centers was observed as the day progressed. Non-photochemical quenching (qN) and its slow-relaxing (qS) component increased at about midday, while the fast-relaxing component (qF) declined. The amount of inactive PSII centers was significantly enhanced, while Fv/Fm, ΦPSII, qS and rate of QA reduction were significantly reduced by DTT (dithiothreitol), an inhibitor of the xanthophyll cycle. The D1 protein was significantly degraded at 13:00 h relative to that at 09:00 h during the course of the day. These results suggest that stomatal and non-stomatal limitations, which decreased carboxylation and photochemical efficiency, may cause the midday depression; and that non-stomatal limitations may be due to the decrease in RuBPCase activity and degradation of D1 protein, which causes decreased photoprotection at midday.  相似文献   

10.
陈新斌  孙锦  郭世荣  陆晓民  何立中  严蓓 《园艺学报》2012,39(12):2457-2467
 以耐海水菠菜品种‘荷兰3号’为材料,采用水培方法,研究了二硫苏糖醇(DTT)对海水胁迫及甲基紫精(MV)诱导下菠菜活性氧代谢及叶绿素荧光特性的影响。结果表明,海水胁迫与MV处理一样,诱导菠菜叶片产生氧化胁迫,使超氧阴离子()产生速率、过氧化氢(H2O2)含量和丙二醛(MDA)含量显著上升,叶绿素a(Chl.a)、叶绿素b(Chl.b)、总叶绿素[Chl.(a + b)]和类胡萝卜素(Car.)含量显著下降,最大光量子产量(Fv/Fm)、实际光量子产量(Yield)、电子传递速率(ETR)和光化学猝灭系数(qP)显著降低,而非光化学猝灭系数(NPQ/4)显著上升;海水胁迫与MV处理下,由叶柄导入叶黄素循环活性抑制剂DTT,菠菜叶片活性氧(ROS)大量积累,导致光合色素降解加剧,Fv/Fm、Yield、ETR、NPQ、qP进一步下降。上述结果表明,海水胁迫抑制了菠菜叶片叶黄素循环活性,降低了叶片非辐射能量耗散能力,加重了叶片ROS积累,从而导致光合色素含量降低,PSⅡ活性下降,电子传递速率降低,用于光化学反应的能量部分减少,光合作用受到严重影响,说明海水胁迫下叶黄素循环在保持菠菜叶片光合色素稳定和光合作用正常运转中发挥重要作用。  相似文献   

11.
Summary

The present study was carried out to analyse the activities of several anti-oxidant enzymes at various stages of somatic embryogenesis in Catharanthus roseus. The hypothesis was that anti-oxidant enzymes accumulated as part of a cellular defence mechanism in response to stress. We therefore measured superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in various in vitro-grown tissues such as embryogenic and non-embryogenic calli, and in embryos at various stages. SOD activity increased gradually from the early embryogenic stage to heart-shaped stage embryos, but declined in the later stages (i.e., torpedo-shaped and cotyledonary embryos). In contrast, APX activity was high in non-embryogenic callus and decreased rapidly during the stage of embryo initiation. This pattern was the same for CAT. The maximum CAT activity was observed in non-embryogenic callus, then it declined almost linearly at the embryonic and post-embryonic developmental stages. The effect of exogenous hydrogen peroxide (H2O2) on in vitro embryogenesis was also evaluated. Lower H2O2 levels (0.025 mM) promoted embryo formation, whereas higher levels (0.10 mM) inhibited embryogenesis in C. roseus. Finally, higher soluble protein, free amino acid, and proline contents were found in embryogenic calli compared to non-embryogenic calli.  相似文献   

12.
Two eggplant cultivars, Dilnasheen and Bemisal, were selected to assess whether pure GB and sugarbeet extract could effectively ameliorate the harmful effects of salt stress on eggplant (Solanum melongena L.), under saline conditions. Salt stress markedly suppressed the growth, yield, photosynthetic capacity, internal CO2 level, transpiration, and stomatal conductance in both cultivars. Potassium (K+) and Ca2+ contents and K+/Na+ ratios of both root and leaf were also reduced, while GB and proline in leaves, and Na+ and Cl contents in roots and leaves were significantly enhanced. Exogenously applied glycinebetaine and sugarbeet extracts significantly counteracted the salt-induced adverse effects on growth, yield, various gas exchange characteristics, GB and leaf K+, Ca+, Cl and Na+. However, GB and sugarbeet extract showed differential effects on photosynthetic rate, stomatal conductance and transpiration, internal CO2 level, Ci/Ca ratio, leaf K+, Ca2+, and Cl contents, and K+/Na+ ratio. Sugarbeet extract proved better than the GB in improving growth, photosynthetic rate, transpiration, stomatal conductance, yield and GB accumulation. Since, sugarbeet extract contains a substantial amount of GB along with a variety of other important nutrients so it was found as effective as pure GB in improving growth and some key physiological processes in eggplant under salt stress. Thus, it can be used as an alternative cheaper source of GB for its use as an ameliorative agent for protecting plants against the hazardous effects of salt stress.  相似文献   

13.
The effects of nickel in combination with salicylic acid (SA) and sodium nitroprusside (SNP), a donor of nitric oxide (NO) on 21-day-old canola plants were evaluated. Exposure to 0.5 mM NiCl2·6H2O for 10 days resulted in toxicity symptoms such as chlorosis and necrosis at leaves. Addition of 0.2 mM SA or 0.2 mM SNP slightly reduced the toxic effects of nickel. After application of both SA and NO, these symptoms considerably decreased. Treatment with Ni resulted in a decrease in dry weight of roots and shoots and chlorophyll content of leaves. In Ni-treated plants, level of lipoxygenase activity and malondialdehyde (MDA), H2O2 and proline contents significantly increased, while the activities of the antioxidant enzymes such as catalase, guaiacol peroxidase and ascorbate peroxidase decreased in leaves. The results indicated that Ni caused an oxidative stress in canola plants. The Ni-stressed plants exposed to SA or NO, especially to SA + NO, exhibited an improved growth as compared to Ni-treated plants. SA or NO, especially both together considerably reduced root-to-shoot translocation of Ni and increased the activities of the antioxidant enzymes in leaves of Ni-stressed plants. Interaction of SA and NO improved the chlorophyll content and decreased the level of lipid peroxidation, H2O2 and proline accumulation in leaves. These results suggest that SA or NO in particular their combination counteract the negative effects of Ni on canola plants.  相似文献   

14.
The in-vitro acclimatization of Phalaenopsis plantlets under photoautotrophic conditions, with 0 (control), 3.43, 6.86 and 13.72 μM uniconazole (UCZ) treatments for 30 days was investigated before the plantlets were transferred to ex-vitro environments for 14 days. The physiological and growth characters of in-vitro acclimatized, and ex-vitro adapted plantlets were measured. Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TC) and total carotenoid (Cx+c) content in plantlets treated with 6.86 μM UCZ were maintained at higher levels than those in plantlets of the control, by 1.82, 1.85, 1.83 and 1.93 times, respectively, leading to enrichment of the pigments in ex-vitro conditions. The maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ΦPSII), photochemical quenching (qP) and non-photochemical quenching (NPQ) in UCZ treated plantlets and in ex-vitro adaptation were not significantly different. Proline was accumulated in the control plantlets in both in-vitro acclimatization and ex-vitro conditions, while proline in those plantlets with UCZ treatments was maintained at a low level, which was defined by unstressed conditions. Net photosynthetic rate (Pn) in 6.86 μM UNZ treated plantlets peaked at a higher level than that of the control plantlets, both in-vitro and ex-vitro, by 3.27 and 2.93 times, respectively. In addition, proline content and Pn were inversely related in both in-vitro acclimatization and ex-vitro adaptation. The Pn in UCZ acclimatized plantlets was negatively correlated with plant dry-weight. In-vitro photoautotrophic Phalaenopsis plantlets were successfully acclimatized using a 6.86 μM UCZ treatment which caused them to adapt quickly to ex-vitro environments.  相似文献   

15.
To study the effects of high temperature (HT) on grape growth, a controlled experiment with grapevine (Vitis vinifera L., cv. Hongti) was conducted from July to October, 2015. The HT treatments were 34, 36, 38, and 40°C, with 28°C as control. The changes to photosynthetic pigment characteristics, antioxidant enzyme activities, and relative water content (RWC) under different HTs were investigated. Severe chlorosis was observed during the late stages of HT treatment. Chlorophyll a (Chl a), chlorophyll b (Chl b), photosynthetic rate at irradiation saturation (Pmax), light saturation point (LSP), apparent quantum efficiency (AQE), peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity in grape leaves increased at first, and then decreased under high-temperature stress (HTS), but the light compensation point acted contrary to the LSP. The carotenoid, malondialdehyde and relative electrical conductivity (REC) increased under HTS; and the Chl/carotenoid ratio and RWC were contrary to the REC. The results suggested that grapes subjected to 38°C for 4 d decreased their RWC, but Chl a, Chl b, Pmax, AQE, LSP, SOD, POD, and CAT reached their maximums. Therefore, the high-temperature limit of Hongti was 38°C and the duration time was 4 d.  相似文献   

16.
To study the effects of day and night temperature difference (DIF) on tomato growth, a controlled experiment using Solanum lycopersicum L., cv. Jinguan 5 was conducted. The daily mean temperature (Tm) was maintained at 18°C and 25°C, and the DIF was set at 0°C, 6°C, and 12°C. The results indicated that chlorophyll a (Chl a) and chlorophyll b (Chl b) gradually increased as DIF rose. At 18°C Tm, the carotenoid content reached a maximum at 12°C DIF. The Chl a/Chl b, net photosynthetic rate (PN), photosynthetic rate at irradiation saturation (Pmax), stomatal conductance (gs), intercellular CO2 concentration (Ci), stomatal limitation value, the maximum assimilation rate (Amax), apparent quantum efficiency (Aq), carboxylation efficiency (Ce), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), gibberellin A3 (GA3), and indole-3-acetic acid (IAA) were highest, while malondialdehyde (MDA) was lowest at 6°C DIF. At 25°C Tm, PN, Pmax, Amax, Aq, Ce, gs, Ci, CAT, POD, GA3, IAA, and zeatin reached the maximum under 6°C DIF, while SOD and MDA reached the maximum under 12°C DIF. Furthermore, the morphological index peaked at 6°C DIF under 18°C and 25°C Tm. The results suggested that 6°C DIF improved the growth and development of tomato during the flowering stage. ABBREVIATIONS: Aq – apparent quantum efficiency; Amax – the maximum assimilation rate; CAT – Catalase; Chl a(b) – chlorophyll a(b); Ca – ambient CO2 concentration; Ce – carboxylation efficiency; Ci – intercellular CO2 concentration; DIF – difference between day temperature (TD) and night temperature(TN); FM – fresh mass; gs – stomatal conductance; GA3 – gibberellin A3; IAA – indole-3-acetic acid; Ls – stomatal limitation value; MDA – malondialdehyde; Pmax – photosynthetic rate at irradiation saturation; PN – net photosynthetic rate; POD – peroxidase; ROS – reactive oxygen species; SOD – superoxidedismutase; Tm – daily mean temperature; ZT – zeatin.  相似文献   

17.
This study aimed to determine ways to improve the growth and salt tolerance of petunia. Effects of polyamines (PAs; spermidine [Spd], spermine [Spm], and putrescine [Put]) and a nitric oxide (NO) donor (sodium nitroprusside [SNP]) were investigated. Initially, we screened petunia cultivars against sodium chloride (0–125 mM). The petunia cultivar Hurrah Red was identified as salt-sensitive cultivar in the basis of salt-effect on seed germination, fresh weight, and root length of seedlings. Treatment of Hurrah Red shoots with nitrogenous compounds improved the number, length, and fresh weight of roots, as well as the length and fresh weight of shoots over those of the control. Furthermore, plantlets rooted in an optimal concentration of Spd (34.5 µM), Spm (24.8 µM), Put (62.1 µM), and SNP (3.9 µM) were treated with 200 mM NaCl for 3 days to assess their tolerance level. Salt-affected plantlets showed higher level of lipid peroxidation, reduced catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) activities and decreased contents of photosynthetic pigments and polyphenol than those of the control. PAs and SNP treatments significantly elevated photosynthetic pigments, enhanced antioxidant enzymes, and decreased lipid peroxidation in salt-stressed plantlets. Moreover, the growth and salt-tolerance response of petunia was highest when plantlets were exposed to SNP, followed by levels on treatment with Put, Spm, and Spd. Thus, the findings of this study suggested that treatment with exogenous SNP, Put, Spm, and Spd could protect petunia plants against soil salinity and improve their commercial production.  相似文献   

18.
热激胁迫对番茄果实表面光系统活性的影响   总被引:2,自引:0,他引:2  
王俊玲  高志奎  赵飞 《园艺学报》2011,38(4):675-682
 以‘保罗塔’番茄果实为试材,采用叶绿素成像荧光仪(MINI-IMAGING-PAM)和QE65000光谱议测试分析了热激胁迫对番茄果实表面光化学活性和叶绿素荧光光谱的影响。结果表明:在较低的热激胁迫下(36 ~ 43 ℃),最大光化学量子产量Fv/Fm稳中有降,反映温度胁迫引起PSⅡ功能的部分抑制,而此时调节性能量耗散量子产量Y(NPQ)的增加耗散了过剩光能,以减轻过剩光能对光合机构的进一步伤害;当温度超过43 ℃时,非调节性能量耗散的量子产量Y(NO)显著增加,Fv/Fm、PSⅡ天线转化效率Fv′ /Fm′ 和电子传递ETR急剧下降,Y(NPQ)开始下降,表明PSⅡ反应中心的天线色素耗散机制可能遭到破坏,对高温胁迫的自我调节功能开始下降,PSⅡ反应中心已开始失活,光抑制程度加重;当温度超过果实表面PSⅡ蛋白复合体变性中点温度51.4 ℃时,激发能分配不平衡偏离系数(β/α–1)显著上升,叶绿素荧光衰减率Rfd急剧下降,反映此时激发能分配严重失衡,番茄潜在的CO2同化能力极弱。通过对标准状态变性自由能变△GD计算的变性中点温度Tm得出,Tm(Fv/Fm)大于Tm[Y (II)],说明PSⅡ的耐热性稍强于整个光合作用。  相似文献   

19.
Nitric oxide (NO) is a highly reactive signaling molecule and plays a variety of physiological roles in plants. The research on the application of NO to postharvest preservation of flowers and fruits shows great promise in recent years. However, the physiological mechanism of exogenous NO to affect cut flowers is not very clear. Therefore, an experiment was conducted to study the effect of exogenous NO on the vase life and physiological basis of Dianthus caryophyllus L. variety ‘Monte’. In the present study, 0.1 mmol L−1 sodium nitroprussiate (SNP) was used as the NO donor, and 5 μmol L−1 methylene blue (MB-1) was used as its scavenger based on the preliminary experiment. We evaluated the physiological index including increase of stem weight, malondialdehyde (MDA) concentration and lipoxygenase (LOX) activity, and cell protection enzymes activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). The results showed that exogenous NO could significantly extend the vase life of cut carnation flowers and markedly increase fresh mass. The balance of water metabolism and the activities of SOD, POD, CAT and APX also showed improvement, while the production of MDA content and LOX activity were obviously decreased. The results suggest that exogenous NO could delay petal wilting in carination cut flowers, maintain water metabolism, the antioxidative enzymes activity and mass-eliminate reactive oxygen species (ROS) and as well as cell membrane stability. Moreover, the results indicated that MB-1 had the ability to reverse the active effects of NO on different physiological indexes. Therefore, the vase life of cut carnation flowers was markedly extended by SNP treatment.  相似文献   

20.
Summary

Abiotic stresses are becoming more prevalent as the intensity of agriculture and the demand for farmable land increase. Night-time temperature is one of the major environmental factors that influence plant metabolic processes. The permeability of cell membranes, levels of osmoregulatory substances, reproductive flowering stage, growth rate, and total anti-oxidant capacities of leaves were investigated in tomato (Solanum lycopersicum, formerly Lycopersicon esculentum Mill. ‘Liaoyuanduoli’) plants exposed to a low night-time temperature (LNT) of 9ºC or to an ambient night-time temperature (ANT) of 15ºC, with or without exogenous foliar spray treatment with acetyl salicylic acid (acetyl-SA). Three applications of 1.0 ml of 0.4 mM acetyl-SA made to 4-week-old tomato seedlings at 5 d intervals reduced the decline in fruit yield in the first and second fruit clusters due to LNT treatment by decreasing malondialdehyde (MDA) and increasing proline concentrations and total anti-oxidant capacity in tomato leaves. Under LNT stress, lipid peroxidation, measured in terms of MDA content, and hence membrane permeability were reduced by 0.4 mM acetyl-SA treatment. Superoxide dismutase (SOD) and peroxidase (POX) activities were increased by 0.4 mM acetyl-SA treatment. The accumulation of superoxide free radicals (O2 ?–) was inhibited, but H2O2 concentrations were increased by 0.4 mM acetyl-SA treatment. These results suggest that acetyl-SA could be used as a growth regulator to improve fruit yields and the tolerance of tomato plants exposed to LNT stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号