首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gibberellic acid (GA3) treatment of forced tulip crops has potential for producing faster growth to anthesis in the glasshouse, for reducing losses due to floral bud blasting, and for reducing the duration of cold storage needed to obtain satisfactory flowers. Using partly and fully cooled direct-forced tulips, cultivar ‘Apeldoorn’, several factors (relevant to the definition of GA3 treatments) were studied. Experiments confirmed the previously recorded effects of gibberellins in tulips: GA3 injections reduced the duration of the glasshouse period, enhanced flower survival and flower length, and reduced stem length at flowering.Following bulb storage at temperatures from ?2 to 20°C, GA3 reduced the glasshouse period by 15–25% and increased flower length, compared to controls, irrespective of storage temperature. Stem length was also reduced by GA3, this effect being greater following a storage temperature of 5°C or lower. When GA3 was applied during the period of 17°C-storage which precedes cool storage, or during or after storage at 5°C, it was found that treatments during or at the end of cool storage were more effective in producing the characteristic effects of GA3 than were pre-cooling applications. In partly cooled bulbs (but not fully cooled ones), the GA3-induced earliness of flowering was about doubled when GA3 injections were given repeatedly at 2-week intervals throughout storage. The responses to GA3 injections were found to be unmodified by early-lifting and heat-treatment (for earlier forcing), by delaying the start of 5°C storage (for later forcing), by glasshouse temperature (16 and 18°C), and by shading treatments; there was little effect of bulb size.  相似文献   

2.
Summary

Endogenous gibberellins were extracted from cabbage shoots and were analysed using gas chromatography and mass spectrometry. Nine gibberellins (GA1, GA19, GA20, GA44, GA12, GA4, GA15, GA24 and GA25) were identified. Two gibberellin biosynthesis pathways were suggested, an early-13-hydroxlyated pathway and a non-13-hydroxylated pathway, to operate in cabbage shoots. GA1, GA4 and prohexadione calcium, a gibberellin biosynthesis inhibitor, were applied to the shoot tip of cabbage ‘Sousyu’ and ‘Kinkei No.201’ with or without cold treatment. Without cold treatment, stem elongation was increased by gibberellins and was suppressed by prohexadione calcium in both cultivars. But prohexadione calcium treatment, followed by gibberellin, promoted stem elongation more than gibberellin alone. Flowering was not induced by gibberellin or prohexadione calcium without cold treatment. When gibberellin and prohexadione calcium were applied during a cold treatment, stem elongation after the cold treatment was increased by gibberellins and was suppressed by prohexadione calcium in both cultivars. Flower bud appearance was promoted by GA1 and GA4 in ‘Sousyu’, but in ‘Kinkei No. 201’ only GA4 was markedly effective. Inhibition of stem elongation and delay of flower bud appearance by prohexadione calcium were overcome by applying GA1 or GA4. Neither gibberellin nor prohexadione calcium treatment changed the number of leaf nodes at anthesis. These results indicated that stem elongation and flower bud development are regulated by gibberellins, but gibberellins might have little effect on flower induction.  相似文献   

3.
Partly cooled (5°C) tulip ‘Apeldoorn’ were treated with gibberellins GA3 and GA4 + 7 by vacuùm infiltration, with a view to defining conditions suitable for exploiting the effects of GA on forced tulips (faster flowering, control of stem extension, reduction of floral bud blasting).The first experiment showed that GA3 and GA4 + 7 were equally effective in reducing the glasshouse period following 6 or more weeks cold storage; with less than 6 weeks cold storage, effects were less marked. Stem length at flowering was reduced by GA treatments, particularly by GA3 and following more than 6 weeks cold storage. However, the vacuum infiltration method used (30 min at 10 torr) resulted in serious flower losses.Next, the effect of GA3 concentration (up to 1500 mg 1?1) was studied using vacuum infiltration treatments for 1–15 min at 20–510 torr, which resulted in fewer flower losses. Following 4 weeks cold storage, reducing pressure or increasing GA3 concentration reduced both glasshouse period and stem length, with no effect of duration of treatment; GA3 concentration was the only factor affecting flower length, which was increased. Following 8 weeks cold storage, increasing GA3 concentration, vacuum or duration reduced glasshouse period. With all 3 factors at their maximum levels, 16 days earliness was obtained compared with controls. With maximum earliness, stem length was reduced to about 23 cm, compared to about 26 cm for treatments giving about 1 week's earliness, and 32 cm for untreated controls. Increasing vacuum appeared the most economical way of obtaining earliness, 20 torr giving 7 days earliness even at only 250 mg GA3 1?1. Treatments giving earlier flowering also gave larger flowers. For comparison, there was little effect of soaking bulbs at atmospheric pressure even at 500 mg GA3 1?1 for up to 20 h.Further experiments, conducted with vacuum infiltration at 260 torr for 15 min, confirmed these GA effects using formulated GA3 (as “Berelex”) and GA4 + 7 (as “Regulex”). Effects of GA on stem length at flowering had disappeared by the time stems reached their final length. Comparisons with bulb injection of GA showed that this method required less GA than vacuum infiltration for similar effects, and that the greater effectiveness of GA4 + 7 compared with GA3 was less marked using vacuum infiltration.  相似文献   

4.
‘Alaska’ and ‘Redwing’ azaleas having dormant flower buds were sprayed with gibberellins (GA3 or GA4 + 7) alone and in combination with thiourea, N6 benzyl adenine (BA) or kinetin weekly for 3 or 4 weeks to test the efficacy of these materials in breaking bud dormancy. Additional plants received 6 weeks of cold storage at 4.5°C or glasshouse day temperatures of 21°C and above. The 2000 and 3000 mg l?1 GA3 and Ga4 + 7 sprays were better than 1000 mg l?1 in promoting flowering, with ‘Redwing’ responding better than ‘Alaska’. GA-treated plants flowered in fewer days than those receiving cold storage. Flower diameter and pedicel length increased with higher levels of GA, and flower uniformity was comparable to cold-stored plants on most GA-treated ‘Redwing’-plants. Thiourea, BA and kinetin applied alone had no effect and considerable cytokinin activity was highest in GA-treated buds 14–21 days after treatment application. No increase in activity occurred on plants not receiving GA.  相似文献   

5.
Juvenility, cold requirement and the effect of GA3-application on flowering have been studied for some cultivars. If present, the juvenile phase was very short. Cold treatment for 8–12 weeks at 4 °C followed by 2 weeks at 10 °C gave flowering in all cultivars. Gibberellin sprays (250 or 500 p.p.m., 3 times) after an incomplete cold treatment promoted bolting and flowering even in the slow-bolting ‘Trero’, having the highest cold requirement.  相似文献   

6.
The effect of temperature and day-length on growth and flowering of the Scandinavian Brilliant-type stock (Mattkiola incana R. Br.) has been studied. Flower differentiation and development were examined.

Flower initiation was favoured by low temperature and long days, but a temperature as high as 20° C. (68 °F.) did not prevent flowering even under short-day (9 hours) conditions. A close interaction between temperature and day-length was observed.

High temperature was favourable for further development of the flowers, but abnormal flowers were developed if the plants were removed to high temperature before the first flower primordium was visible under the microscope.

Flower initiation was associated with accelerated stem elongation. Therefore, optimal temperature conditions for stem elongation changed with the developmental stages of the plants.

The plants responded to a low-temperature treatment as early as 12 days after germination, at which stage they had only two small leaves in addition'to the cotyledons. The Brilliant stocks have evidently a much shorter juvenile phase than that previously described for the Column type. This might be the main reason why the Brilliant stocks flower very early.

In single-flowered plants the differentiation of floral organs took place in the following sequence: sepals, stamens, carpels, petals. In this respect the stock showed a similar behaviour to that previously described for certain other cruciferous genera.

The results of the experiments are discussed in the light of previous studies concerning low-temperature effects, vernalization and related phenomena, on flowering. It is concluded that no true vernalization process is involved. The facts that the initiation took place immediately after exposure to low temperature, and that removal to high temperature caused abnormal flower development unless differentiation had reached a certain stage, form the main basis for this conclusion.  相似文献   

7.
《Scientia Horticulturae》2005,105(3):383-392
The effects of cold storage of mature potted plants on postharvest leaf and flower quality were investigated in several cultivars of three major groups (Oriental, Asiatic and LA) of hybrid lilies (Lilium spp.). Mature plants were stored in darkness at 3 °C for 2 weeks before placing them in a postharvest evaluation room (22 °C) and were compared with plants moved directly to the evaluation room. The efficacy of GA4+7 plus benzyladenine (BA) treatments (applied just before cold storage) for preventing cold-induced postharvest disorders in each cultivar was also evaluated. In all cultivars, cold storage caused several adverse effects on postharvest quality, including accelerated leaf yellowing or browning, bud abortion and reduced flower or inflorescence longevity. Leaf abscission was observed only in Oriental-hybrids. Treatment with GA4+7 plus BA significantly reduced these disorders and improved the overall postharvest quality after cold storage. While different cultivars differed greatly in their sensitivity to cold storage, all the cultivars benefited from GA4+7 plus BA treatment. Experiments indicated that GA4+7 plus BA treatments could be applied as early as 2 weeks before the mature bud stage without compromising the positive effects.  相似文献   

8.
Summary

To control the bolting of Japanese bunching onion (Allium fistulosum L.) photoperiodically, the effect of photoperiods before, during and after vernalization on flower initiation and development and the varietal differences were investigated using the two mid-season flowering cvs Kincho and Asagi-kujo, and a late-season flowering cv. Cho-etsu. A long-day photoperiod (LD, 16 h) given before vernalization inhibited flower initiation. Especially, the bolting rate of ‘Asagi-kujo’ decreased by about a half, compared with the short-day photoperiod (SD, 8 h). The interaction between the effect of night temperature (3°C, 7°C, 11°C or 15°C) and the effect of the photoperiod (SD and LD) during vernalization was also investigated. In ‘Kincho’, LD did not affect flower initiation at 3°C, but inhibited flower initiation at 7°C, 11°C and 15°C. In ‘Asagi-kujo’, flower initiation was significantly inhibited by LD under all temperature conditions. This inhibitory effect was stronger at 11°C and 15°C than at 3°C and 7°C. In ‘Cho- etsu’, LD significantly inhibited flower initiation at 3°C and 7°C, and flower initiation rarely occurred at 11°C and 15°C. In this study, generally, LD during vernalization inhibited flower initiation in all cultivars. Thus Japanese bunching onion required a short-day photoperiod in flower initiation, which was stronger in ‘Asagi-kujo’ and ‘Cho-etsu’ than in ‘Kincho’. From these results, we conclude that low temperature and a short-day photoperiod complementarily induce flower initiation in Japanese bunching onion. Varietal differences exist in the requirement of low temperature and a short-day photoperiod: the primary requirement in ‘Kincho’ is low temperature and that in ‘Asagi-kujo’ is a short-day. After flower initiation, the early stage of flower development is day-neutral, and after the floret formation stage, a long-day photoperiod promotes flower development and elongation of the seedstalk.  相似文献   

9.
Radioimmunoassays were used to quantify the endogenous concentrations of plant growth regulators (PGRs) in pyrethrum during flower initiation and development. The concentrations of gibberellins, abscisic acid, indole acetic acid, zeatin and zeatin riboside, dihydrozeatin and dihydrozeatin riboside, and isopentenyladenine and isopentyladenosine were assayed. Fluctuations in PGR concentrations were correlated with flower bud initiation, flower stem elongation and floral differentiation. The gibberellin concentration increased during vernalization (6°C night temperature), a treatment known to promote floral initiation. A marked increase in gibberellin concentration was correlated with the onset of flower stem elongation. The concentration of the auxin indole acetic acid declined significantly at this time and remained low during flower bud development. Low photon flux density conditions, which retard floral initiation in otherwise inductive vernalizing conditions, failed to induce a decrease in indole acetic acid concentration.  相似文献   

10.
Foliar applications of gibberellins (GA3, GA4,7) and 6-benzylamino-9-(2-tetra- hydropyranyl)-9H-purine (PBA) were compared with untreated controls and the conventional low temperature treatment for breaking flower bud dormancy. GA3 and GA4, 7 were compared for their role in promoting flower development. Treatments were initiated when microscopic examination showed the flower buds had reached Stage 6 (style elongated and closed). Plants that did not receive a dormancy-breaking treatment failed to reach anthesis. Application of GA3 or GA4, 7 hastened flowering and increased flower size and pedicel length.  相似文献   

11.
Summary

A range of temperatures (7°C, 10°C or 13°C mean) were imposed under controlled conditions on four year old, container-grown ‘Hayward’ kiwifruit vines. The treatments were applied for periods of from one to four months during the dormant period from May to September (Southern Hemisphere). Following these treatments the vines were held at a “forcing” temperature of 16°C mean until flowering. The objective was to define the response of bud break and flowering in spring to temperatures experienced during the preceding winter. Cool winter temperatures dramatically increased flower numbers, increased the proportion of bud break, advanced the day of bud break, and increased the duration from bud break to flowering. These responses were much larger between 13°C and 10°C than they were between 10°C and 7°C. For any treatment duration, the temperature imposed during dormancy had no effect on the time of flowering. Two months at cool temperatures produced the greatest number of flowers per winter bud, with reduced numbers at three and four months. The proportion of winter buds that produced shoots showed a similar response. The Richardson chill unit is frequently used to describe the effects of winter chilling on kiwifruit. It proved unreliable as an index to integrate the effects of temperature and time on any of the developmental variables monitored in this experiment.  相似文献   

12.
The effect of plant age, temperature and day-length on flower initiation and development in “ K. & M. Super ” freesias has been studied.

The flowering response decreased with increasing temperature and the critical temperature for flower initiation was found to be about 21°C. An interaction of plant age, temperature, and duration of treatment was present. Short days (9 hrs.) slightly stimulated flower initiation in“ Yellow K. & M. Super” but delayed it in “ Blue K. & M. Super” freesias. Short-day treatment in the open during the summer had no significant effect, whereas shading markedly hastened flowering.

Flowering could be initiated at an early stage, but older plants were more responsive, especially those of “Blue K. & M. Super”. Optimum temperatures for flower initiation were 12-15°C., applied for 6-9 weeks after the plants had formed about seven visible leaves.

Abnormal inflorescences in freesias, recognized by enlarged bracts and irregular spacing of the florets (so-called “gladiolus-like flowers”), appeared to result from incomplete flower initiation. In extreme cases flower stalks without any flowers were formed. In order to avoid such abnormal flowering it was important that the first floret in the inflorescence should have reached a certain stage (P2) of development before low-temperature treatment was discontinued.  相似文献   

13.
Asiatic hybrid lilies, Lilium × elegans Thunb., ‘Red Carpet’ and ‘Sunray’ were used to investigate the effect of bulb vernalization at 2.5 °C on plant growth, flowering, and CO2 production (respiration), and to use the CO2 production pattern to monitor the time of flower bud initiation and development. Lily shoot emergence and flowering were accelerated when bulbs received 2.5 °C bulb vernalization; however, flowering was delayed when bulbs were stored at 20 °C before treatment at 2.5 °C; this indicated that bulbs were de-vernalized. The maximum CO2 level, and the minimum level, reached in 78 h in non-vernalized bulbs and in 110 h in 6 weeks of 2.5 °C (6 weeks/2.5 °C) treated bulbs, was increased as the 2.5 °C duration was increased; this indicated that CO2 level can be an useful parameter to measure the cold stimulus (i) accumulated in bulbs following bulb vernalization. The respiration rate higher than the predicted values of the best-fit curves derived from the quadratic equations was designated as Blip A and this was correlated to the time of flower bud initiation and development. Shoot elongation may follow the rise in carbon dioxide levels after reaching the minimum level. It is proposed that increased carbon dioxide levels higher than the predicted levels (Blip A), was correlated to the time of flower bud initiation and development. Measurement of carbon dioxide production upon receipt of bulbs may be a useful technique to provide important information for optimum vernalization treatments for bulbs that have accumulated different levels of low temperature stimulus after bulb vernalization.  相似文献   

14.
Iris bulbs of the varieties Wedgewood and Prof. Blaauvv were injected with 50 or 500 μg. gibberellic acid (GA) before or after cold storage (10° C.) of 18 or 35 days. GA injection accelerated flowering by up to 19 days ; it had little or no effect on length of leaves or flower stem. It was most effective when applied at an early stage after flower initiation.

GA injection reduced bulb yield of Wedgiwood plants, and had no effect on, nor increased bulb yield of, Prof. Blaauw plants.

GA spraying (seven times at 10-2M of GA) accelerated flowering and increased foliage growth in both varieties. It increased flower stem elongation and reduced bulb yield in Wedgfcwood plants.  相似文献   

15.
Summary

Heat-induced rosetted Eustoma grandiflorum requires low temperature for induction of stem elongation and flowering. Although heat-induced rosetting is associated with a reduction of gibberellin A1 (GA1) content, how thermo-induction affects GA biosynthesis is unclear. Thus, we examined levels of GA, precursors including that of ent-kaurene which is the first committed step in GA biosynthesis. We used uniconazole, an ent-kaurene oxidase inhibitor to estimate the ent-kaurene biosynthesis activity. The accumulation level of ent-kaurene in stems of the cold-treated seedlings was approximately 1.8 times that of the non-cold-treated seedlings, whereas no difference was observed in the leaves. No change was observed in endogenous levels of GA1 and GA20 in stems of the heat-induced rosetted plants during the cold treatment, whereas their levels increased with stem elongation after transfer to warm conditions. In contrast to the levels of GA1 and GA20, endogenous levels of ent-kaurene, ent-kaurenoic acid, GA53, GA44 and GA19 in the stems markedly increased at the end of cold treatment. These results indicate that ent-kaurene biosynthesis and its metabolism early in the GA biosynthetic pathway are stimulated by low temperature and, later, the stimulation leads to an increment of endogenous levels of GA1 which is essential for stem elongation of the heat-induced rosetted E. grandiflorum.  相似文献   

16.
Applications of GA3 in May/June, when the first flush of growth was maturing, induced an extra flush of vegetative growth and initiated lateral bud break. Flower initiation was delayed and flower size reduced by the GA3. These responses were only slightly modified by additional sprays with BAP and TIBA. GA4+7 was ineffective in promoting either extra extension growth or lateral bud break, but it did reduce flower size.  相似文献   

17.
Plants of glasshouse carnation were grown in photoperiodic cycles comprising 8 h natural daylight followed by either 16 h of darkness (short-day treatment) or by 16 h of low-intensity lighting from tungsten filament lamps (continuous-light treatment). When plants were transferred from short days to the continuous-light treatment, rates of shoot elongation were increased and flower initiation was promoted. Shoot tips of plants grown in continuous light yielded greater amounts of diffusible gibberellin-like substances than shoot tips of plants grown in short days. Yields of diffusible gibberellins increased with increases in the duration of the continuous light treatment up to 28 days, by which time flower initials were present. Application of GA3 to the plants resulted in increased rates of shoot elongation, but no effect on flowering was observed.  相似文献   

18.
SUMMARY

Floral evocation in pyrethrum {Tanacetum cinerariaefolium) is stimulated by a period of vernalization. Night temperatures of 6°C and 12°C for two weeks and three weeks, respectively, promote rapid inflorescence initiation and development. A night temperature of 18°C does not satisfy the vernalization requirement. Longer periods of vernalization stimulate more rapid inflorescence initiation and development and result in a larger number of inflorescences being initiated. The vernalization stimulus may be modified by the daily light integral. Both inflorescence initiation and inflorescence development are promoted by long days. The number of leaves formed before flower bud initiation is not affected by daylength. Night-break lighting does not promote flowering. It is suggested that the stimulatory effect of long days may be in supplying photosynthetic assimilates to the developing meristems. Floral development is retarded by low photon flux density conditions regardless of day temperature. High day temperatures (25°C) combined with low photon flux (350 umol m"2 s"' or less) prevented pyrethrum from flowering in otherwise inductive conditions.  相似文献   

19.
《Scientia Horticulturae》2005,103(4):441-451
The aim of the study was to examine the effects of different photoperiod and light integral on floral initiation, development and subsequent growth of Eustoma grandiflorum (Raf.) Shinn. Six-weeks-old seedlings of ‘Echo Blue’ and ‘Fuji Deep Blue’ were placed under short day (SD, 10 h) and were transferred to long days (LD, 20 h) at 2-week intervals from 6 to 14 weeks after seeding. Plants initiated flower buds regardless of light regimes. Flower bud initiation was delayed by SD compared to LD; plants transferred after 6 weeks from seeding initiated flower buds at least 21 and 10 days earlier at LD at high (HL) and low (LL) daily light integral, respectively, compared to those at SD. Light regimes had little or no effect on time to flower bud development after initiation. Thus, it seems likely that LD and HL affected the initiation rather than development. Both the photoperiod and light integral strongly influenced the subsequent growth after initiation. SD delayed the time to visible bud (VB), increased the number of nodes to first open flower, number of branches, stem diameter and shoot dry weight compared to LD. HL promoted flowering and increased several shoot characteristics and flowering compared to LL.The results indicate that Eustoma is a quantitative long-day plant. LD, and more specifically HL, enhanced flower bud initiation, development and subsequent growth. An initial SD period is preferred to increase the number of branches, number of flowering buds and flowers, stem diameter and shoot dry weight.  相似文献   

20.
Summary

Photoperiod and temperature control of flowering in a number of perpetual-flowering or everbearing strawberry cultivars of widely varying pedigree has been studied in controlled environments. Flower bud initiation in the cultivars ‘Flamenco’, ‘Ridder’, ‘Rita’ and ‘Rondo’ was significantly advanced by long-day (LD) conditions at temperatures of 15°C and 21ºC; while, at 27ºC, flowering took place under LD conditions only. Some plants of the seed-propagated F1-hybrid ‘Elan’, raised at 21°C, also flowered under short-day (SD) conditions at 27°C, but reverted to the vegetative state after a few weeks when maintained under these conditions. When vegetative plants growing in SD at 27°C were transferred to LD conditions at the same temperature, they consistently initiated flower buds and started flowering after about 4 weeks. At such a high temperature, flowering could thus be turned on and off by switching between SD and LD conditions. This applied to all the cultivars studied. Also the cultivar ‘Everest’, which was tested only at 21°C, produced similar results. Night interruption for 2 h was effective in bringing about the LD response. At 9°C, flowering was substantially delayed, especially in ‘Flamenco’ and, at this temperature, flowering was unaffected by photoperiod. Runner formation was generally promoted by high temperature and SD conditions, but the photoperiodic effect varied between experiments. We conclude that everbearing strawberry cultivars, in general, whether of the older European-type or the modern Californian-type originating from crosses with selections of Fragaria virginiana ssp. glauca, are qualitative (obligatory) LD plants at high temperature (27°C), and quantitative LD plants at intermediate temperatures. Only at temperatures below 10°C are these cultivars day-neutral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号