首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄土丘陵沟壑区土壤水分垂直分布研究   总被引:9,自引:1,他引:8  
以黄土丘陵沟壑区燕沟流域为研究对象,对流域内2006年不同类型土壤水分垂直变化进行了分析.结果表明,在实验设计条件下,不同层次的土壤水分变幅较大,坝地、梯田和坡地各层土壤含水量变化与降雨量的季节性变化呈现出较一致的趋势,而苹果地除0-100 cm外,100-200 cm随着降雨量的季节性变化出现较大波动;不同类型土地的土壤含水量变化程度不同,同一类型土地的土壤含水量变化幅度也有差异,10 cm处土壤含水量变异系数最大,随着土层深度的增加变异系数逐渐递减.根据土壤含水量变异系数分析,将不同类型土壤含水量垂直变化划分为速变层、活跃层、次活跃层和相对稳定层4个层次;并建立了不同类型土地各层土壤含水量变异系数回归方程.  相似文献   

2.
不同利用方式下红壤坡地土壤水分时空动态变化规律研究   总被引:21,自引:4,他引:21  
利用连续3年土壤水分定位观测数据,研究了红壤坡地不同利用方式下土壤水分的时空动态变化规律。结果表明:土壤水分时空动态变化主要受降雨和植被类型的影响。土壤水分季节变化分为相对稳定期、消耗期和补给期三个时段;土壤剖面(0~90cm)水分含量从表层到深层表现为增长型,依据2003年土壤水分标准差和变异系数。将土壤剖面划分为活跃层、次活跃层和相对稳定层3个层次;土壤剖面水分变异系数随降雨量和土层深度的增加而减小,随植被根系的增长而变大。平水年,深根系区与浅根系区土壤水分变化差异表现在30cm深度以下,而丰水年其差异主要表现在土壤表层(0~30cm);无论平水年还是丰水年,深根系区土壤水分变幅均比浅根系区大。  相似文献   

3.
以黄土高原沟壑区砂石覆盖苹果园为研究对象,对600 cm范围内土壤剖面水分含量的时间分异和空间分布状况进行了研究.结果表明:600 cm土层范围内,一周年内可划分为冬季增墒期和夏季失墒期两个阶段;土壤剖面水分空间分布随土壤深度的增加呈现波动性变化且稳定性不同,土壤含水量变化幅度随土层深度增加而变小,据此可将600 cm范围内的土壤剖面划分为速变层、相对稳定层、缓变层和稳定层;土壤水分在不同层次上的分布差异,8月土壤剖面不同层次含水量差异最大.11月次之,5月再次之.1月土壤不同层次含水量差异最小.综合看来,除土壤表层因砂石覆盖水分增加外,土壤剖面含水量随土壤深度的增加而减少且趋于稳定,水分下渗能力减弱;冬季土壤含水量多且分布均匀,夏季土壤水分减少且主要集中在上层,此时土壤不同层次水分含量差异大.  相似文献   

4.
不同时间尺度反坡台阶红壤坡耕地土壤水分动态变化规律   总被引:4,自引:1,他引:3  
为研究反坡台阶对红壤坡耕地土壤水分不同时间尺度变化以及土壤干湿变化的影响,在2016—2017年对布设反坡台阶坡耕地和原状坡耕地0~100 cm深度土壤水分状况进行了持续监测,计算了土壤相对含水率和增墒率。结果表明,反坡台阶对土壤水分的增加作用在枯水年更为显著(P0.05)。坡耕地旱季各土层土壤含水率变化相对不明显,基本上呈现出随着土层深度逐渐增加的规律;7月、9月和11月则呈现出明显的S状的规律;坡耕地布设反坡台阶后,各个时段各个土层土壤含水率均有了明显的提高,尤其是在5月土壤补水期和11月土壤失水期对土壤水分的增加效果更加明显。坡耕地土壤逐日含水率变异程度随着土层深度增加而逐渐减小;反坡台阶处理坡耕地和原状坡耕地5、20和40cm处土壤逐日含水率与降雨量呈现极显著的相关关系(P0.01),60cm处土壤逐日含水率与降雨量达显著相关(P0.05),而80、100 cm深度土壤逐日含水率与降雨量之间相关关系不显著。反坡台阶对坡耕地5、20、40、60、80、100 cm处土壤平均增墒率分别达到15.22%、15.25%、16.91%、15.60%、16.50%和16.17%,而其对不同深度土壤增墒率在年内均呈现出不同的变化规律。坡耕地布设反坡台阶,显著增加了土壤含水率,增加了土壤湿润期的持续时间,并且能显著提高坡耕地降雨利用率,这对于解决坡耕地的生态水文型干旱问题,提高山区坡耕地农业生产力具有重要意义。  相似文献   

5.
干旱河谷区坡耕地等高植物篱种植系统土壤水分动态研究   总被引:21,自引:4,他引:21  
金沙江干旱河谷区坡耕地固氮植物篱种植模式的研究结果表明 ,植物篱与农作物利用土壤水分的深度不同 ,植物篱在旱季主要利用 5 0 cm以下深层土壤水分来度过严酷的旱季 ,在雨季促进水分向深层土壤渗透 ,提高 0~ 15 0 cm土层贮水量 ;据剖面含水量的变异程度可将剖面分为 4个层次 :水分剧变层、水分渐变层、水分弱变层和水分稳定层 ,其中植物篱模式下剧变层为 0~ 30 cm,渐变层为 30~ 10 0 cm ,弱变层为 10 0~ 15 0 cm,稳定层在15 0 cm以下 ,而传统耕作坡地和裸坡地 (梯地 )分别为剧变层 0~ 30 cm,渐变层为 30~ 5 0 cm,弱变层为 5 0~ 12 0cm ,稳定层在 12 0 cm以下 ,渐变层厚度显著小于植物篱种植模式。植物篱模式提高系统中土壤水分周转库容 ,不仅有利于雨季调节地表径流 ,而且有利于旱季改善土壤水分条件。在时间上 ,一个旱季 -雨季周期内干热河谷坡耕地土壤水分动态可分为 3个时期 :水分消耗期、水分补给期和水分平稳期  相似文献   

6.
黑土区不同土地利用方式土壤水分动态变化特征研究   总被引:4,自引:1,他引:4  
在中国科学院海伦农田生态系统国家野外科学观测研究站.应用田间定位试验研究了玉米地、休闲地、苜蓿地和裸地4种不同土地利用方式下农田黑土水分动态变化特征.结果表明:土壤剖面0-190 cm水分含量随深度的增加呈先增加后减小的趋势,不同土地利用方式下农田黑土表层0-30 cm的土壤含水量差异较明显,总体表现为裸地相对较高,其次为休闲地、苜蓿地和玉米地;研究时段内土壤水分的动态变化具有明显的季节性,一般可以划分为水分相对稳定期、水分消耗期和水分补给期3个时期;根据变异系数将土壤水分的垂直变化划分为活跃层、次活跃层和相对稳定层,变异系数随土层深度的增加而减小.  相似文献   

7.
秸秆覆盖对冻融期土壤墒情影响试验   总被引:4,自引:3,他引:1  
为了研究秸秆覆盖对冻融期土壤墒情的影响,该文设置裸地、玉米秸秆覆盖厚度为5、10和15cm的4种地表处理,进行了冻融期的土壤水分迁移试验。结果表明,冻融期秸秆覆盖的保温效应改变了土壤冻结状,使覆盖厚度15cm田块未出现冻层,覆盖厚度5和10cm地块的土壤初冻时间比裸地分别滞后16和25d,且冻层厚度较裸地减小了29和42cm。受冻融作用的影响,裸地在40cm处出现聚墒区,秸秆覆盖田块在地表处和30~50cm处出现聚墒区。冻融期内玉米秸秆覆盖厚度为5、10和15cm田块地表水分波动幅度分别比裸地减小了1.12、6.46和8.7百分点;土壤融化后其地表0-10cm土壤平均含水率分别比裸地高9.45、9.04和8.99百分点。研究成果可为季节性冻土分布区实施秸秆覆盖措施提供参考依据。  相似文献   

8.
利用大型蒸渗仪于2001—2002年连续2年测定的甘肃中部半干旱地区紫花苜蓿生长期日耗水量以及土壤水分资料,分析研究了耗水规律和土壤水分变化特征。结果表明:紫花苜蓿全生长期总耗水量约在382.9mm左右,日耗水量随降水量的增大而增大,在整个生长期内基本呈现周期性正弦曲线波动,土壤水分的周年变化可划分为3个时期:春季失墒期、夏季波动变化期、秋季增墒期;垂直变化分为3个层次:多变层(0~30cm)、缓变层(30—10Ocm)、稳变层(100~200cm)。  相似文献   

9.
利用黄土区燕沟流域42场模拟降雨下土壤水分观测数据,研究2种坡度的草地、灌木地在不同经营方式(原状地、刈割地、翻耕地)下的土壤水分对模拟降雨的响应。结果表明:1)在5次降雨补充下,依据土壤水分的标准差和变异系数指标,0-100cm土壤水分受土地经营方式影响表现为,原状草灌地土壤水分可划分为活跃层、次活跃层和相对稳定层,刈割地全剖面为相对稳定层,翻耕地可分为活跃层和相对稳定层。2)单次降雨事件则随降雨量增加,各经营方式下的水分活跃层逐渐变薄或消失,次活跃层变厚,而相对稳定层变薄,整个土壤剖面水分变化趋于一致。3)对于受高强度降雨补充的土壤水分变异性分层,建议采用更加灵敏的土壤水分标准差和变异系数判别标准:活跃层,标准差大于1.4,变异系数大于0.12;次活跃层,标准差1.4-0.9,变异系数0.12-0.08;相对稳定层,标准差小于0.9,变异系数小于0.08。4)坡度越小,土壤水分越高,坡度对草灌木地、刈割地的影响较翻耕地显著,且对50-100cm层水分影响远大于对表层0-50cm的影响。总之,降雨后土壤水分0-100cm层不断增加,且剖面土壤水分逐渐一致,土地经营方式、坡度因素对土壤水分变化强度和在不同深度土层中的表现有显著影响。  相似文献   

10.
土壤水分是季节性干旱区农业生产的限制因子,研究紫色土坡耕地土壤水分变化特征有助于解决坡耕地的生态水文型干旱问题。以金沙江下游季节性干旱区紫色土坡耕地为研究对象,使用PR2/6土壤剖面水分测定仪在雨季对5°、10°、15°、20°、25°、30°坡面10、20、30、40、60、100 cm土层的土壤体积含水量进行连续监测,分析紫色土剖面含水量变化特征。结果表明:坡耕地土壤水分随时间的变化特征可分为四个阶段:6月初至6月底为土壤水分恢复期,7月初至8月中旬为土壤水分快速补充期,8月中旬至8月底为土壤水分消耗期,9月初至9月底为土壤水分回升期。土体剖面含水量自上而下呈现逐渐增加的趋势,且各层含水量都具有显著的差异性和相关性。6个监测点最大含水量均出现在100 cm处,为19.67% ~ 33.82%,最小含水量大多出现在20 cm处,为3.07% ~ 11.71%。土壤含水量变异系数自上而下逐渐降低,10 cm处土壤含水量变异系数最大,为8.67% ~ 56.28%,100 cm处最小,为0.68% ~ 14.76%;土壤含水量随着坡度的增加总体上呈减小趋势,在0 ~ 60 cm土层,10°监测点的土壤含水量最高,为12.20% ~ 20.40%,在0 ~ 100 cm土层,25°监测点的土壤含水量较低,为4.28% ~ 19.22%。降雨和坡度对土壤含水量均有显著影响,二者对土壤含水量的影响随土层深度的增加而减弱。研究结果对紫色土坡面水资源高效利用及提高农业生产力具有重要意义。  相似文献   

11.
黄土丘陵沟壑区水平沟耕作效益研究   总被引:3,自引:0,他引:3  
利用9a试验资料,分析和研究了坡地水平沟耕作的土壤水分动态及耗水规律,并从水土流失、养分流失及水分利用方面研究了水平沟耕作效益.得出坡地水平沟耕作的土壤水分变化为:封冻前的强烈失墒期、越冬干湿交替失墒期和返青拔节后缓慢失墒期3个阶段.小麦灌浆期及返青期对产量作用最大;水平为能够显著地拦蓄径流,减少土镶冲刷和养分流失,提高土壤水分利用率,进而提高作物单产.  相似文献   

12.
宁夏黄土丘陵区苜蓿土壤水分的时空变异特征   总被引:7,自引:0,他引:7  
土壤水分是影响半干旱区植被生长和生态修复的限制性生态因子,开展土壤水分变化研究对脆弱生态系统的恢复和生产实践活动的指导都具有重要作用和实际意义。对半干旱黄土丘陵区苜蓿在时空尺度上土壤水分状况的变化规律进行了分析。结果显示:(1)不同类型苜蓿土壤体积含水量的年际变化规律大致相同,生长季变化大致可分为三个时期:土壤水分消耗期(3—5月)、土壤水分相对稳定期(6—7月)和土壤水分积累期(8—10月);(2)以不同深度土壤体积含水量的变异系数为标准,可将土壤水分的垂直分布划分为三个层次:0—20cm土壤水分速变层、20—80cm土壤水分活跃层和80—180cm土壤水分相对稳定层;(3)土壤体积含水量的坡向变化规律为西坡北坡南坡东坡,不同年份规律大致相同,但有小范围的波动,坡位变化规律为坡上坡中坡下,不同年份间的变化基本一致。  相似文献   

13.
黄壤坡地土壤水分入渗垂直变异特征分析   总被引:8,自引:1,他引:8  
通过对土壤水分入渗垂直变异的分析来探讨贵州岩溶地区黄壤坡地的土壤水分特性。主要运用小波变换对各层土壤水分序列的突变点进行了检测,根据相干谱和互谱特征分析了各层土壤水分变化的响应关系,利用相频特征研究了各层土壤之间水分变化的时滞性。结果表明,试验区各层土壤水分变化近似平稳随机过程;土壤表层(0~20cm)的水分突变现象要明显多于下层(20~100cm);0~10cm土壤层与40~60cm的土壤层透水性较弱,而中间层和底层的持水性较差,大部土壤层的水分变化与其上层之间存在一定的时滞性。  相似文献   

14.
乔灌草植被条件下土壤水分动态特征   总被引:4,自引:1,他引:4  
以16年的定位土壤水分实测资料为基础,对乔灌草植被条件下土壤含水量的年度、季节及垂直动态特征进行了研究,结果显示:在0~100cm和0~500cm深度上,草地土壤水分含量大于乔木和灌木;生长盛期乔木和灌林土壤含水量较低,草地变化不大。土壤垂直动态分析表明:乔木、灌木和草地土壤水分按照速变层、活跃层、次活跃层和相对稳定层划分,其位置和排列顺序都不尽相同,荒草地0~60cm为速变层,依次再往下60~280,280~400,400~500cm分别是活跃层、次活跃层和相对稳定层;山桃林0~40,40~240,240~400,400~500cm分别是速变层、相对稳定层、次活跃层和活跃层;柠条林0~80,80~220,220~320,320~500cm分别是速变层、活跃层、相对稳定层和次活跃层;土壤干层在3种植被条件下都有存在,但以乔木垂直范围最广,历时最长,灌木次之,草地再次之,草地植被随深度下降,其水分波动越来越小;乔木土壤表层水分变化剧烈,但到100cm左右水分变化程度较小,再往下,变化又趋剧烈;灌木与乔木相似,但变化程度不及乔木强烈。  相似文献   

15.
喀斯特地区洼地剖面土壤含水率的动态变化规律   总被引:7,自引:0,他引:7  
本文基于连续2年土壤水分的定位监测数据,分析探讨了喀斯特地区不同地质背景(纯灰岩与白云质灰岩)洼地剖面(0~90 cm)土壤含水率的动态变化规律。结果表明:洼地剖面土壤含水率总体较高,且从表层到深层表现为增长型;2009年和2010年土壤含水率的变化均具有明显的分层现象,从上到下依次为活跃层、次活跃层、相对稳定层,但均无速变层,不同地质背景的具体分层略有差异;活跃层和次活跃层集中分布在浅层土壤层,相对稳定层较厚,对应着较差的水文调蓄功能,洼地土壤的水分调蓄功能可能会因其相对较深厚(80~100 cm)的土层而被高估。受降雨、蒸发及植物蒸腾等因素的影响,土壤储水量具有明显的动态变化特征,一年中可分为相对稳定期、消耗期和补给期3个阶段,而土壤水分亏缺的补偿和恢复,主要依靠强度适中、历时较长且雨量较大的降雨,微雨和暴雨的作用较小。  相似文献   

16.
水分是影响宁夏中部干旱带沙地人工种植甘草最重要的限制生态因子,通过对不同密度人工种植甘草地土壤水分特征变化及产量性状进行分析,确定了人工种植甘草的最佳种植密度。结果表明:(1)不同种植密度人工甘草地土壤水分变异系数和标准差随着土层深度的增加均呈现先增大后降低的趋势;(2)不同种植密度人工甘草地土壤垂直剖面水分变化幅度大小划分为0—20cm活跃层、20—80cm次活跃层和80—100cm相对稳定层,土壤含水量从高到低依次为180 000株/hm~2150 000株/hm~2120 000株/hm~2210 000株/hm~290 000株/hm~2;(3)土壤含水量季节动态变化可划分为3个时期:土壤水分积累期(5—6月)、土壤水分消耗期(7—9月)、土壤水分稳定期(10月—次年4月);(4)从不同种植密度、产量性状以及水分特征变化的整体分析看,人工种植甘草的最佳密度约为180 000株/hm~2。  相似文献   

17.
干热河谷旱地覆盖间作两熟种植模式的水分效应   总被引:3,自引:0,他引:3  
在干热河谷旱地选择玉米/黄豆种植模式进行田间试验,研究不同覆盖栽培措施条件下间作两熟种植模式的水分效应。结果表明,秸秆、地膜覆盖栽培有明显增加和保蓄土壤水的作用,秸秆地膜二元覆盖栽培的作用更为显著,根区成为作物耗水与土壤保蓄水的关键区域,农田水分变化沿土层可划分为3个层次,即0-30cm土层为土壤水分变化活跃层和土壤贮水增加明显层;30-80cm土层为土壤水分变化次活跃层和土壤贮水增加显著层;80-100cm土层为土壤水分变化相对稳定层和土壤贮水增加一般层,且覆盖栽培措施可促进作物耗水量由田间无效蒸发耗水向有效的田间作物蒸腾耗水转化,使旱作农田水分的有效性显著提升。  相似文献   

18.
冻融期秸秆覆盖量对土壤剖面水热时空变化的影响   总被引:1,自引:4,他引:1  
为了揭示季节性冻融期秸秆覆盖量对土壤剖面水热时空变化的影响,分析对比了裸地和5种不同玉米秸秆覆盖厚度(5、10、15、20和30 cm)地块的土壤剖面含水率和土壤温度等值线变化特征,采用数理统计分析方法对土壤剖面水热变化进行了统计学分析。结果表明:在季节性冻融期,裸地最大冻结深度为52 cm,土壤剖面水热变化较为剧烈,0~40 cm属于水热变化活跃层,覆盖厚度为5和10 cm时的土壤剖面水热变化活跃层分别为0~20和0~10 cm。秸秆覆盖厚度为15 cm时可平抑土壤剖面水热的变化,并能达到良好的保温效果。秸秆覆盖厚度为5 cm时,在土壤冻融作用和秸秆覆盖的双重效应下,耕作层土壤水分较其他地块高,储水保墒效果显著。当秸秆覆盖厚度大于15 cm时,土壤保墒保温效果不随秸秆覆盖量的增加而增强。从预防冻害和蓄水保墒角度出发,最佳秸秆覆盖厚度为10~15 cm。研究成果对于季节性冻土地区冬春季节农田秸秆覆盖的科学实施具有重要的指导意义。  相似文献   

19.
为有效认识黄土高原淤地坝坝地土壤水分时空分布特征,通过对王茂沟小流域2号坝坝地土壤水分长期监测,分析了坝地土壤水分的统计特征。结果表明:(1)坝地各层土壤水分均表现为中等变异,表层土壤含水量的极差较大,0~2.40m土层土壤平均含水量变化范围为9.92%~23.70%,随深度的增加,土壤平均含水量表现为先减小后增大的趋势;(2)坝地土壤水分具有明显的分层现象,多数监测点的土壤水分在时间上属于中等变异,表层土壤水分变化剧烈,随着深度的增加变异系数开始变小,水分变化程度减弱;根据变异系数的大小,坝地土壤水分可以划分为4个层次:水分剧变层(0~0.20m),水分活跃层(0.20~0.60m),水分次活跃层(0.60~1.40 m),水分相对稳定层(1.40 m以下);(3)坝前各层土壤含水量均明显高于坝中和坝后,在0~0.40 m坝地的含水量明显高于坡地,0.40~1.40 m坡地含水量高于坝地,1.40m以下坝地含水量高于坡地,且坝地各层土壤含水量随时间的变异系数均小于坡地。  相似文献   

20.
黄土沟壑区不同树龄侧柏林地土壤水分动态特征   总被引:3,自引:1,他引:2  
[目的]研究黄土沟壑区侧柏林地土壤水分动态特征,为黄土沟壑区退耕还林、生态建设以及人工侧柏林地的经营管理工作提供支持。[方法]以黄土沟壑区典型小流域南小河沟流域内5,25以及35a树龄侧柏为研究对象,使用烘干法对其生长季0—100cm土层土壤水分进行观测,并对其时空分布特征、土壤层次以及各层次干燥化特征进行分析。[结果](1)降雨对侧柏林地土壤水分的补给深度集中在0—40cm范围内,侧柏根系吸水主要作用范围则分布在40—100cm土层中。(2)3种树龄侧柏生长季0—100cm土层中的土壤水分的时间变化可以分为恢复期(5月)与消耗期(6—9月)。在恢复期,树龄对于土壤水分分布的影响不大,5,25与35a侧柏0—100cm土层蓄水量分别分布在230.3~304.2mm,177.7~249.7mm以及202.2~283.6mm。在消耗期,10—40cm土层中,土壤水分分布表现为:5a侧柏35a侧柏25a侧柏,而在60—100cm土层中,则表现为:5a侧柏25a侧柏35a;3种树龄侧柏林地0—100cm土层蓄水量则分布在131.2~207.2mm,123.4~220.8mm以及109.6~204.7mm。(3)在恢复期,5a侧柏林地各垂直分层土壤水分干燥化指数(SDI)差异不大,25与35a侧柏林地SDI在活跃层与过渡层随着深度的增大而增大。在根系作用层,25与35a侧柏林地SDI保持相对稳定。在消耗期,3种树龄侧柏林地SDI在活跃层较小,在过渡层随深度增大而增大,而在根系作用层保持相对稳定。[结论]与恢复期相比,在消耗期,3种树龄侧柏林地土壤水分变化剧烈程度均显著增大,其根系吸水能力随树龄增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号