首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Sulfonylurea resistance in Stellaria media [L.] Vill.   总被引:1,自引:1,他引:1  
A sulfonylurea resistant biotype of common chickweed (Stellaria media L. Vill.) was found in a field treated with chlorsulfuron or metsulfuron for eight consecutive years. In pot experiments the biotype was resistant to postemergence treatments with the following acetolactate synthase (ALS) inhibitors: chlorsulfuron, metsulfuron, tribenuron, triasulfuron, rimsulfuron, sulfometuron, flumetsulam and imazapyr. The level of resistance to chlorsulfuron and sulfometuron was higher than to the other sulfonylurea herbicides. Whereas the level of cross resistance to the triazolopyrimidine herbicide, flumetsulam was comparable to that of metsulfuron, that of imazapyr was significantly lower. In contrast to imazapyr the biotype was not resistant to imazethapyr, an other imidazolinone herbicide. ALS in vitro assays revealed that resistance was due to an ALS enzyme that was less sensitive to ALS inhibiting herbicides. Herbicides with different modes of action were equally effective on the susceptible and resistant biotypes.  相似文献   

2.
Primisulfuron‐resistant (AR and MR) and ‐susceptible (AS and MS) Bromus tectorum biotypes were collected from a Poa pratensis field at Athena, Oregon, and in research plots at Madras, Oregon. Studies were conducted to characterize the resistance of the B. tectorum biotypes. Whole plant bioassay and acetolactate synthase (ALS) enzyme assay revealed that the AR biotype was highly resistant to the sulfonylurea (SU) herbicides, primisulfuron and sulfosulfuron and to a sulfonylaminocarbonyltriazolinone (SCT) herbicide, propoxycarbazone‐sodium. However, the AR biotype was not resistant to imazamox, an imidazolinone (IMI) herbicide. Results of the whole plant bioassay studies showed that the MR biotype was moderately resistant to all ALS inhibitors tested. However, there were no differences in ALS sensitivities between the MR and MS biotypes. The nucleotide and amino acid sequence analysis of the als gene demonstrated a single‐point mutation from C to T, conferring the exchange of the amino acid proline to serine at position 197 in the AR biotype. However, this mutation was not found in the MR biotype. Results of this research indicate that: the resistance of the AR biotype to SU and SCT herbicides is based on an altered target site due to a single‐point mutation; resistance in the MR biotype is not due to a target site mutation.  相似文献   

3.
BACKGROUND: Papaver rhoeas (L.) has evolved resistance to tribenuron in winter wheat fields in northern Greece owing to multiple Pro197 substitutions. Therefore, the cross‐resistance pattern to other sulfonylurea and non‐sulfonylurea ALS‐inhibiting herbicides of the tribenuron resistant (R) and susceptible (S) corn poppy populations was studied by using whole‐plant trials and in vitro ALS catalytic activity assays. RESULTS: The whole‐plant trials revealed that tribenuron R populations were also cross‐resistant to sulfonylureas mesosulfuron + iodosulfuron, chlorsulfuron and triasulfuron. The whole‐plant resistance factors (RFs) calculated for pyrithiobac, imazamox and florasulam ranged from 12.4 to > 88, from 1.5 to 28.3 and from 5.6 to 25.4, respectively, and were lower than the respective tribenuron RF values (137 to > 2400). The ALS activity assay showed higher resistance of the ALS enzyme to sulfonylurea herbicides (tribenuron > chlorsulfuron) and lower resistance to non‐sulfonylurea ALS‐inhibiting herbicides (pyrithiobac > florasulam ≈ imazamox). CONCLUSION: These findings indicate that Pro197 substitution by Ala, Ser, Arg or Thr in corn poppy results in a less sensitive ALS enzyme to sulfonylurea herbicides than to other ALS‐inhibiting herbicides. The continued use of sulfonylurea herbicides led to cross‐resistance to all ALS‐inhibiting herbicides, making their use impossible in corn poppy resistance management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Acetolactate synthase (ALS) from one susceptible and two chlorsulfuronresistant biotypes of Stellaria media(L.) Vill. was assayed in the presence of eight known ALS inhibitors. As expected, ALS from the chlorsulfuronresistant biotypes (R1 and R2) showed reduced sensitivity to chlorsulfuron and other sulfonylurea herbicides. The patterns of cross-resistance varied, however, indicating that the alteration in ALS that confers chlorsulfuron resistance does not confer the same level of resistance to other sulfonylurea herbicides. The resistant biotypes were highly cross-resistant to sulfometuron-methyl and DPX-A7H81, but less cross-resistant to triasulfuron. Both R1 and R2 were highly cross-resistant to DTPS (N-[2,6-dichlorophenyl]-5,7-dimethyl-1,2,4-iriazolo[1,5a]pyrimidine-2-siilfoiiamide), but only slightly cross-resistant to imazamethahenz, an imidazolinone herbicide. The differences in the patterns of cross-resistance observed presumably reflect differences in the binding affinity of the herbicides for the altered ALS. The data presented suggest, but do not confirm, that R1 and R2 contain the same ALS mutation.  相似文献   

5.
An investigation, using herbicidal pot tests in a greenhouse condition, was conducted to determine the whole‐plant dose–response relationships to several acetolactate synthase (ALS)‐inhibiting herbicides of sulfonylurea (SU)‐resistant Schoenoplectus juncoides with various Pro197 mutations in ALS that was collected from Japanese rice paddy fields. All the tested SU‐resistant accessions with a Pro197 mutation were highly resistant to two commonly used SU herbicides (imazosulfuron and bensulfuron‐methyl), but were much less resistant to another SU herbicide, metsulfuron‐methyl, and were substantially not resistant to imazaquin‐ammonium. These cross‐resistance patterns have been known previously in fragments of S. juncoides and other weed species and were comprehensively confirmed in this study with a whole set of Pro197 mutations. The analyses of resistance levels, based on ED90 values, newly showed that different accessions with a common amino acid substitution in ALS1 showed similar responses to these herbicides (confirmed with four amino acid substitutions), that the rankings of resistance levels that were conferred by various Pro197 mutations in ALS1 differed among the SU herbicides and that the resistance levels of the ALS2‐mutated accessions were higher than, lower than or similar to those of the corresponding ALS1‐mutated accessions, depending on the compared pair, but the deviation patterns were generally similar among the SU herbicides in each compared pair. The final finding might suggest that the abundance of ALS2 is not as stable as that of ALS1. In addition, as a result of these new findings, together with expected further research, a suggested possibility is that substituting amino acids at Pro197 generally could be estimated by plotting each accession's ED90 values of imazosulfuron and bensulfuron‐methyl in a two‐dimensional graph.  相似文献   

6.
Ten accessions of sulfonylurea‐resistant Schoenoplectus juncoides were collected from paddy fields in Japan. In order to characterize acetolactate synthase from sulfonylurea‐resistant S. juncoides, acetolactate synthase amino acid substitutions, whole‐plant growth inhibition and acetolactate synthase enzyme inhibition were examined. Schoenoplectus juncoides has two acetolactate synthase genes (ALS1 and ALS2). The sulfonylurea‐resistant accessions harbored amino acid substitutions at Pro197 or Trp574 in either ALS1 or ALS2 (the amino acid number is standardized to the Arabidopsis thaliana sequence). The whole plants of all the sulfonylurea‐resistant accessions showed resistance to imazosulfuron. The resistance level depended on the altered amino acid residues in acetolactate synthase. The acetolactate synthase enzyme that was partially purified from all the sulfonylurea‐resistant accessions was less sensitive to imazosulfuron, compared to the susceptible accession, suggesting that the resistance is related to the altered acetolactate synthase enzyme. In addition, the concentration–response inhibition of acetolactate synthase activity by imazosulfuron in the sulfonylurea‐resistant accessions was remarkably different with the presence of an amino acid substitution in either ALS1 or ALS2. Furthermore, the concentration–response inhibition of acetolactate synthase activity in the sulfonylurea‐resistant accessions with a P197S, P197T or W574L mutation showed a double‐sigmoid curve. The regression analysis of enzyme inhibition suggested that the abundance ratio of ALS1 to ALS2 enzymes was approximately 70:30%, with a range of ±15%. Taken together, these results suggest that the resistance of sulfonylurea‐resistant accessions of S. juncoides is related to altered acetolactate synthase in either ALS1 or ALS2, although the abundance of the altered acetolactate synthase in the plants is different among the sulfonylurea‐resistant accessions.  相似文献   

7.
A Cyperus difformis L accession from Chonnam province, Korea was tested for resistance to the sulfonylurea herbicide, imazosulfuron. The accession was confirmed to be resistant (R) and was cross-resistant to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, the pyrimidinyl thiobenzoate herbicide, bispyribac-sodium, and the imidazolinone herbicide imazapyr, but not to imazaquin. Multiple resistance was tested using twelve herbicides with target sites other than acetolactate synthase (ALS). The R biotype could be controlled by other herbicides with different modes of action such as butachlor, carfentrazone-ethyl, clomeprop, dithiopyr, esprocarb, mefenacet, oxadiazon, pretilachlor, pyrazolate and thiobencarb, applied to soil at recommended rates. Several sulfonylurea herbicide-based mixtures can control both the R and S biotypes of C difformis, except sulfonylurea plus dimepiperate, molinate or pyriftalid, and pyrazolate plus butachlor. Although mixtures of sulfonylurea herbicides might be more effective, they should be avoided and used only in special cases. In terms of in vitro ALS activity, the R biotype was 1139-, 3583-, 1482-, 416-, 5- and 9-fold more resistant to bensulfuron-methyl, cyclosulfamuron, imazosulfuron, pyrazosulfuron-ethyl, bispyribac-sodium and imazapyr, respectively, than the S biotype. The in vivo ALS activity of the R biotype was also less affected by the sulfonylurea herbicides, imazosulfuron and pyrazosulfuron-ethyl, than the S biotype. Results of in vitro and in vivo ALS assays indicated that the resistance mechanism of C difformis to ALS inhibitor herbicides was primarily due to an alteration in the target enzyme, ALS. Greenhouse experiments showed delayed flowering and reduced seed production of the R biotype, which could possibly result in reduced fitness. This unusual observation needs to be confirmed in field situations.  相似文献   

8.
Sagittaria trifolia L. is one of the most serious weeds in paddy fields in Japan. Since the late 1990s, severe infestations of S. trifolia have occurred following applications of sulfonylurea herbicides in Akita prefecture. In this study, two accessions of S. trifolia, R1 and R2, were collected from paddy fields with severe infestations and their resistance profiles were determined in comparison to a susceptible accession, S1. R1 and R2 were highly resistant to bensulfuron‐methyl. R1 was also highly resistant to pyrazosulfuron‐ethyl, but R2 was susceptible. Relative to S1, R1 had an amino acid substitution at the Pro197 residue of acetolactate synthase (ALS), a well‐known mutation that confers sulfonylurea resistance, suggesting that R1 has a target‐site‐based resistance (TSR) mechanism. The sequence of the ALS gene in R2 was identical to that in S1. A Southern blot analysis indicated that there was only one copy of the ALS gene in S1 and R2. These results suggest that R2 has a non‐target‐site‐based resistance (NTSR) mechanism. R2 was moderately resistant to imazosulfuron but susceptible to thifensulfuron‐methyl. R2 and S1 were susceptible to pretilachlor, benfuresate, MCPA‐ethyl and bentazon. The results reveal the occurrence of two sulfonylurea‐resistant biotypes of S. trifolia that show different mechanisms of cross‐resistance to sulfonylureas related to TSR in R1 and NTSR in R2.  相似文献   

9.
Repeated use of ACCase‐ and ALS‐inhibiting herbicides in northern Greece has resulted in the evolution of a population of Lolium rigidum resistant to diclofop and chlorsulfuron. The biotype from Athos was highly resistant to diclofop and also exhibited differential cross‐resistance to clodinafop, fluazifop, tralkoxydim and sethoxydim. Assay of ACCase activity confirmed that the resistant biotype was tenfold more resistant to diclofop than the susceptible biotype, suggesting that the resistance mechanism could involve an altered target site. The diclofop‐resistant biotype has also exhibited multiple resistance to chlorsulfuron and the mechanism for this is unknown. Seed‐bioassay was found to be a rapid, cheap and reliable method to identify populations of L rigidum resistant to ACCase inhibitors and chlorsulfuron. Moreover, root elongation in the seed bioassay was more sensitive to ACCase inhibitors and chlorsulfuron than shoot elongation. © 2000 Society of Chemical Industry  相似文献   

10.
Summary Two Sonchus asper (spiny annual sow-thistle) biotypes, suspected of being resistant to the sulfonylurea herbicide metsulfuron-methyl, were collected in 1996 from two barley ( Hordeum vulgare ) fields in central Alberta, Canada. Both fields had received at least six applications of acetolactate synthase (ALS)-inhibiting herbicide(s). The responses of the two resistant (R) biotypes and two susceptible (S) biotypes to several sulfonylurea herbicides, and to herbicides and herbicide mixtures with other mechanisms of action, were compared. Both R biotypes were highly resistant to all sulfonylurea herbicides, but their control with other herbicides and mixtures was effective and comparable to that of the S biotypes. ALS extracted from an R biotype was about 440 times more resistant to metsulfuron-methyl than that of an S biotype, indicating that resistance was conferred by an ALS enzyme that was less sensitive to inhibition by the herbicide. Competitiveness and seed production of S. asper varied among biotypes, but the differences were probably the result of ecotype differences rather than resistance or susceptibility to sulfonylurea herbicides. This is the first reported occurrence of target site-based S. asper resistance to ALS-inhibiting herbicides.  相似文献   

11.
Nine Monochoria vaginalis Pres1 accessions from Chonnam province, Korea were tested for resistance to the sulfonylurea herbicide, imazosulfuron, in whole-plant response bioassay. All accessions were confirmed resistant (R) to imazosulfuron. The GR50 (imazosulfuron concentration that reduced shoot dry weight by 50%) values of R accessions were 1112-3172 (accession #9) times higher than that of the standard susceptible (S) accession. Accession #9 exhibited cross-resistance to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, but not to the imidazolinone herbicides, imazapyr and imazaquin. The R biotype could be controlled by other herbicides with different modes of action, such as mefenacet and pyrazolate, applied to soil at recommended rates. Foliar-applied herbicides, 2,4-D and bentazone, also controlled both the R and S biotypes. Sulfonylurea-based mixtures, except ethoxysulfuron plus fentrazamide, did not control resistant M. vaginalis. Rice yield was reduced 70% by resistant M. vaginalis that escaped pyrazosulfuron-ethyl plus molinate, compared with hand weeding in direct-seeded rice culture. In contrast, rice yield was reduced 44% by resistant M. vaginalis that survived the pyrazosulfuron-ethyl plus molinate treatment, compared with pyrazolate plus butachlor in transplanted rice culture. In vitro acetolactate synthase (ALS) activity of the R biotype was 183, 35, 130 and 31 times more resistant to imazosulfuron, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, respectively, than the S biotype. Imidazolinone herbicides, imazapyr and imazaquin had similar effect on in vitro ALS activity of the R and S biotypes. The in vivo ALS activity of the R biotype was also less affected than the S biotype by the sulfonylurea herbicides imazosulfuron and pyrazosulfuron-ethyl. Results of in vitro and in vivo ALS assays indicate that the resistance mechanism of M. vaginalis to sulfonylurea herbicides may be due, in part, to an alteration in the target enzyme, ALS. Since the level of resistance in the enzyme assay was much lower than that in the whole-plant assay, other mechanisms of resistance, such as herbicide metabolism, may be involved.  相似文献   

12.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
Three Australian Sisymbrium orientale and one Brassica tournefortii biotypes are resistant to acetolactate synthase (ALS)-inhibiting herbicides due to their possession of an ALS enzyme with decreased sensitivity to these herbicides. Enzyme kinetic studies revealed no interbiotypic differences within species in Km (pyruvate) (the substrate concentration at which the reaction rate is half maximal) but a greater Vmax (the rate when the enzyme is fully saturated with substrate) for two of the resistant S orientale biotypes over susceptible levels. F1 hybrids from reciprocal crosses between resistant and susceptible biotypes of S orientale showed an intermediate response to chlorsulfuron compared to the parental plants. ALS herbicide resistance in S orientale segregated in a 3:1 (resistant:susceptible) ratio in F2 plants with a single rate of chlorsulfuron, indicating that resistance is inherited as a single, incompletely dominant nuclear gene. Two regions of the ALS structural gene known to vary in ALS-resistant biotypes were amplified and sequenced. Resistant S orientale biotypes NS01 and SS03 contained a single nucleotide substitution in Domain B, predicting a Trp (in susceptible) to Leu (in resistant) amino acid change. Two adjacent nucleotide substitutions (CC T to AT T) predicting a Pro (in susceptible) to Ile (in resistant) change in the primary amino acid sequence were identified in Domain A of resistant S orientale biotype SS01. Likewise, a single nucleotide substitution at the same site in the resistant B tournefortii biotype predicts a Pro (in susceptible) to Ala (in resistant) substitution. No other interbiotypic nucleotide differences predicted amino acid changes in the sequenced regions, suggesting that the amino acid substitutions reported above are responsible for resistance to ALS-inhibiting herbicides in the respective biotypes. © 1999 Society of Chemical Industry  相似文献   

14.
Yu Q  Han H  Powles SB 《Pest management science》2008,64(12):1229-1236
BACKGROUND: In the important grass weed Lolium rigidum (Gaud.), resistance to ALS‐inhibiting herbicides has evolved widely in Australia. The authors have previously characterised the biochemical basis of ALS herbicide resistance in a number of L. rigidum biotypes and established that resistance can be due to a resistant ALS and/or enhanced herbicide metabolism. The purpose of this study was to identify specific resistance‐endowing ALS gene mutation(s) in four resistant populations and to develop PCR‐based molecular markers. RESULTS: Six resistance‐conferring ALS mutations were identified: Pro‐197‐Ala, Pro‐197‐Arg, Pro‐197‐Gln, Pro‐197‐Leu, Pro‐197‐Ser and Trp‐574‐Leu. All six mutations were found in one population (WLR1). Each Pro‐197 mutation conferred resistance to the sulfonylurea (SU) herbicide sulfometuron, whereas the Trp‐574‐Leu mutation conferred resistance to both sulfometuron and the imidazolinone (IMS) herbicide imazapyr. A derived cleaved amplified polymorphic sequences (dCAPS) marker was developed for detecting resistance mutations at Pro‐197. Furthermore, cleaved amplified polymorphic sequences (CAPS) markers were developed for detecting each of the six mutant resistant alleles. Using these markers, the authors revealed diverse ALS‐resistant alleles and genotypes in these populations and related them directly to phenotypic resistance to ALS‐inhibiting herbicides. CONCLUSION: This study established the existence of a diversity of ALS gene mutations endowing resistance in L. rigidum populations: 1–6 different mutations were found within single populations. At field herbicide rates, resistance profiles were determined more by the specific mutation than by whether plants were homo‐ or heterozygous for the mutation. Copyright © 2008 Society of Chemical Industry  相似文献   

15.
A biotype of Sonchus oleraceus L. and two bio types of Sisymbrium orientate Torn., SSO 3 and NSO 1, are the first dicot weeds in Australia to develop resistance to ALS-inhibiting herbicides. The resistant biotypes had been exposed to va rying periods of selection with sulfonylurea her bicides. All three biotypes are resistant to a range of sulfonylurea and imidazolinone herbicides. The S. orientale biotypes are also resistant to the triazolopyrimidine herbicide, flumetsulam. LD50 ratios of resistant Sonchus oleraceus for sulfony lurea and imidazolinone herbicides are greater than 64-fold and 4.5-fold, respectively. GR50 ratios are greater than 9 for sulfonylureas and 7.4 for imazapyr. The LD50 ratios for both S. orien tale biotypes for chlorsulfuron, sulfometuron methyl, metsulfuron-methyl, flumetsulam and imazethapyr are greater than 110-, 15-, 7-, 24- and 29-fold, respectively. All resistant biotypes are susceptible to MCPA, diuron and diflufenican, herbicides which do not inhibit ALS.  相似文献   

16.
Schoenoplectus juncoides, a noxious weed for paddy rice, is known to become resistant to sulfonylurea (SU) herbicides by a target-site mutation in either of the two acetolactate synthase (ALS) genes (ALS1 and ALS2). SU-resistant S. juncoides plants having an Asp376Glu mutation in ALS2 were found from a paddy rice field in Japan, but their resistance profile has not been quantitatively investigated. In this study, dose–response of the SU-resistant accession was compared with that of a SU-susceptible accession at in vivo whole-plant level as well as at in vitro enzymatic level.  相似文献   

17.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

18.
The intensive use of the acetolactate synthase (ALS)‐inhibiting herbicides, imazethapyr, penoxsulam and bispyribac‐sodium, in imidazolinone‐resistant (Clearfield) rice increases the risk of the evolution of ALS‐resistant barnyardgrass. In 2009, imazethapyr failed to control barnyardgrass that was collected from a field in Arkansas, USA, following the failure of the herbicide in 2008. A greenhouse experiment was conducted to confirm and document the level of resistance of the biotype against three ALS‐inhibiting herbicides that currently are labeled in rice. The level of control of the resistant biotype at the labeled rate of bispyribac‐sodium of 35 g ai ha?1 was 10%, penoxsulam at 22 g ai ha?1 was 0% and imazethapyr at 70 g ai ha?1 was 25%. The level of mortality of the susceptible biotype was 100% with all the herbicides at the labeled rate. The dose needed to kill 50% of the resistant plants was 49 g ha?1 of bispyribac‐sodium, 254 g ha?1 of penoxsulam and 170 g ha?1 of imazethapyr. For the susceptible biotype, bispyribac‐sodium at 6 g ha?1, penoxsulam at 10 g ha?1 and imazethapyr at 12 g ha?1 killed 50% of the treated plants. Based on these findings, it was confirmed that a barnyardgrass population has evolved cross‐resistance to three ALS‐inhibiting herbicides in rice culture in Arkansas. Furthermore, an experiment was conducted to determine if the ALS‐resistant biotype could be controlled using other mechanisms of action. The results indicated that propanil, a photosystem II inhibitor, and quinclorac, a synthetic auxin, failed to control the resistant biotype at the labeled rates, whereas all the other evaluated herbicides provided effective control of both biotypes.  相似文献   

19.
An acetolactate synthase (ALS)‐resistant Amaranthus retroflexus biotype was collected in a soyabean crop after repeated exposure to imazethapyr and thifensulfuron‐methyl in north‐eastern Italy. Studies were conducted to characterise the resistance status and determine alternative post‐emergence herbicides for controlling this biotype. Whole‐plant bioassay revealed that the GR50 values were 1898‐ and 293‐fold higher than those observed for the biotype susceptible to imazethapyr and imazamox respectively. The biotype also displayed high cross‐resistance to sulfonylureas. Molecular analysis demonstrated that a single nucleotide substitution had occurred in domain B (TGG to TTG at position 574), conferring a change from the amino acid tryptophan to leucine in the resistant biotype. However, herbicides with other modes of action (PSII, 4‐HPPD and PPO inhibitors) provided excellent control. The GR50 ratios for metribuzin, terbuthylazine and mesotrione were close to 1 and treatments with fomesafen gave 100% control of both susceptible and resistant biotypes at the recommended field dose. This study documents the first case of an imidazolinone and ALS‐resistant biotype in European crops and identifies the post‐emergence herbicide options available for managing this troublesome weed in soyabean crops. Alternative management strategies are also discussed.  相似文献   

20.
Diclofop-resistant Lolium species (ryegrass) is a major weed problem in wheat production worldwide. This study was conducted to determine the resistance pattern of diclofop-resistant ryegrass accessions from the southern United States to mesosulfuron-methyl, a recently commercialized herbicide for ryegrass control in wheat; to determine the cross-resistance pattern of a Lolium multiflorum Lam. (Italian ryegrass) accession, 03-1, to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibitors; and to determine the resistance mechanism of Italian ryegrass to mesosulfuron-methyl. Seventeen ryegrass accessions from Arkansas and Louisiana, including standard resistant and susceptible accessions, were used in this experiment. Fourteen of the 17 accessions were more resistant (four- to > 308-fold) to diclofop than the standard susceptible biotype. One accession, 03-1, was resistant to mesosulfuron-methyl as well as to other ALS inhibitor herbicides such as chlorsulfuron, imazamox and sulfometuron. Accession 03-1, however, did not show multiple resistance to the ACCase inhibitor herbicides diclofop, fluazifop, clethodim, sethoxydim and pinoxaden, nor to glyphosate. The in vivo ALS activity of the 03-1 biotype was less affected by mesosulfuron-methyl than the susceptible biotype. This indicates that the resistance mechanism of Italian ryegrass to mesosulfuron-methyl is partly due to an alteration in the target enzyme, ALS. It is concluded that diclofop-resistant ryegrass in the southern United States can be generally controlled by mesosulfuron-methyl. However, mesosulfuron-methyl must be used with caution because not all ryegrass populations are susceptible to it. There is a need for more thorough profiling of ryegrass resistance to herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号