首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Healthy mature cows (n = 6) were injected intrauterinally (IU) with gentamicin (50 ml of a 5% injectable solution) daily for 3 consecutive days. Venous blood and milk samples were collected at postinjection (initial) hours (PIH) 1, 3, 6, 9, 12, 24, 28, 31, 34, 37, 48, 51, 54, 57, 60, and 71, and endometrial biopsies were performed at PIH 6, 25, 48, 73, 95, and 119. Skeletal muscle biopsy samples were taken at PIH 25 and 73, and urine was collected every 1 or 2 hours during 12 consecutive hours after the first IU injection. Serum, milk, urine, and tissue concentrations of gentamicin were measured by radioimmunoassay. The highest mean serum concentration of gentamicin occurred during the 3 hours after each injection (2.49 +/- 1.46, 6.60 +/- 5.47, and 4.98 +/- 2.70 micrograms/ml). The mean peak concentration of gentamicin in milk occurred 3 to 6 hours after each injection. Mean peak urine concentration of gentamicin (256.8 +/- 127.9 micrograms/ml) was measured at PIH 6. The mean percentage of the first dose of gentamicin excreted in the urine within 12 hours was 14.78 +/- 3.56. The highest concentration of gentamicin in endometrial tissue (639.16 +/- 307.22 micrograms/g) was measured at PIH 6, decreasing to 9.64 +/- 3.55 micrograms/g before the next IU dose. Gentamicin was still detectable in endometrial tissue (0.86 +/- 0.43 microgram/g) 71 hours after the 3rd (last) IU injection.  相似文献   

2.
In 8 Holstein cows, 50 colony-forming units (CFU) of Escherichia coli was administered into 1 mammary gland. Infections were established in all inoculated glands. In 4 of the 8 cows, 500 mg of gentamicin sulfate was administered by intramammary infusion 14 hours after inoculation; the other 4 cows were untreated controls. Infusions of gentamicin also were given after each of the 3 successive milkings after the initial infusion, so that a total dose of 2 g of gentamicin was given to each of the treated cows. During the 33-hour treatment period and for the first milking after the last infusion of gentamicin, the treated cows had a mean gentamicin concentration of greater than or equal to 31.0 micrograms/ml in milk samples that were collected from inoculated quarters immediately before each milking. Concentrations of 0.34 and 0.69 micrograms of gentamicin/ml were detected in milk from 2 cows at 8 days after inoculation with E coli. Mean serum concentrations of gentamicin were greater than or equal to 0.37 micrograms/ml throughout the treatment period and the first 12 hours after the last infusion, with a mean peak concentration of 0.96 micrograms/ml at 24.4 hours. The range of peak concentration of gentamicin detected in urine from all treated cows was 42 to 74.4 micrograms/ml. Peak concentration of E coli in milk in the treated cows (6.08 +/- 1.02 log10 CFU/ml) did not significantly (P greater than 0.05) differ from that of the control cows (5.26 +/- 1.00 log10 CFU/ml). Similarly, mean duration of infection in the treated cows (54 hours) did not differ significantly from that of the control cows (48 hours).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Gentamicin (GT) was administered IM to 6 healthy mature mare ponies at a dosage of 5 mg/kg of body weight every 8 hours for 7 consecutive days (total, 21 doses). Two venous blood samples were collected before (trough) and at 1 hour (peak) after the 5th, 10th, 14th, and 19th doses. An endometrial biopsy was done of each mare on days 4 and 7. On the 7th day, just before the 21st administration of GT, base-line blood samples were collected, and 22 blood samples were collected over a period of 48 hours after GT was given. The mares were catheterized on the 7th day, and urine was collected for 24 hours. Serum, urine, and endometrial GT concentrations were determined by a radioimmunoassay technique (sensitivity of 0.3 micrograms/ml of serum). Serum GT concentration data obtained from the terminal phase were best fitted by a 1-compartment open model with a biological half-life of 2.13 +/- 0.43 hours. Total body clearance and renal clearance were 1.69 +/- 0.41 and 1.40 +/- 0.26 ml/min/kg, respectively. Mean endometrial concentrations on day 4 and day 7 were 5.02 +/- 3.3 and 12.75 +/- 1.6 micrograms/g. To achieve mean serum GT concentrations (micrograms/ml) at steady state of 6.47 +/- 1.51, a maximum steady-state concentration of 12.74 +/- 1.60, and a minimum steady-state concentration of 1.43 +/- 0.57, a dosage of 5 mg/kg every 8 hours is recommended. Serum urea nitrogen, serum creatinine, and the fractional clearance of sodium sulfanilate were determined before and after GT treatment. Renal function remained within the base-line range during 7 days of GT administration.  相似文献   

4.
Single and multiple dose gentamicin regimens were compared in sheep to determine the relevant pharmacokinetic differences. Seven mature sheep were given 10 mg/kg of gentamicin by IV bolus. Serum concentrations were monitored for 19 days. Four weeks after the initial bolus, gentamicin was administered IM (3 mg/kg every 8 hours) for 7 days. Ewes were euthanatized and necropsied at 1, 8, and 15 days after termination of the IM regimen and the tissues were assayed for gentamicin. Serum concentrations were analyzed using a triexponential equation. The IV kinetic studies revealed an alpha half-life (t1/2) of 0.31 +/- 0.14 hours, beta t1/2 of 2.4 +/- 0.5 hours, and gamma t1/2 of 30.4 +/- 18.9 hours. Multiple IM dose kinetic studies revealed a beta t1/2 of 2.8 +/- 0.6 hours and gamma t1/2 of 82.1 +/- 17.8 hours. After multiple dosing, gamma t1/2 was significantly longer than after the single IV bolus (P less than 0.05). Twenty-four hour urine collection accounted for 75% to 80% of the total IV dose. Renal cortical gentamicin concentration reached 224 micrograms/g of tissue and then decreased, with a 90-hour t1/2. Renal medullary gentamicin concentration reached 18 micrograms/g with a 42-day t1/2. After multiple dosing, liver gentamicin concentration reached 11 micrograms/g and skeletal muscle concentrations were less than or equal to 0.6 micrograms/g. Route or duration of administration significantly affected the gamma-phase serum concentrations, which may influence gentamicin nephrotoxicosis. The present study also illustrated the complexities in predicting aminoglycoside withdrawal times for food-producing animals before slaughter.  相似文献   

5.
Serum concentrations of metronidazole were determined in 6 healthy adult mares after a single IV injection of metronidazole (15 mg/kg of body weight). The mean elimination rate (K) was 0.23 h-1, and the mean elimination half-life (t1/2) was 3.1 hours. The apparent volume of distribution at steady state was 0.69 L/kg, and the clearance was 168 ml/h/kg. Each mare was then given a loading dose (15 mg/kg) of metronidazole at time 0, followed by 4 maintenance doses (7.5 mg/kg, q 6 h) by nasogastric tube. Metronidazole concentrations were measured in serial samples of serum, synovia, peritoneal fluid, and urine. Metronidazole concentrations in CSF and endometrial tissues were measured after the fourth maintenance dose. The highest mean concentration in serum was 13.9 +/- 2.18 micrograms/ml at 40 minutes after the loading dose (time 0). The highest mean synovial and peritoneal fluid concentrations were 8.9 +/- 1.31 micrograms/ml and 12.8 +/- 3.21 micrograms/ml, respectively, 2 hours after the loading dose. The lowest mean trough concentration in urine was 32 micrograms/ml. Mean concentration of metronidazole in CSF was 4.3 +/- 2.51 micrograms/ml and the mean concentration in endometrial tissues was 0.9 +/- 0.48 micrograms/g at 3 hours after the fourth maintenance dose. Two mares hospitalized for treatment of bacterial pleuropneumonia were given metronidazole (15.0 mg/kg, PO, initially then 7.5 mg/kg, PO, q 6 h), while concurrently receiving gentamicin, potassium penicillin, and flunixin meglumine IV. Metronidazole pharmacokinetics and serum concentrations in the sick mares were similar to those obtained in the healthy mares.  相似文献   

6.
Gentamicin sulfate (2.2 mg/kg of body weight, IV) was given to anesthetized horses. Jejunal and large colon tissue samples (1 g), serum, and urine were collected over a 4-hour period. Maximum gentamicin concentrations in serum (10.06 +/- 2.85 micrograms/ml) occurred at 0.25 hours after injection. Maximum gentamicin concentrations in the large colon (4.13 +/- 1.80 micrograms/ml) and jejunum (2.26 +/- 1.35 micrograms/ml) occurred in horses at 0.5 and 0.33 hours, respectively. Tissue concentrations decreased in parallel with serum concentrations and were still detectable at the end of the 4-hour period. During the time that samples were collected, the total amount of gentamicin excreted in the urine ranged from 7.21 +/- 3.11 mg to 11.91 +/- 7.12 mg, with a mean urinary concentration of 57.01 +/- 5.37 micrograms/ml. Over the 4-hour collection period, the fraction of dose that was excreted unchanged in the urine was 4.8 +/- 1.9%. Pharmacokinetic analyses of the serum concentration-time data gave a serum half-life of 2.52 +/- 1.29 hours, volume of distribution of 227 +/- 83 ml/kg, and body clearance of 1.12 +/- 0.26 ml/min/kg. The half-lives of the antibiotic in the jejunum and large colon were 1.32 and 1.33 hours, respectively.  相似文献   

7.
Vancomycin was administered IV to healthy adult female dogs at a dosage of 15 mg/kg of body weight every 12 hours for 10 days. Pharmacokinetic values were determined after the first and last doses. The disposition of vancomycin was not altered by multiple dosing, and little accumulation attributable to multiple dosing was observed. Serum vancomycin concentration after the first and last dose were described, using a 2-compartment open model with first-order elimination. The distribution and elimination half-lives after the single dose were 15.4 +/- 2.7 minutes and 137 +/- 21.8 minutes (geometric mean +/- pseudo-SD), respectively; whereas the distribution and elimination half-lives after the last dose were 11.3 +/- 2.61 minutes and 104 +/- 11.2 minutes, respectively. The mean (+/- SD) area-derived volume of distribution was 396 +/- 156 ml/kg and 382 +/- 160 ml/kg after the first and last dose, respectively. Serum vancomycin clearance was 2.13 +/- 0.35 ml/min/kg and 2.49 +/- 0.79 ml/min/kg after the first and last dose, respectively, and 25 to 49% of the total dose of vancomycin was recovered in the urine in the first 24 hours after the single dose administered IV. Mean serum vancomycin concentration reached 101.8 +/- 30.6 micrograms/ml and 99.7 +/- 28.0 micrograms/ml at 5 minutes after a single dose and the last of the multiple doses, respectively, and decreased to 0.94 +/- 0.58 microgram/ml and 1.51 +/- 1.44 micrograms/ml, respectively, at 12 hours after administration. The side effects that accompany vancomycin treatment in human beings were not observed in the dogs; all remained healthy through the end of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

9.
The effects of different doses and dosage regimens on gentamicin pharmacokinetics and tissue residues were determined. Five groups of 12 sheep each were given gentamicin IM: group I, 2 mg of gentamicin sulfate/kg once; group II, 6 mg/kg once; group III, 18 mg/kg once; group IV, 6 mg/kg every 24 hours for 3 doses; and group V, 2 mg/kg every 8 hours for 9 doses. Serum concentrations were determined serially until sheep were killed and necropsied. Three sheep from each group were killed at 1, 4, 8, and 12 days after the last dose was administered. Renal cortex, renal medulla, liver, spleen, lung, skeletal muscle, and skeletal muscle at the injection site were assayed for gentamicin. An exponential equation was fitted to the serum concentrations, and various pharmacokinetic variables were determined. Serum clearance tended to increase as the single dose increased (P = 0.0588). Steady-state volume of distribution increased as the single dose was increased (P less than 0.05). Renal cortex contained the highest concentration of gentamicin which decreased in a biexponential manner. Concentrations in all tissues, except the injection site, were dependent upon the amount of the total dose, not the size of the injected dose (P less than 0.05). Concentrations at the injection site were up to 29 micrograms/g of tissue at 1 day after the last dose was given and were dependent upon the amount of total dose from multiple injections, not on the amount of each injected dose (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
OBJECTIVE: To determine the pharmacokinetics of metformin in healthy cats after single-dose IV and oral administration of the drug. ANIMALS: 6 healthy adult ovariohysterectomized cats. PROCEDURE: In a randomized cross-over design study, each cat was given 25 mg of metformin/kg of body weight, IV and orally. Blood and urine samples were collected after drug administration, and concentrations of metformin in plasma and urine were determined by use of high-performance liquid chromatography. RESULTS: Disposition of the drug was characterized by a three-compartment model with a terminal phase half-life of (mean +/- SD) 11.5+/-4.2 hours. Metformin was distributed to a small central compartment of 0.057+/-0.017 L/kg and to 2 peripheral compartments with volumes of distribution of 0.12+/-0.02 and 0.37+/-0.38 L/kg. Steady-state volume of distribution was 0.55+/-0.38 L/kg. After IV administration, 84+/-14% of the dose was excreted unchanged in urine, with renal clearance of 0.13+/-0.03 L/h/kg; nonrenal clearance was negligible (0.02+/-0.02 L/kg). Mean bioavailability of orally administered metformin was 48%. CONCLUSIONS: The general disposition pattern of metformin in cats is similar to that reported for humans. Metformin was eliminated principally by renal clearance; therefore, this drug should not be used in cats with substantial renal dysfunction. CLINICAL RELEVANCE: On the basis of our results, computer simulations indicate that 2 mg of metformin/kg administered orally every 12 hours to cats will yield plasma concentrations documented to be effective in humans.  相似文献   

11.
Pharmacokinetics of sodium cephapirin in lactating dairy cows   总被引:1,自引:0,他引:1  
Sodium cephapirin was administered (10 mg/kg of body weight, IM) at 8-hour intervals in 4 consecutive doses to each of 6 lactating dairy cows. Blood, normal milk, mastitic milk, urine, and endometrial tissue samples were collected serially. Mean peak cephapirin concentrations in serum were 13.3 micrograms/ml 10 minutes after the 1st injection and were 15.8 micrograms/ml 20 minutes after the 4th injection (post[initial]injection hour [PIH] 24.33). The overall elimination rate constant value was 0.66/h and plasma clearance was 760 ml/h/kg. Mean peak cephapirin concentration in normal milk was 0.11 microgram/ml at PIH 2 and mean peak cephapirin concentration in mastitic milk was 0.18 microgram/ml at PIH 4. Cephapirin was not detected in the endometrium. The highest concentration of cephapirin in urine was 452 micrograms/ml, 2 hours after the 4th dose (PIH 26).  相似文献   

12.
OBJECTIVE: To determine the pharmacokinetics of marbofloxacin after single IV and orally administered doses in blue and gold macaws. ANIMALS: 10 healthy blue and gold macaws. PROCEDURES: In a crossover study, marbofloxacin (2.5 mg/kg) was administered orally (via crop gavage) to 5 birds and IV to 5 birds. Blood samples were obtained at 0, 0.5, 1, 3, 6, 12, 24, 48, 72, and 96 hours after marbofloxacin administration. After a 4-week washout period, the study was repeated, with the first 5 birds receiving the dose IV and the second 5 birds receiving the dose orally. Serum marbofloxacin concentrations were quantitated by use of a validated liquid chromatography-mass spectrometry assay. RESULTS: After oral administration, mean +/- SD area under the curve was 7.94 +/- 2.08 microg.h/mL, maximum plasma concentration was 1.08 +/- 0.316 microg/mL, and bioavailability was 90.0 +/- 31%. After IV administration of marbofloxacin, the apparent volume of distribution was 1.3 +/- 0.32 L/kg, plasma clearance was 0.29 +/- 0.078 L/h/kg, area under the curve was 9.41 +/- 2.84 microg.h/mL, and the harmonic mean terminal half-life was 4.3 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Single IV and orally administered doses of marbofloxacin were well tolerated by blue and gold macaws. The orally administered dose was well absorbed. Administration of marbofloxacin at a dosage of 2.5 mg/kg, PO, every 24 hours may be appropriate to control bacterial infections susceptible to marbofloxacin in this species.  相似文献   

13.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

14.
Pharmacokinetics of gentamicin in laboratory rabbits   总被引:2,自引:0,他引:2  
The pharmacokinetics of gentamicin was studied in 5 healthy adult laboratory rabbits of both sexes. Gentamicin sulfate (5% aqueous solution) was administered rapidly (IV) at a dosage of 3 mg/kg of body weight. Venous blood samples were taken at 0 (baseline), 5, 10, 15, and 30 minutes, and 1, 1.5, 2, 2.5, 3, 4, 5, and 6 hours after gentamicin administration. Serum gentamicin concentration was measured by radioimmunoassay. With the aid of a nonlinear least-squares program, the gentamicin concentration data were found to be best described by a 2-compartment model, with r2 = 0.989. Half-life, as determined from the terminal phase, was 56.6 +/- 2.4 (mean +/- SD) minutes. Calculation of total body clearance provided a mean of 1.69 +/- 0.07 ml/min/kg of body weight. Volume of distribution, calculated from the area under the curve for each animal, was 0.138 +/- 0.005 L/kg.  相似文献   

15.
Serum creatinine concentrations, 24-hour endogenous creatinine clearance, and 24-hour urinary gamma-glutamyl transpeptidase (UGGT) activity were measured daily in 6 dogs given nephrotoxic dosages of gentamicin (10 mg/kg of body weight) every 8 hours for 10 days. Mean UGGT activity was significantly increased by day 5 (P less than 0.05) and preceded significant increases in serum creatinine values (greater than 2.0 mg/dl) observed on day 9. Endogenous creatinine clearance remained within normal limits (2.98 +/- 0.96 ml/min/kg) until day 8. Urinalyses performed 8 days after initiation of gentamicin treatment indicated renal tubular damage (granular casts) in 1 of the 6 dogs, and glucosuria in 3 of the 6 dogs. Measurement of UGGT activity was a more sensitive and reliable method of assessing acute renal tubular damage induced by gentamicin than were serum creatinine concentrations or 24-hour endogenous creatinine clearance.  相似文献   

16.
Gentamicin concentrations in serum, urine and milk were assayed microbiologically after intramuscular and intrauterine administrations in normal and endometritic cows. Following intramuscular injections of 5 mg gentamicin/kg b. wt. 3 times daily for three consecutive days, the highest serum concentrations occurred 1 h post administration of each dose with absorption half-lives [t0.5(ab)] ranging from 0.23 to 0.30 h for normal cows and from 0.21 to 0.29 h for endometritic cows. The elimination half-lives [t0.5(beta)] ranged from 2.51 to 2.95 h (normal cows) and from 2.71 to 3.29 h (endometritic cows). Following intrauterine administration of 4 mg gentamicin/kg. b. wt. once daily for three consecutive days, the drug peaked in serum 2 h after each dose with [t0.5(ab)] ranging from 0.47 to 0.52 h (normal cows) and from 0.57 to 0.68 h (diseased cows), while the drug was eliminated faster in endometritic cows than in normal cows. The mean systemic bioavailability were (70%) and (30%) after intramuscular and intrauterine administration, respectively. To compare serum concentrations, gentamicin was assayed in urine and milk in high and low concentrations, respectively.  相似文献   

17.
Pharmacokinetics of oxytetracycline hydrochloride in rabbits   总被引:1,自引:0,他引:1  
Pharmacokinetics of oxytetracycline HCl (OTC) was studied in rabbits. After 10 mg of OTC/kg of body weight was administered IV, the distribution half-life was 0.06 hour, terminal half-life was 1.32 hours, volume of distribution area was 0.861 L/kg, and total body clearance was 0.434 L/kg/h. After 10 mg of OTC/kg was given IM, the absorption half-life was 2.09 hours, extent of absorption was 71.4%, and total body clearance of the absorbed fraction was 0.576 L/kg/h. Based on these kinetic data, a dosage of 15 mg of OTC/kg, every 8 hours was developed. This dose given IM for 7 consecutive days resulted in observed steady-state maximum and minimum concentrations (mean +/- SD) of 4.7 +/- 0.3 micrograms/ml and 3.2 +/- 0.6 micrograms/ml, respectively. Twice this dose (30 mg of OTC/kg, every 8 hours) given IM caused anorexia and diarrhea.  相似文献   

18.
Two experiments were conducted with the opioid antagonist naloxone to determine the effect of opioid receptor blockade on hormone secretion in postpartum beef cows. In Exp. 1, nine anestrous postpartum beef cows were used to measure the effect of naloxone on serum luteinizing hormone (LH), cortisol and prolactin concentrations. Cows received either saline (n = 4) or 200 mg naloxone in saline (n = 5) iv. Blood samples were collected at 15-min intervals for 2 h before and after naloxone administration. Serum LH concentrations increased (P less than .01) in naloxone-treated cows from 1.8 +/- .04 ng/ml before treatment to 3.9 +/- .7 ng/ml and 4.2 +/- .5 ng/ml at 15 and 30 min, respectively, after naloxone administration. In contrast, LH remained unchanged in saline-treated cows (1.6 +/- .3 ng/ml). Serum cortisol and prolactin concentrations were not different between groups. In Exp. 2, 12 anestrous postpartum beef cows were used to examine the influence of days postpartum on the serum LH response to naloxone. Four cows each at 14 +/- 1.2, 28 +/- .3 and 42 +/- 1.5 d postpartum received 200 mg of naloxone in saline iv. Blood samples were taken as in the previous experiment. A second dose of naloxone was administered 2 h after the first, and blood samples were collected for a further 2 h. Serum LH concentrations increased (P less than .01) only in cows at 42 d postpartum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this study was to determine the pharmacokinetic values for gentamicin in neonatal calves and to compare these values with those in adult cattle (cows). Gentamicin (4 mg/kg of body weight) was administered IV to 7 Holstein bull calves on days 1 (between 12 and 24 hours of age), 5, 10, and 15 after birth, and was administered once IV to 7 Holstein cows. Serum was collected from each animal before administration and at 22 different time intervals from 2 to 400 minutes after injection. Sera were analyzed for gentamicin concentrations. Decay of serum gentamicin concentrations was best described by a 2-compartment pharmacokinetic model. Elimination half-life (t1/2 (beta)) of gentamicin decreased from day 1 (149 minutes) to day 5 (119 minutes), but did not change between days 5 and 15 (111 minutes). Compared with the t1/2(beta) in 1- and 15-day-old calves, the t 1/2 (beta) in cows was shorter (76 minutes). In the calves, apparent volume of distribution (based on total area under the disposition curve) did not change between 1 (393 ml/kg) and 5 (413 ml/kg) days of age, decreased on day 10 (341 ml/kg) and cows day 15 (334 ml/kg), and was markedly smaller than that in cows (140 ml/kg). Total body clearance of gentamicin in cows (1.29 ml/min X kg) was lower than that seen in calves on day 1 (1.92 ml/min X kg) and on day 15 (2.10 ml/min X kg). The decrease in apparent volume of distribution of gentamicin was mirrored by a large decrease in the extracellular fluid volume, as measured by inulin space.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
OBJECTIVE: To compare gentamicin concentrations achieved in synovial fluid and joint tissues during IV administration and continuous intra-articular (IA) infusion of the tarsocrural joint in horses. ANIMALS: 18 horses with clinically normal tarsocrural joints. PROCEDURE: Horses were assigned to 3 groups (6 horses/group) and administered gentamicin (6.6 mg/kg, IV, q 24 h for 4 days; group 1), a continuous IA infusion of gentamicin into the tarsocrural joint (50 mg/h for 73 hours; group 2), or both treatments (group 3). Serum, synovial fluid, and joint tissue samples were collected for measurement of gentamicin at various time points during and 73 hours after initiation of treatment. Gentamicin concentrations were compared by use of a Kruskal-Wallis ANOVA. RESULTS: At 73 hours, mean +/- SE gentamicin concentrations in synovial fluid, synovial membrane, joint capsule, subchondral bone, and collateral ligament of group 1 horses were 11.5 +/- 1.5 microg/mL, 21.1 +/- 3.0 microg/g, 17.1 +/- 1.4 microg/g, 9.8 +/- 2.0 microg/g, and 5.9 +/- 0.7 microg/g, respectively. Corresponding concentrations in group 2 horses were 458.7 +/- 130.3 microg/mL, 496.8 +/- 126.5 microg/g, 128.5 +/- 74.2 microg/g, 99.4 +/- 47.3 microg/g, and 13.5 +/- 7.6 microg/g, respectively. Gentamicin concentrations in synovial fluid, synovial membrane, and joint capsule of group 1 horses were significantly lower than concentrations in those samples for horses in groups 2 and 3. CONCLUSIONS AND CLINICAL RELEVANCE: Continuous IA infusion of gentamicin achieves higher drug concentrations in joint tissues of normal tarsocrural joints of horses, compared with concentrations after IV administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号