首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了寻求水稻秸秆(RS)及其厌氧消化物(DRS)新型的资源化利用途径,采用慢速热解在500℃下制备生物炭(RS500和DRS500)。在对生物炭形貌结构、元素组成、电导率、pH和表面官能团等理化性质及其热稳定性研究的基础上,考察RS500和DRS500去除Cd(Ⅱ)的性能,探讨了潜在的去除机理。结果表明,相比于RS500,经厌氧消化后,DRS500的C、H、O含量下降,而N的含量上升,非极性增大,电导率及比表面积下降,且热重分析显示DRS500热稳定性更好。RS500对Cd(Ⅱ)吸附在12 h达到平衡,而DRS500在48 h仍不能达到平衡。增加pH有利于RS500的吸附,但不利于DRS500的吸附,且吸附过程均为吸热反应。Langmuir模型对Cd(Ⅱ)吸附结果拟合较好,RS500和DRS500对Cd(Ⅱ)吸附符合二级动力学,表明RS500和DRS500主要通过化学作用对Cd(Ⅱ)进行吸附。表面官能团(-OH、C=O、Si-O-Si和C-H等)对Cd(Ⅱ)的吸附起重要作用。  相似文献   

2.
贝壳粉对Cd(Ⅱ)的吸附性能研究   总被引:1,自引:2,他引:1  
为了研究贝壳粉对Cd~(2+)的吸附性能及最佳吸附条件,采用静态吸附实验研究了Cd~(2+)初始浓度、吸附剂用量、温度、pH、吸附时间以及离子强度对贝壳粉吸附Cd~(2+)性能的影响。结果表明:在不同Cd~(2+)初始浓度下,随着吸附剂用量的增加,贝壳粉对Cd~(2+)的吸附量呈现出先强烈吸附后逐渐缓和的趋势,符合准一级动力学模型和准二级动力学方程。Temkin和Langmuir模型均能较好地描述贝壳粉对Cd~(2+)的等温吸附过程,约30 min达到平衡,为自发的吸热反应,最大饱和吸附量为161.75 mg·g~(-1)。随着溶液pH值增加,贝壳粉对Cd~(2+)的吸附性能也随之增大,当pH≥5时趋于稳定。随着Ca~(2+)和Mg~(2+)浓度增大,贝壳粉对Cd~(2+)的吸附性能逐渐减弱,最大降幅分别达到15.19%和14.44%。  相似文献   

3.
为增强秸秆炭对水体中铬(Ⅵ)的吸附能力,利用FeCl3溶液,把氧化铁引入其孔隙中,通过响应面实验方法优化制备过程。得到最优氧化铁改性秸秆炭(以最优改性炭表示)的制备条件为炭化温度400℃,铁与炭质量比0.85。最优改性炭和未改性炭特性通过元素分析、BET比表面积、扫描电镜、红外光谱和X射线衍射等表征测定,结果表明:最优改性炭表面粗糙,比表面积和孔隙体积增大,孔隙中含有多种氧化铁成分。最优改性炭吸附铬性能表明:Langmuir理论最大铬吸附量为30.96 mg·g-1;吸附过程符合准二级动力学模型;随溶液pH值的增大,铬吸附量减小;随炭用量的增加,铬去除率增大。研究表明:改性秸秆炭的铬(Ⅵ)吸附能力得到显著提升,可用于水体中铬(Ⅵ)的吸附去除,这也为高效利用农作物秸秆提供新途径。  相似文献   

4.
以小麦秸秆为原料,通过高温热解和硝酸改性得到小麦秸秆生物炭吸附材料,将其应用于水中重金属六价铬[Cr(Ⅵ)]的处理,研究改性时间、溶液初始pH值、投加量对吸附效果的影响,并采用Freundlich和Langmuir等温吸附方程对等温吸附过程进行拟合。扫描电子显微镜(scanning electron microscope,简称SEM)表征结果表明,采用硝酸改性后的小麦秸秆生物炭内部结构舒展,孔隙丰富,具有更大的吸附空间,更有利于材料对Cr(Ⅵ)的吸附作用。批量处理吸附试验结果表明,对于50 mL浓度为100 mg/L的含Cr(Ⅵ)废水,改性小麦秸秆生物炭的最佳吸附条件为pH值3、吸附剂用量0.6 g、吸附时间12 h。等温吸附试验结果表明,吸附过程更符合Freundlich模式,最大吸附量可达到41.938 mg/g。  相似文献   

5.
采用场发射扫描电镜-能谱分析法(SEM/EDS)测定天然水稻秸秆及秸秆生物改性吸附剂材料对重金属离子的吸附性能。结果显示,该方法可以快速观察材料形貌结构并获得元素组成及含量和分布的信息,是研究材料结构与性能关系的高效方法。与传统方法相比,该联用技术具有快捷高效、操作方便和良好的准确度,为吸附材料的制备表征及性能研究提供了参考。  相似文献   

6.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

7.
本试验以大豆秸秆为原料,经衣康酸热改性为新型吸附剂IA-CMPSS,研究其对水溶液中常见染色剂的去除效果。考察染色剂种类、IA-CMPSS用量、不同温度、不同初始pH对染色剂去除效果的影响,并进一步研究吸附动力学和吸附等温方程。结果表明:IA-CMPSS对臧红T(ST)和结晶紫(CV)两种阳离子染色剂的去除效果较好。随着IA-CMPSS用量的增加,去除率增加,达到98%以上。当吸附剂用量2.5 g、温度30℃、pH为4.0时IA-CMPSS对ST和CV染色剂的去除率达到最大,分别为99.1%和98.6%。通过研究吸附动力学表明,IA-CMPSS对ST和CV染色剂的吸附过程拟合均很好的符合准二级反应动力学方程。等温吸附研究中,二者Freundlich模型的1/n均小于0.500,表明吸附过程易进行。  相似文献   

8.
以龙眼(Dimocarpus longan Lour.)壳为原料,硝酸为改性剂,制备硝酸改性龙眼壳活性炭(LCN),并吸附水溶液中的Pb(Ⅱ),研究了pH、吸附温度、Pb(Ⅱ)质量浓度、吸附时间对Pb(Ⅱ)吸附量的影响。结果表明,硝酸改性能显著提高龙眼壳活性炭对Pb(Ⅱ)的吸附能力,当溶液pH 5、吸附温度298K、Pb(Ⅱ)质量浓度100mg/L、吸附时间40min时,LCN对Pb(Ⅱ)的吸附量为192.72mg/g。准二级动力学模型更符合LCN对Pb(Ⅱ)的吸附过程。与Freundlich等温吸附方程相比,Langmuir等温吸附方程更符合LCN对Pb(Ⅱ)的吸附行为,说明LCN对Pb(Ⅱ)的吸附是以单分子层吸附为主。  相似文献   

9.
[目的]探索稻草秸秆作为重金属废水吸附材料的可行性。[方法]以盐酸为改性剂对稻草秸秆进行改性,以去除率、吸附量和吸附后剩余Cr(Ⅵ)的浓度作为吸附效果评价标准,运用静态吸附法优化试验条件,并在最优试验条件下考察盐酸改性和未改稻草秸秆对含Cr(Ⅵ)废水的吸附效果。[结果]最优试验条件为:25℃、转速150 r/min、处理20.0 ml含Cr(Ⅵ)废水,盐酸改性稻草秸秆投加量为0.080 0 g、吸附体系pH 4.0、吸附接触时间为120.0 min、最佳浓度为20 mg/L。盐酸改性的稻草秸秆和未改性的稻草秸秆对废水中Cr(Ⅵ)的去除率分别为97.65%、64.67%,吸附量分别为4.88 mg/g、3.24 mg/g,处理后废水中剩余Cr(Ⅵ)的浓度分别为0.47 mg/L、7.06 mg/L,其中盐酸改性的稻草秸秆吸附后废水中Cr(Ⅵ)的浓度低于《污水综合排放标准》(GB 8978-1996)中规定的0.50 mg/L。[结论]盐酸改性稻草秸秆是吸附含Cr(Ⅵ)废水的优良生物吸附剂,具有广泛的应用前景。  相似文献   

10.
玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究   总被引:23,自引:20,他引:23  
以玉米秸秆为原料,在350℃和700℃热解温度下分别制备了两种生物炭(BC350和BC700),并对其理化性质进行了表征.在700℃下制备的生物炭芳构化程度更高,疏水性更强,比表面积更大,孔结构发育更加完全.研究Cd(Ⅱ)在两种生物炭上的吸附发现,Two-site Langmuir吸附等温模型比One-site Langmuir吸附等温模型能更好描述Cd(Ⅱ)在生物炭表面的吸附.BC700对Cd(Ⅱ)的吸附容量大于BC350,解吸率远小于BC350,吸附效果更好;离子交换和阳离子-π作用两种吸附机理同时存在并共同作用,前者分别占BC350和BC700总吸附容量的13.7%和1.1%,后者分别占86.3%和98.9%,阳离子-π作用是最主要的吸附机理.红外光谱FTIR分析表明,生物炭表面的含氧官能团和π共轭芳香结构分别提供不同机理的吸附位点.由于具有更多的离子交换位点,BC350对Cd(Ⅱ)吸附受pH影响较BC700更大.  相似文献   

11.
用等比例和不等比例2种方式比较了长江三角洲和珠江三角洲地区4种水稻土和1种红壤对Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)3种重金属离子的单一吸附和竞争吸附情况。结果表明,在不等比例下(Cu∶Pb∶Cd=10∶10∶1),无论是在单一体系还是在竞争条件下,4种水稻土对Pb(Ⅱ)的吸附量均大于其对Cu(Ⅱ)的。在等比例下(Cu∶Pb∶Cd=1∶1∶1)水稻土对3种重金属的亲和力的相对大小为:Pb>Cu>Cd。在红壤体系中,低pH(pH4.2)时土壤对3种重金属离子的吸附亲和力的大小顺序与水稻土相同,但在较高pH时(pH5.2)其顺序为Cu>Pb>Cd。这一变化与红壤对Cu的吸附量随pH的增加幅度大于对Pb的有关。竞争条件下土壤对重金属离子的吸附量均比单一体系中的低,在等比例竞争条件下土壤对Cu和Pb的吸附量的减小幅度比不等比例条件下更大。红壤在pH4.2时对3种重金属离子的吸附量比水稻土中的低得多,但在pH5.2时红壤对重金属离子吸附量的增幅又比水稻土中的大得多。表明土壤无机矿物在重金属吸附中起主导作用,土壤的粘土矿物组成和CEC的大小对重金属吸附有重要影响。  相似文献   

12.
凹凸棒土对Cd(Ⅱ)的吸附性能研究   总被引:1,自引:0,他引:1  
杨瑞洪 《安徽农业科学》2011,39(23):14221-14223
采用凹凸棒土对废水中的Cd(II)进行吸附试验,探讨了吸附时间、凹凸棒土投加量、废水中Cd(II)的初始浓度对吸附率的影响,探索最佳工艺条件;同时考察了酸化改性后凹凸棒土对Cd(II)的吸附性能,并分析了凹凸棒土对Cd(II)的吸附等温线。结果表明Cd(II)的初始浓度越高,吸附率越低;Cd(II)在浓度为20 mg/L、吸附时间60 m in、凹凸棒土投加量60 g/L时,去除率达到94.6%;盐酸改性后,Cd(II)在浓度为20 mg/L、吸附时间60 m in、凹凸棒土投加量40 g/L时,吸附率达93.5%,当凹凸棒土投加量为60 g/L时吸附率达98.2%;从拟合吸附等温线相关性系数来看,Langmuir方程能更好地描述吸附过程中凹凸棒土对Cd(II)的吸附。  相似文献   

13.
草酸与pH对矿物吸附Cd(Ⅱ)的影响及机制   总被引:5,自引:1,他引:5  
用吸附平衡法研究草酸、pH对针铁矿、三羟铝石、三水铝石、高岭石吸附Cd2+的影响及机制。结果表明,供试矿物对Cd2+的吸附量为:针铁矿>高岭石≥三羟铝石>三水铝石。草酸对Cd2+吸附的影响呈峰形曲线变化,低浓度的草酸(小于1或1.25mmol·L-1)促进矿物对Cd2+的吸附;高浓度的草酸(大于1或1.25mmol·L-1)抑制Cd2+的吸附。不同pH下,草酸浓度对Cd2+吸附率的影响明显不一样,体系pH(pH<6)低时,草酸可促进Cd2+吸附,这种促进作用随pH升高而减弱,当pH>7时,草酸则抑制Cd2+的吸附。这主要与吸附体系中矿物表面性质的改变、Cd2+的存在形态、草酸在固液相间的分配有关。  相似文献   

14.
【目的】制备铁矿渣磁性纳米颗粒,研究其对Pb(Ⅱ)和Cd(Ⅱ)的吸附性能,促进富含铁的工业固体废弃物的资源化利用。【方法】以铁矿尾矿渣为原料,通过化学方法制备改性磁铁纳米颗粒3NH_2-SiO_2@Fe_3O_4,对其进行表征,以批处理法探讨了不同pH、Cd(Ⅱ)和Pb(Ⅱ)平衡质量浓度和吸附时间下3NH_2-SiO_2@Fe_3O_4对水体中Cd(Ⅱ)和Pb(Ⅱ)的吸附潜力,并用X射线光电子能谱分析技术对吸附Pb(Ⅱ)和Cd(Ⅱ)前后3NH_2-SiO_2@Fe_3O_4的结构进行分析。【结果】成功制备出了化学稳定性良好、粒径为73~160nm的磁性颗粒3NH_2-SiO_2@Fe_3O_4,磁化强度23.1emu/g,颗粒表面富含-NH_2官能团。随体系pH以及Pb(Ⅱ)和Cd(Ⅱ)平衡质量浓度的升高,3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的吸附量总体呈先迅速增加之后趋于平衡。在0~60min时,随着吸附时间的延长,3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)吸附量迅速增加,120min后达到吸附平衡,准二级动力学模型能较好地拟合这一过程。Langmuir吸附等温模型能较好地拟合3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的吸附过程,3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的最大吸附量分别为158.86和88.93 mg/g。3NH_2-SiO_2@Fe_3O_4对Pb(Ⅱ)和Cd(Ⅱ)的吸附机制为不饱和配合吸附。【结论】以铁矿渣等含铁的工业固体废弃物为原料,成功制备出了对Pb(Ⅱ)和Cd(Ⅱ)具有较好吸附能力的磁性纳米颗粒3NH_2-SiO_2@Fe_3O_4。  相似文献   

15.
[目的]研究辣木粉对Cu(Ⅱ)的吸附性能。[方法]采用回归正交试验探讨了辣木籽生物吸附Cu(Ⅱ)的特性,并用X射线衍射和傅里叶变换红外光谱对辣木籽进行表征。[结果]辣木籽对Cu(Ⅱ)的吸附主要发生在2 928、1 615 cm~(-1)的羰基功能团以及1 354 cm~(-1)的羧基功能团上。影响辣木籽吸附Cu(Ⅱ)各因素的主次顺序依次为:反应pH、反应温度、初始Cu(Ⅱ)浓度,且反应pH和反应温度对辣木籽吸附Cu(Ⅱ)有显著影响。在考察条件范围内,辣木籽吸附Cu(Ⅱ)的效率随着pH的增加、反应温度的升高和Cu(Ⅱ)初始浓度的增加而增大。[结论]在pH 7、反应温度60℃、初始Cu(Ⅱ)浓度40 mg/L条件下辣木籽吸附Cu(Ⅱ)的效率最高可达90%。  相似文献   

16.
采用大蒜茎叶为原料,经异丙醇、氢氧化钠和草酸处理,制备出改性吸附剂并用于吸附Pb(Ⅱ)。考察了溶液初始pH、吸附平衡时间、溶液初始浓度、固液比等因素对金属离子吸附平衡的影响。结果表明,改性剂草酸最佳浓度为0.9 mol/L,最佳的制备温度是80℃。改性后大蒜茎叶吸附剂对Pb~(2+)的吸附最佳条件是pH 6,在120 min内建立了反应平衡,对Pb~(2+)的最大吸附量是122.25 mg/g,与未改性的大蒜茎叶相比,吸附量增加了56%。  相似文献   

17.
研究了Cu(Ⅱ)、Zn(Ⅱ)、Cd(Ⅱ)和Pb(Ⅱ)4种重金属离子对鱼体内超氧化物歧化酶(SOD)活性的影响,并比较了鱼体不同组织中SOD活性的差别.在实验室条件下,将鲫Carassius auratus幼鱼置于不同质量浓度的Cu(Ⅱ)(0.06、0.12、0.25、0.50mg/L)、Zn(Ⅱ)(0.60、1.25、2.50、5.00mg/L)、Cd(Ⅱ)(0.60、1.25、2.50、5.00 mg/L)、Pb(Ⅱ)(0.06、0.12、0.25、0.50 mK/L)溶液中,分别测定染毒24、48、72 h后鲫肝脏、鳃和肌肉组织中SOD的活性.结果表明:Cu(Ⅱ)、Zn(Ⅱ)、Cd(Ⅱ)和Pb(Ⅱ)对鲫肝脏、鳃和肌肉组织中SOD活性的影响相似,即随着重金属离子浓度的增加,SOD活性整体上有先升高后下降的趋势.低浓度的Zn(Ⅱ)、Cd(Ⅱ)、Pb(Ⅱ)对鲫肝脏、鳃和肌肉组织中SOD活性有明显的诱导作用;高浓度的Zn(Ⅱ)、Cd(Ⅱ)、Pb(Ⅱ)则使组织中SOD活性降低,随着时间的延长,降低愈加明显;肝脏组织中SOD活性和敏感性均高于鳃和肌肉.  相似文献   

18.
Cu(Ⅱ)对红壤性水稻土吸附Cr(Ⅵ)的影响   总被引:2,自引:0,他引:2  
选择一种红壤性水稻土研究了Cu(Ⅱ)对土壤吸附CrO4^2-的影响。结果表明,Cu(Ⅱ)显著增加了土壤对CrO4^2-的吸附量,Cu(Ⅱ)对CrO4^2-吸附的影响程度随着Cu(Ⅱ)加入量的增加和体系pH的升高而增加。Cu(Ⅱ)不仅增加土壤对CrO4^2-的吸附量,也增加CrO4^2-的解吸量,但解吸增量比吸附增量低得多,说明cu(Ⅱ)对CrO4^2-在土壤中吸附的促进作用机制涉及静电作用、专性吸附和表面共沉淀。铜的促进作用增加了土壤对CrO4^2-的固定量,降低了CrO4^2-的活动性和生物有效性。  相似文献   

19.
甘蔗渣基生物质炭对溶液中Cd(Ⅱ)的吸附解吸作用   总被引:1,自引:0,他引:1  
以典型南方农业废弃物甘蔗渣为前驱物,于350、450、550℃限氧条件下制备3种生物质炭,分别标记为BC350、BC450、BC550,研究其对溶液中Cd(Ⅱ)的吸附解吸特性,并探讨了p H值对吸附过程的影响。结果表明:伪二级动力学模型能较好地描述生物质炭对Cd(Ⅱ)的吸附动力学过程,其理论平衡吸附量(qe)大小顺序为BC550BC450BC350;生物质炭对Cd(Ⅱ)的吸附过程可采用Freundlich模型(平均R2为0.997 9)和Langmuir模型(平均R2为0.997 8)进行拟合,Langmuir模型可更好地描述Cd(Ⅱ)在3种生物质炭上的解吸过程(平均R2为0.924 0);生物质炭对Cd(Ⅱ)的吸附与解吸过程是不可逆的,存在着明显的迟滞效应(HI为1.347~1.944),并表现为负滞后效应;生物质炭对Cd(Ⅱ)的吸附量随溶液初始p H值的增大呈现先增加后减少的趋势,p H值为6时吸附量最大。因此,甘蔗渣基生物质炭能够强烈吸持溶液中的Cd(Ⅱ)且具明显的解吸迟滞效应,可作为外源Cd(Ⅱ)去除的良好环境功能材料。  相似文献   

20.
对柚子皮吸附去除水中Pb(Ⅱ)的模拟试验研究结果表明,pH、吸附时间、柚皮粉用量和Pb(Ⅱ)初始浓度、温度等因素对柚皮粉吸附水中Pb(Ⅱ)有显著影响.适宜的吸附条件为:pH 5.3~6.0,吸附时间1.5 h,柚皮粉用量8 g/L,Pb(Ⅱ)初始浓度50 mg/L,温度30℃.在该条件下,Pb(Ⅱ)的去除率可达到90%以上.柚皮粉对水中Pb(Ⅱ)的吸附符合动力学二级反应,等温吸附规律可用Freundlich、Langmuir和Temkin模式较好地描述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号