首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited observations of soybean plant response of transpiration rate (TR) to vapor pressure deficit (VPD) have indicated the existence of genotypes with nearly constant TR at high VPD. The range of expression of this trait in a given population within a species has not been explored. To initiate study of this possibility, 22 genotypes from a RIL population derived from a cross of PI 416937 and Benning were characterized for their VPD response. Genotype PI 416937 has been shown to reach a maximum TR at a VPD as low as 2 kPa. Surprisingly, Benning was not found to have a continually increasing TR with VPD, but rather it had a two-segment TR response very similar to PI 416937. Unexpectedly, only one of the studied RILs had a TR response similar to the parents. Thirteen RILs had a continually increasing TR with increasing VPD. Eight RILs reached a maximum TR occurring at VPD of about 1.3 kPa, significantly lower value than that of the parents. While the inheritance of the maximum TR trait is clearly complex, these results offer encouragement that the VPD at which plants limit TR might vary so that the trait can be tailored to maximize potential yield increase in different water-deficit environments.  相似文献   

2.
Simulation studies have demonstrated that limited maximum transpiration rate (TR) at high air vapor pressure deficit (VPD) in water-limited environments could result in significant increases in sorghum yield. However, such a restriction on TR at high VPD has not been documented in sorghum. The objective of this study was to search within sorghum germplasm for the possibility of restricted TR at high VPD. Twenty six genotypes were selected for measurement of VPD response based on field observations including yield, leaf temperature, and the stay-green phenotype. These genotypes were grown in a greenhouse for about 24-d growth, and then placed into individual chambers in which VPD was varied and TR measured. The results of this study showed marked variation among sorghum genotypes in TR response to VPD. Seventeen genotypes were identified as exhibiting a breakpoint in their VPD response in the range from 1.6 to 2.7 kPa, above which there was little or no further increase in TR. Therefore, these genotypes with a breakpoint have the possibility of soil water conservation when VPD during the midday cycle exceeds the breakpoint VPD. This trait would be desirable in less humid environments for increasing yields in water-deficit seasons. The observed range in the value of the BP among genotypes offers the possibility of developing genotypes with BP appropriate for specific environments.  相似文献   

3.
Plants with limited transpiration rate (TR) under high vapor pressure deficit (VPD) offer the potential to conserve soil water and thus decrease the occurrence of soil water deficit. Genetic variability in TR response to VPD has been observed in the greenhouse for soybean (Glycine max (L.) Merr.) genotypes related to PI416937, but these differences have yet to be measured in the field. The objective of this study was to observe under field conditions leaf gas exchange properties of PI416937 in comparison to nine other genotypes to determine if it expressed limited TR at high VPD. Genotypic differences in stomatal conductance measurements (a proxy for TR) matched those obtained under controlled environment conditions. Genotypes varied from no stomatal response to VPD, to strong negative responses resulting in full stomata closure at ∼4 kPa. There was a greater proportional genetic variability in stomatal conductance in the field (75% at high VPD) than was observed in the greenhouse, but this variation was correlated with greenhouse TR. However, photosynthesis was considerably limited in genotypes that had a stomatal response to VPD. Although field differences in photosynthetic capacity among genotypes were not correlated with greenhouse measurements, there was sufficient genetic variation to allow the possibility of selection of high photosynthetic capacity to overcome about a 34% decrease in stomatal conductance. Thus, a targeted breeding program to combine the water conserving TR-VPD response with increased photosynthetic capacity has the potential to increase soybean yields in field water-deficit environments.  相似文献   

4.
Peanut (Arachis hypogaea L.) is commonly grown on sandy soils in warm climates where water-deficit can impose a limitation on yield. Identification of plant traits related to increased productivity under water-deficit conditions could be used to increase yields in these water-limited environments. Two traits were examined among 17 peanut genotypes. Transpiration efficiency (TE), ratio of mass increase to water transpired, was the first trait examined. TE was measured both under well-watered conditions (greenhouse) and soil drying (outdoors in pots) conditions. Virtually no difference was observed in TE among genotypes under well-watered conditions indicating the gas exchange properties were similar. However, under soil drying conditions there were substantial differences among genotypes. These results indicated that TE with drying soil might interact with traits associated with water loss on drying soils. Therefore, the second trait examined in this study was the fraction transpirable soil water (FTSW) content at which the decline in transpiration with soil drying was observed. This greenhouse experiment showed large variability among the 17 genotypes. A second-order polynomial described the relationship between TE under soil drying conditions and the threshold for the decline in transpiration. The FTSW for maximum TE was 0.55, but this value is expected to depend on the environmental conditions to which the plants influence TE.  相似文献   

5.
Relationship between foliage temperature and water stress in potatoes   总被引:1,自引:0,他引:1  
Field studies were conducted in southern Idaho to evaluate the possibility of using thermal infrared measurements of potato foliage to detect soil water deficits. Concurrent measurements of foliage-air temperature differences (Tf-Ta), leaf water potential (gyleaf) and vapor pressure deficit (VPD) were obtained from differentially-irrigated Russet Burbank and Kennebec potatoes during the 1982 and 1983 growing seasons. Foliageair temperature differences for well-watered potatoes were linearly related to VPD. Differences in Tf-Ta values between stressed and well-watered potatoes were relatively small in the early morning when evaporative demand was low. However, severe soil water deficits caused afternoon Tf-Ta values to rise as much as 8.0 C above non-stressed levels under conditions of high VPD. Foliage-air temperature differences and VPD data were used to construct a plant water stress index (PWSI) which reflected the rise in Tf-Ta above non-stressed levels at a given VPD. The PWSI was linearly related to depressions in gyleaf caused by moderate to severe soil water deficits. However, the PWSI did not increase significantly above non-stressed values unless the soil matric potential gysoil fell below -70 kPa (centibars). Since potatoes are normally irrigated before gysoil falls below ?60 kPa, it appears that foliage temperature measurements cannot be used to effectively schedule irrigation for this crop.  相似文献   

6.
In this study, a fine genetic map within the quantitative trait loci (QTL) underlying pasting temperature (PT) of cassava (Manihot esculenta Crantz) was constructed using newly developed simple sequence repeat (SSR) markers. The SSRs were designed on the basis of two scaffolds (S11341 and S4043) of the cassava genome, which covered previously identified QTL regions of the PT trait. A total of 55 and 61 SSR markers derived from S11341 and S4043, respectively, representing 0.29% of the cassava genome, were generated; of which 23 and 19 showed informative polymorphic patterns. Consequently, all identified informative polymorphic markers were used to genotype 200 F1 progeny plants. The genotypic data were then analyzed, and the results showed that 480 markers were distributed across 23 linkage groups (LGs) with total length of 1,334 centimorgans (cM). An analysis of QTL underlying the PT trait revealed that marker EME81 on LG 1 had significant associations (P < 0.0001) in all environments evaluated. Four candidate genes were identified and selected for gene expression analysis in the parents, and among F1 lines with high and low PT values. Significant differences were observed in relative expression of carbohydrate phosphorylase (CP) and starch synthase II (SSII) between high and low PT in 6-month-old cassava. We found CP and SSII genes to potentially control the PT trait. In addition, the marker EME81 was found to be a promising marker for specific PT trait selection in cassava populations, which should facilitate marker-assisted selection for desired PT traits.  相似文献   

7.
小麦蛋白含量的提高对营养和加工品质具有重要的意义。本研究在2年3点6个环境下,以小麦品种“花培3号×豫麦57”构建的双单倍体(doubled haploid,DH)群体为材料,通过条件和非条件QTL鉴定与小麦开花后5个时期籽粒清蛋白和球蛋白含量积累有关的基因或数量性状基因座。结果表明,基于完备区间作图法,共检测到40个非条件QTLs和34个条件QTLs,单个位点的贡献率范围为6.44%~25.13%,其中QAlu1B-3在6个环境下的第4和第5时期均被检测出。本研究结果为了解不同灌浆期QTL选择性表达奠定了理论基础,检测到的QTL可能对小麦籽粒品质的提高有重要贡献。  相似文献   

8.
《Field Crops Research》2002,76(1):25-43
Root morphological characteristics are known to be important in the drought resistance of some rice (Oryza sativa L.) varieties. The identification of quantitative trait loci (QTLs) associated with root morphology and other drought resistance-related traits should help breeders produce more drought resistant varieties. Stability in the expression of root growth QTL across rooting environments is critical for their use in breeding programs. A greenhouse experiment in which a mapping population of 140 recombinant inbred lines and the parental varieties Bala and Azucena were grown in glass-sided soil chambers and evaluated for root growth and water uptake was conducted. In each of 2 years, two treatments were used; an early water-deficit (WD0) in which seeds were sown into wet soil but received no more water, and a late water-deficit (WD49) in which the plants were watered for 49 days and then received no water for a week. The major differences between treatments and years in dry matter partitioning and root growth traits are reported elsewhere. Here, the identification of QTLs for root growth traits by composite interval mapping is described. At LOD>3.2, there were six QTLs for the weight of roots below 90 cm and maximum root length, 11 for root to shoot ratio, 12 for the number of roots past 100 cm, and 14 for root thickness. A total of 24 regions were identified as containing QTLs (these regions often contained several QTLs identified for different root traits). Some were revealed only in individual experiments and/or for individual traits, while others were common to different traits or experiments. Seven QTLs, on chromosomes 1, 2, 4, 7, 9 (two QTLs) and 11, where considered particularly noteworthy. The complex results are discussed in the context of previously reported QTLs for root growth in other populations, the interaction between QTL with the environment and the value of QTLs for breeding.  相似文献   

9.
Drought is by far the most important environmental factor contributing to crop yield loss, especially in soybean [Glycine max (L.) Merr.] where symbiotic fixation of atmospheric nitrogen (N2) is sensitive to even modest soil water deficits. Decline of N2 fixation with soil drying causes yield reductions due to inadequate N for protein production, which is the critical seed product. In this paper, we present a combined physiological and breeding research effort to develop soybean lines that have diminished sensitivity of N2 fixation to drought. A preliminary physiological screen was used to identify lines that potentially expressed N2 fixation drought tolerance. One hundred progeny lines derived from a cross between Jackson, a cultivar proven to have N2 fixation tolerance to drought, and KS4895, a high-yielding line, were tested in the screen. Seventeen lines were identified for subsequent yield trials in moderate- and low-yielding rainfed environments. Two lines, found to have higher yields than commercial checks in these environments were then tested in the greenhouse for their N2 fixation activity in drying soil. Nitrogen fixation activity was found to persist at lower soil water contents than exhibited by the sensitive parent. These two soybean lines offer a genetic resource for increased yields under rainfed conditions as a result of decreased sensitivity of N2 fixation to water deficit.  相似文献   

10.
中国粳稻春江06抗白背飞虱的遗传   总被引:1,自引:0,他引:1  
分析了高抗白背飞虱、对白背飞虱的抗性表现为拒取食性和杀卵作用的中国粳稻春江06和感虫籼稻品种TN1正反交获得的F1和F2代拒取食性和杀卵作用的遗传方式.所有的F1稻株都具有拒取食和杀卵作用.两种抗性在F2代中以3∶1的抗感比例独立分离. 具有拒取食和杀卵抗性的不同组合的4种表现型以9∶3∶3∶1分离.表型分离说明春江06中的拒取食性和杀卵抗性分别受一个显性基因控制.采用常规的杂交方法可以容易地将春江06中的拒取食抗性导入日本粳稻品种日本晴、北陆-153和越光中.  相似文献   

11.
Early-maturing maize (Zea Mays L.) germplasm developed from diverse sources has the potential for use in developing maize hybrids suitable for increasing maize production in the dry ecologies of eastern Africa. A diallel study was conducted to estimate general combining ability (GCA) of 12 early-maturing maize inbred lines, identify potential single-cross hybrids for use as parents, assess genetic diversity among the inbred lines, and relate genetic distance to specific combining ability (SCA) and hybrid performance. Sixty-six F1 diallel hybrids were evaluated under optimal and drought stress conditions at four locations in Kenya and Uganda. The parental inbred lines were genotyped using 94 single nucleotide polymorphism (SNP) markers. Additive gene action was more important than nonadditive gene action for inheritance of grain yield (GY) under optimal conditions. However, nonadditive gene effects were more important in the inheritance of GY under drought and across all environments. Inbred lines CKL0722, VL058014, and CZL0724 were among the best with positive GCA effects for GY across both optimal and drought stress conditions. The correlation between SCA and both genetic distance and F1 GY was significant under both drought stress and across all environments. Inbred lines with desirable GCA effects for GY and other agronomic traits and hybrids with good performance under both optimal and drought stress conditions are potential parents for development of various types of high-yielding, stress-tolerant, and early-maturing hybrids.  相似文献   

12.
《Plant Production Science》2013,16(2):184-191
Abstract

In the afternoon when air humidity decreases, leaf photosynthetic rate (Pn) often declines in rice grown under irrigated conditions. To clarify the genotypic difference of Pn in response to humidity, we measured Pn and stomatal conductance (gs) for nine rice varieties with diverse genetic backgrounds, at various vapor pressure differences (VPD) and developmental stages. Pn and gs of all the varieties decreased with VPD increase from 1.0 to 2.3 kPa of VPD. The variety with high gs at low VPD exhibited a greater decline of gs with VPD increase than the variety with low gs, but cv. Takanari showed the highest gs under altered VPD conditions. Significant logarithmic relations were found between the decreased Pn and gs at the respective developmental stages, suggesting that gs is the dominant factor determining Pn and its response to VPD change. To explicate the effect of decreased gs on Pn, we analyzed the relations by using the model that accurately estimated the genotypic difference in Pn at a low VPD with gs and leaf nitrogen content per unit leaf area in the previous study. The model assuming that leaf internal conductance (gw) remains unchanged well explained the decreased Pn at high VPDs by gs change alone. The analysis also suggested the constancy of gw and carboxylation capacity at high VPD. It is concluded that the genotypic difference in the decrease of Pn at a high VPD is brought mainly by that in decreased gs, and the varieties with a high gs always exhibit a high Pn owing to their relatively high gs at either high or low VPD environments.  相似文献   

13.
Complete indehiscence of anthers accompanied with exerted stigmas outside the hull could be useful in hybrid rice breeding if the genetics and possible environmental effects are well understood. Studies were undertaken to identify the sources, confirm the mode of inheritance, and examine the possible environmental effects and potential application of anther indehiscence with exerted stigmas in hybrid rice breeding. Direct and reciprocal crosses were made between Jasmine 85, selected interspecific and intersubspecific lines and two wide compatibility varieties. The resulting F1 progenies were evaluated for their expression of anther indehiscence and exerted stigmas. Expression of anther indehiscence with exerted stigmas by both direct and reciprocal crosses suggested no effect of cytoplasmic factors on the expression of the trait. Segregation analysis supported the 7:1 (indehiscence:dehiscence) mode of inheritance. Temperature and relative humidity could not modulate the fertility/sterility status of anther indehiscent plants. Utilization of anther indehiscence with exerted stigmas in hybrid rice breeding was hindered by trait fixation and propagation.  相似文献   

14.
甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)是参与糖酵解和糖异生途径的关键酶之一,在维持细胞能量供应和植物抗逆性方面具有重要作用。本研究以耐旱型小麦品种长武134及干旱敏感型小麦品种郑引1号为材料,利用基因枪法将 TaGAPDH8基因分别转化这两种小麦的幼胚愈伤组织,经潮霉素筛选和PCR鉴定,最终得到4个下调表达的长武134株系(CW134-3、CW134-6、CW134-12、CW134-13)和8个上调表达的郑引1号株系(ZY1-1、ZY1-3、ZY1-4、ZY1-9、ZY1-10、ZY1-14、ZY1-15、ZY1-17)。对生长于大田的T_2代转基因植株在乳熟期的生长状况进行了测定,获得了与对照相比有明显表型差异的植株。用实时荧光定量PCR(qRT-PCR)技术测定了T_3代小麦株系中 TaGAPDH8的表达量,结果表明,4个长武134株系中 TaGAPDH8基因的表达量分别为对照的0.53、0.75、0.21和0.78倍,而8个郑引1号株系中目的基因的表达量分别为对照的3.02、1.22、2.15、1.36、4.02、1.87、1.48和1.97倍。本研究获得了与对照存在明显表型差异的T_2代及稳定遗传目的基因的T_3代小麦株系,为后续的试验提供了研究材料和基础。  相似文献   

15.
《Plant Production Science》2013,16(3):205-216
Abstract

Enhanced aerenchyma development in rice under transient drought-to-waterlogged (TD-W) stress promotes root system development by promoting lateral root production. This study analyzed the quantitative trait loci (QTLs) associated with the plasticity in aerenchyma development under TD-W stress. A mapping population of 60 F2 genotypes of chromosome segment substituted lines (CSSL) derived from CSSL47 and Nipponbare crosses were grown in rootboxes and evaluated for shoot and root growth, and aerenchyma development (expressed as root porosity). The TD-W stress was imposed starting with water saturated soil condition at sowing and then to progressive drought from 0 to 21 days after sowing (DAS) prior to exposure to sudden waterlogging for another 17 days (21 to 38 DAS). We performed simple and composite interval mapping to identify QTLs for aerenchyma development. QTL associated with aerenchyma development was mapped on the short-arm of chromosome 12 and designated as qAER-12. The effect of qAER-12 on the plasticity in aerenchyma development under TD-W was significantly associated with the increase in lateral root elongation and branching. This resulted in greater root system development as expressed in total root length and consequently contributed to higher dry matter production. This qAER-12 is probably the first reported QTL associated with aerenchyma development in rice under TD-W and is a useful trait for the improvement of the adaptive capability under fluctuating soil moisture conditions.  相似文献   

16.
光温敏不育水稻不育性表达不稳定的遗传机制与原因综述   总被引:23,自引:0,他引:23  
光温敏不育系不育性表达不稳定是近年来两系杂交水稻研究和应用中遇到的一大难题。为寻求克服这一难题的有效途径和方法,对不育性表达不稳定的遗传机制及其产生原因进行深入分析和探讨是十分必要的。界定了不育性表达不稳定的含义,综述了水稻光温敏不育系育性表达的种种复杂表现、不育起点温度漂变现象及其克服办法,着重论述了光温敏不育系不育性表达不稳定的遗传机制及原因。认为导致不育的起点温度受微效多基因控制是光温敏不育系不育性表达不稳定的遗传机制,不育起点温度上的遗传基础不纯或遗传杂合性是导致不育性表达不稳定的内在原因,并提出在育种上应充分考虑不育性表达的数量性状特征,采取花培育种途径或在杂交育种中采用系谱法和混合法相结合的后代选择方法,以达到选育不育性表达稳定的光温敏不育系的目的。  相似文献   

17.
《Plant Production Science》2013,16(3):267-276
Abstract

Soil moisture distributions in rainfed lowland rice environments are largely determined by the position in the toposequence. In this study, we developed an experimental sloping bed that can simulate the soil hydrological conditions in sloping rainfed lowland rice environments to examine if the expression of promoted root system development in relation to soil moisture availability along the soil profile may maximize water uptake and dry matter production under drought. The gradient of available water along both the surface soil layer and the vertical soil profile was successfully created by manipulating ground water levels in the experimental sloping bed indicating the practical effectiveness of this experimental system. Then, two contrasting genotypes, IRAT109 (upland rice adapted japonica) and KDML105 (lowland adapted indica) were grown for plasticity evaluation. Dry matter production was maintained even at a higher position in the toposequence in IRAT109, but decreased in KDML105. Such maintenance of dry matter production in IRAT109 was attributed to its greater ability to increase root length density in a deeper soil layer, where more soil moisture is available. In contrast, KDML105 maintained root length density in the upper soil layer, and could not utilize the soil moisture available in the deeper soil layer. These results imply that the genotype that expressed root plasticity with root system developing in the soil portion where more soil moisture was available showed greater dry matter production than the genotype that showed root plasticity in the soil layer where soil moisture was less available.  相似文献   

18.
Summary Soil in a potato field naturally infested with black dot (Colletotrichum coccodes) was fumigated with methyl bromide at 126 g m−2 or left unfumigated. Potato seed tubers (cv. BP1) uninfected, lightly infected (1–25% surface affected), severely infected (26–100% surface affected) and severely infected withC. coccodes but dusted with prochloraz manganese chloride as Octave 2.5% DP at 750 g per 100 kg seed were planted in fumigated and unfumigated soil. When harvested, the incidence of black dot on the progeny of infected seed planted in unfumigated soil was twice that of progeny in fumigated soil, with progeny of uninfected seed having a 68.5 times higher disease incidence in unfumigated soil. Black dot on progeny tubers was reduced by pre-treatment of seed with prochloraz in fumigated soil only. With black dot infested fields, planting disease-free seed or treating seed with fungicides would not decrease disease on progeny tubers.  相似文献   

19.
籼粳交稻米胶稠度的遗传特性分析   总被引:5,自引:0,他引:5  
采用胶稠度单籽粒分析法,对3×2设计的5个籼粳交组合,每组合9个同期收获的遗传群体 (P1, P2, F1, F1', F2, B1, B1', B2, B2' )的稻米胶稠度进行了遗传研究。结果表明,籼粳稻米的胶稠度受到主效基因和若干微效基因的控制,主效基因为复等位基因,硬对中等或软,中等对软胶稠度表现显性。胶稠度具有质量 数量遗传特性,适合3N胚乳的加性 显性遗传模型。  相似文献   

20.
《Field Crops Research》1998,58(2):141-152
In arid, irrigated, rice environments, crop duration is highly variable, resulting in uncertain crop calendars for double cropping. The main causes of this variability are varying temperature and daylength. Breeding for stable crop duration in such environments might make a major contribution to rice production. A previous study established genetic differences in phenological responses to temperature and photoperiod, based on a field study with sequential planting dates in Senegal. The present study applied this experimental approach to a five-parent complete dialled scheme. The five parents and 20 F1 progeny populations were sown on 14 dates at 2-week intervals at Ndiaye, Senegal (16°14′ N) during the cold-dry, hot-dry and wet seasons in 1996. The model LAP (Leaf Appearance) described previously was used to disaggregate photoperiodic and thermal traits, which gave reproducible results for the thermal component, but not for the photoperiodic responses. Responses to photoperiod were therefore measured using a subset of environments in the wet season (stable temperatures and 12.6–13.1 h daylength). Cross involving IR29725-40-3-2-3 (IR29725; short duration) and IR4630-22-2 (IR4630; medium duration), in combination with any of the other lines in the diallel, gave consistent patterns of heritability for earliness of flowering in the different seasons, the sensitivity of panicle induction to low temperatures, and photoperiod-sensitivity in the range of 12.6–13.1 h daylength. The results permitted three conclusions: (1) short duration in the wet season was a dominant trait, and in the cold-dry season, a super-dominant trait. IR29725 is a promising donor for this trait. (2) Despite its moderate to high phenological sensitivity to low temperatures, IR29725 acted as donor for low sensitivity of panicle initiation to temperature. This trait was dominant. (3) At least under the thermally stable conditions of the wet season, IR4630 acted as donor of a dominant trait for photoperiod-sensitivity, whereas IR29725 acted as donor for photoperiod-insensitivity. In summary, IR29725 is a promising donor of traits, such as short duration, low photoperiod-sensitivity and low sensitivity of phenological processes to temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号