首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
果园柱花草刈割处理对其与柑橘养分竞争的影响   总被引:13,自引:2,他引:13  
 以‘萝岗’橙和柱花草为试材, 在根箱中研究了生草栽培体系中刈割对果树生长和养分竞争的影响和机制。结果表明, 在低磷土壤中, 刈割可以显著减轻柱花草对磷的竞争, 促进柑橘的生长; 作用机制在于刈割强烈抑制了柱花草的根系生长, 使得根系长度显著降低, 空间分布也有所改变, 导致植株的磷含量、磷吸收量显著下降; 相应地, 柑橘根系对磷的表观吸收速率显著提高, 植株的磷含量、磷吸收量显著增加, 甚至达到施磷的效果, 根系长度也显著加长。认为刈割主要是通过对根系的影响来改变果树与生草之间养分竞争关系, 推测根系分布在养分竞争中占重要地位。  相似文献   

2.
柑橘天然生物活性物质吖啶酮的研究与利用   总被引:1,自引:0,他引:1  
吖啶酮生物碱是一类重要的生物活性物质,芸香科柑橘类植物是天然吖啶酮的主要来源。至今已从柑橘类植物中分离得到20多种吖啶酮生物碱,它们在抗癌、抗肿瘤、抗病毒、抗疟疾和抗白血病等方面有重要作用。我国柑橘资源丰富,利用我国乃至世界丰富的柑橘资源对柑橘吖啶酮的开发利用前景广阔。对柑橘吖啶酮的已有研究多以根茎为实验材料,关于果实中吖啶酮的研究尚无报道。阐述了柑橘吖啶酮的结构特点、生理活性、生物合成和研究进展情况,并提出了植物天然吖啶酮的研究现状和形势,同时指明了在柑橘吖啶酮研究领域存在的问题及今后在此领域的研究重点和方向。  相似文献   

3.
 根系构型与植物的养分吸收密切相关,可能影响植物不同个体间的养分竞争。比较了‘格 拉姆’和‘184 号’柱花草(Stylosanthes Sw.)的根系构型差异,并探讨了两者在间作条件下对柑橘砧木 红藜檬(Citrus limonia)实生苗的生长和养分吸收的影响。结果表明,‘格拉姆’和‘184 号’在单作条 件下生物量、总根长、主根长和根尖数相似,但是‘184 号’的基根角度、根系表面积、平均根直径均小 于‘格拉姆’;在与柑橘实生苗间作条件下,‘184 号’有41.4%的根系进入柑橘根区,而‘格拉姆’仅有 0.8%的根系进入柑橘根区,因此与‘184 号’间作的柑橘砧木实生苗的生物量和对磷养分的吸收均显著低 于与‘格拉姆’间作的柑橘砧木实生苗。本研究表明,与根系垂直生长型的‘格拉姆’相比,根系水平 生长型的柱花草‘184 号’不宜用于果园生草栽培,根系构型应该成为草种筛选的重要指标。  相似文献   

4.
Boron (B) is an essential microelement for higher plants and has important physiological functions in plant growth and development. Citrus plants are frequently exposed to B-deficiency, but knowledge regarding the effects of B-deficiency on rootstock growth, root morphology and genotypic variations in citrus is limited. To evaluate the variations in plant-growth parameters in response to B-deficiency, five citrus rootstocks seedlings that grown in modified 1/2-strength Hoagland's solution that contained 0.25 μM H3BO3 (moderate B-level, Control) or 0 μM H3BO3 (B-deficiency, −B) were investigated before and 90 days after treatment. There are significant genotypic variations in plant-growth parameters (dry mass, leaf area and seedling height), root-morphological traits and B-concentrations. B-deficiency inhibited plant dry mass and leaf area expansion of Fragrant citrus, Sour orange and Trifoliate orange seedlings significantly (P < 0.05), whereas no effect was found on the total dry mass of Carrizo citrange and Red tangerine seedlings. Further, B-deficiency reduced the root number, root length and root surface area in Fragrant citrus and Trifoliate orange significantly (P < 0.05); however, no significant effect was detected on these root morphological traits of Carrizo citrange and Red tangerine (P > 0.05). In addition, B-deficiency reduced the B-concentration in the leaves of all the five genotypes and the B-concentration in the roots of Fragrant citrus and Sour orange, none effect was observed on the B-concentration in stems of all studied genotypes and roots. However, there were significant relationships between the root-morphological traits and B-uptake efficiency. These results showed that Carrizo citrange and Red tangerine are B-efficient, Trifoliate orange is the moderate B-efficient genotypic rootstocks, whereas Fragrant citrus and Sour orange are B-inefficient genotypic rootstocks. In addition, Trifoliate orange was the moderate B-efficient rootstocks of five genotypes. The root-to-shoot dry mass ratio (R/S) and longer root numbers were higher in the Carrizo citrange and Red tangerine than that of Trifoliate orange, Fragrant citrus and Sour orange genotypes. That is to say, maintaining higher R/S and numerous longer lateral roots is very important in improving the B-efficiency and thus contribute much to the resistance of seedlings to B-deficiency in the Carrizo citrange and Red tangerine genotypes.  相似文献   

5.
对前期在感染黄龙病的‘晚锦橙’中发现的明显差异表达的柑橘乙醇脱氢酶(CsADH1)基因进行克隆测序分析,结果表明,CsADH1 的 CDS 序列长为 1 143 bp,编码 380 个氨基酸。蛋白质结构预测显示,CsADH1 含有乙醇脱氢酶 GroES(ADH_N)和 ADH_zinc_N 保守结构域。进化树分析显示,CsADH1 蛋白与拟南芥、蓖麻和中国莲的 ADH 蛋白亲缘关系最近。亚细胞定位结果显示,CsADH1 蛋白定位在细胞质中。以感病‘晚锦橙’的根和叶脉为材料,qPCR 分析显示 CsADH1 在感病根和叶脉中均上调表达,且根中的表达水平是叶脉中的 10 倍。离子胁迫试验和外源植物生长调节剂诱导试验表明,Zn、水杨酸(SA)、生长素(IAA)和脱落酸(ABA)均显著诱导 CsADH1 上调表达,并且根中的表达水平明显高于叶中。本结果表明,CsADH1 可能在柑橘根响应黄龙病菌侵染中起着重要作用。  相似文献   

6.
3种柑橘实生砧木及其2种体细胞杂种根系解剖结构的比较   总被引:1,自引:0,他引:1  
刘霞  彭抒昂  郭文武 《园艺学报》2008,35(9):1249-1254
采用石蜡切片法和组织离析法分别对3种柑橘实生砧木和2种体细胞杂种的根系木质部和导管分子的解剖构造进行了比较。结果表明:(1)粗柠檬、红橘和枳3种实生砧木根系的木质部和韧皮部呈同心圆环状排列,而‘红橘+枳’和‘红橘+粗柠檬’两种体细胞杂种木质部和韧皮部呈“海星状”排列,结构异常。(2)导管所占的面积和密度,均以生长势较强的粗柠檬为大,以生长势较弱的枳为小;体细胞杂种没有明显规律。(3)柑橘导管分子属于孔纹导管,穿孔板均为单穿孔,大多分布于端壁上;导管分子两端具尾、倾斜、侧壁穿孔等性状的有无及其比例,反映出生长势的差异及其输导能力的强弱。(4)粗柠檬具有较好输导能力的导管分子结构,而枳较差;体细胞杂种根系的导管分子长度和直径都大于其亲本,在导管分子性状上,向不利于输导能力的较原始性状偏移。  相似文献   

7.
In order to reduce unnecessary amount of P-fertilizer and severity of Phytophthora root rot in citrus orchards, the experiment was set up. Thirteen indigenous arbuscular mycorrhiza (AM) fungi species were isolated from rhizosphere soil of citrus orchards in Thailand and were then propagated into three host plants [sorghum (Sorghum bicolor), maize (Zea mays), and leek (Allium cepa)] by trap culture. We also tested whether indigenous AMF species (13 different species) could colonize into three cultivars of citrus scions and rootstocks (Shogun: Citrus reticulata Blanco cv. Shogun; Tangerine: C. reticulata; and C-35 citrange: Citrus sinensis × Poncirus trifoliata). With root colonization rates, the results indicated that Acaulospora tuberculata and Glomus etunicatum provided the best colonization in all citrus cultivars. We selected, therefore, those AMF species to verify their influences on citrus growth and Phytophthora root rot resistance. Three cultivars of citrus scions and rootstocks, Shogun, Tangerine and C-35 citrange, were inoculated with two effective indigenous AMF species, G. etunicatum or A. tuberculata in order to determine the influences on citrus growth. The plants were investigated to determine the mycorrhizal efficiency index (MEI), AM colonization, P content, and other parameters. Co-inoculation of AMF species (G. etunicatum or A. tuberculata) with Phytophthora nicotianae was also carried out in Shogun scion/C-35 citrange rootstocks. The results of citrus growth revealed that Shogun and Tangerine inoculated with G. etunicatum produced the highest MEI. Tangerine and C-35 citrange amended with fertilizers and G. etunicatum showed the highest P content in leaves. This indicated that G. etunicatum has an influence on citrus growth and P uptake, suggesting it to be the highly effective strain. Shogun scion/C-35 citrange rootstock combinations that were inoculated by both P. nicotianae and different AM fungi (G. etunicatum or A. tuberculata) showed root injury at low level of root rot symptom. However, the part of Shogun scions grafted on rootstocks showed severe symptom of shoot die back in treatment inoculated with P. nicotianae alone, while treatment inoculated with different AM species (G. etunicatum or A. tuberculata) and P. nicotianae rendered lower shoot die back symptoms than that of Phytophthora treatment. The low level of shoot die back symptom was shown at first, then healthy young shoot was restored. Our results indicated the facts that different host plants and different AMF species produced different outcomes of growth and pathogen resistance. The application of both AM isolates, therefore, has an enormous potential to be produced the inoculum for citrus orchards.  相似文献   

8.
为了筛选在柑橘韧皮部中特异表达的启动子,构建GRP、Rolc、RSSl异源韧皮部特异启动子控制GUS报告基因的植物表达载体,转化枳[Poncirus trifoliata(L.)Raf.]上胚轴。GUS组织化学染色分析表明,3个启动子均显示了维管束组织特异性。其中,GRP启动子活性强,且具有严格的韧皮部组织特异性;Rolc启动子活性最强,在根和茎中呈组成型表达;RSSl启动子活性最弱。Real-time RT-PCR和GUS酶活性分析进一步证明了GRP启动子具有较强的韧皮部组织特异性,该启动子有望应用于柑橘抗黄龙病基因工程育种。  相似文献   

9.
Citrus, a cold-sensitive plant, often suffers from low temperature, which seriously affects citrus productivity. The objective of the study was to elevate the roles of an arbuscular mycorrhizal fungus, Glomus mosseae, in growth, photosynthesis, root morphology and nutrient uptake of citrus (Citrus tangerine) seedlings under temperature stress conditions. Three-month-old seedlings with or without G. mosseae were grown for 55 days at moderate temperature (25 °C) and low temperature (15 °C). Low temperature severely restrained symbiotic development including mycorrhizal colonization, entry point, vesicle and arbuscule relative to moderate temperature. Mycorrhizal seedlings grown at 25 °C maintained better stem diameter, plant height, leaf area, root and total dry weights, higher photosynthetic rate, transpiration rate and stomatal conductance, higher root volume, and more uptake of P, Ca and Mg relative to corresponding non-mycorrhizal control. However, mycorrhizal inoculation significantly increased only the root length and the Ca content of the seedlings grown at 15 °C. The results indicated that mycorrhizal formation had the beneficial effects on growth, photosynthesis, root morphology and part nutrient uptake of citrus seedlings grown at moderate temperature, but the beneficial roles of arbuscular mycorrhizas were almost lost at low temperature.  相似文献   

10.
【目的】为了快速有效地利用基因工程的方法获得柑橘无核新种质,【方法】以我国特色多核柑橘优良品种锦橙实生苗上胚轴切段为外植体,采用根癌农杆菌介导法进行能导致种子败育基因CG1-400-RNase的转化;为快速有效地筛选出转化子,在实生苗上胚轴切段转化再生过程中,根据不同发育阶段的组织或器官对抗生素的敏感程度不同采用不同的选择压。【结果】结果表明,在抗性芽再生过程中卡那霉素质量浓度设定为50 mg.L-1,获得的362个抗性芽转入卡那霉素质量浓度为100 mg.L-1的伸长培养基中进行伸长培养后,进行早期PCR检测,获得28个阳性芽;经过不定芽诱导生根或试管嫁接,获得22株完整植株。【结论】再生植株经PCR和Southern杂交检测,获得2株目的基因以单拷贝的形式插入锦橙基因组的转基因植株,为最终获得具有无核性状且可稳定遗传的柑橘新种质奠定了基础。  相似文献   

11.
为研究柑橘砧木香橙对酸性土壤的适应机理,从‘资阳香橙’根cDNA文库中随机测序克隆了苹果酸脱氢酶基因CjMDH(Genbank Accession No. ABI75147)。该基因cDNA序列长1 368 bp,其开放阅读框为1 239 bp,推测其编码412个氨基酸残基,在编码氨基酸序列中存在苹果酸脱氢酶的NAD结合位点1个和苹果酸结合位点8个,iPSORT分析表明该基因编码氨基酸序列N端存在叶绿体转移肽。同源性分析显示CjMDH与拟南芥、烟草、大豆、豌豆、水稻、苜蓿等植物的MDH一致性约为80%,相似性在85%以上。在与苹果酸脱氢酶功能有关的NAD和苹果酸结合位点处氨基酸残基高度保守,表明这两个区域是MDH重要的功能区。Northern blot和Real Time RT-PCR分析结果表明该基因在香橙根和叶中优势表达,在根中表达量最高,茎中表达最低。将CjMDH基因构建到组成性启动子CaMV35S驱动的载体中,对烟草进行转化。从转基因烟草株系中筛选获得了CjMDH基因高表达的株系3个。将表达量高的转基因株系进行耐铝试验,初步结果表明在烟草中超量表达CjMDH,可以提高植株对铝毒的耐受能力。  相似文献   

12.
基于EST库的枳APETALA2基因cDNA克隆及其表达分析   总被引:6,自引:1,他引:5  
 根据物种间同源基因相对保守的特点,利用生物信息学方法以拟南芥APETALA2 cDNA序列作为模板,对柑橘EST数据库进行同源检索筛选,克隆了柑橘APETALA2基因的cDNA序列,并以枳[Poncirus trifoliata (L.) Raf.]花cDNA为模板,根据以上cDNA序列设计特异引物,利用RACE技术分别获得该基因的5'和3'末端,序列拼接后获得枳的APETALA2 cDNA全长。该cDNA全长为1 980 bp,命名为Pt-AP2。Pt-AP2核苷酸序列有一个1 539 bp完整的开放读码框(ORF),5'末端起始密码子ATG其始于290 bp,3'末端非翻译区为152 bp,其中含有27 bp的Ploy+(A)。该基因已在GenBank基因数据库注册,注册号为EU883665。推导该cDNA编码512个氨基酸,与苹果、矮牵牛和拟南芥中相应序列同源性分别为59.1%,59.7%和63.8%。序列分析表明, Pt-AP2除了具备完全保守的核定位信号序列(KKSR)外,还具有两个高度保守的重复序列即AP2结构域。分别采用半定量RT-PCR和SYBR Green I实时定量RT-PCR方法分析Pt-AP2在枳叶、茎、根、花和果等不同器官中的表达水平,结果一致表明Pt-AP2在各个器官中的表达水平不同, 花中的表达量最高,果实中的表达量最低。  相似文献   

13.
为了解柑橘优良砧木枳(Poncirus trifoliata)根部的基因表达信息,利用SMART技术构建了枳的根组织全长cDNA文库。检测结果显示所建枳根原始文库的容量为1.08 × 106 cfu ? mL-1,扩增后文库容量为1.30 × 109 cfu ? mL-1,重组率为95%。通过文库随机测序获得182个长度大于100 bp的ESTs序列(GenBank登录号为JK316116 ~ JK316297),序列拼接后得到96个Unigenes,包括12个Contigs和84个singletons。其中,68个Unigenes可与GenBank中登录的基因相匹配,56个与已知的柑橘基因相匹配,36个为全长基因。对24个全长基因完成了功能注释,并进一步开展了生物信息学分析,发现有6个应激反应基因和3个根发育相关基因。  相似文献   

14.
几种柑橘属植物花粉外壁超微结构比较研究   总被引:2,自引:0,他引:2  
应用超薄切片技术,在透射电镜下对几种柑橘属植物花粉外壁的超微结构进行了观察,结果表明,柑橘属植物花粉具4~5孔沟,外壁内层发育好,花粉外壁结构属于较进化类型。供试材料花粉外壁超微结构特征各异,说明了柑橘属植物的遗传多样性;野生柑橘花粉外壁柱状层为颗粒结构,栽培柑橘为小柱结构,似可说明柑橘花粉外壁柱状层的进化趋势是由颗粒结构到小柱结构。莽山野柑和莽山野橘花粉外壁超微结构存在明显差异,主要表现为:莽山野柑花粉外壁的柱状层发育差,为颗粒状,覆盖层厚度为0.41μm,内层厚度为0.84μm;莽山野橘花粉外壁的柱状层发育好,为小柱状,覆盖层厚度为0.47μm,内层厚度为0.33μm。据此认为柑应有种的地位。  相似文献   

15.
以74—1枳、紫花宜昌橙、Rusk枳橙、香橙、Troyer积橙、江南柑、92号红桔和蟹橙为标准系列砧木,研究了它们的解剖学特征,从中筛选了根皮率、根导管总面积、栅海比、叶气孔密度4个砧木矮化预选指标和皮率、木质率、根导管密度、叶主脉导管数4个辅助预选指标.利用这些指标,可把31种砧木分为矮化砧、半矮化砧、半乔化砧与乔化砧4类.  相似文献   

16.
柑橘芽变选种以及芽变性状形成机理研究进展   总被引:4,自引:0,他引:4  
张敏  邓秀新 《果树学报》2006,23(6):871-876
综述了柑橘芽变选种的成果。近年来,我国选育了崀丰、长红、新世纪、奉晚等脐橙品种和华柑2号椪柑、岩溪晚芦、光明早温州蜜柑等宽皮柑橘品种,还有锦橙101、红肉琯溪蜜柚等其他柑橘品种。介绍了RAPD、AFLP、ISSR、MSAP和基于反转录转座子的分子标记在柑橘芽变品种鉴别中的应用。阐述了部分柑橘芽变性状形成的细胞学机理和分子机理,指出目前对芽变的研究主要集中在反转录转座子的插入、DNA甲基化、基因结构和表达差异等方面。结合果树芽变研究的现状,对今后进行芽变研究提出了展望。  相似文献   

17.
18.
起源于我国的柑橘碎叶病是严重危害柑橘的一种重要柑橘病毒病,国内外关于柑橘碎叶病毒的研究对于控制该病害起到了重要的作用。概述了国内外关于柑橘碎叶病毒的生物学、分子生物学、病毒的株系和控制方面的研究进展,尤其是对近些年用分子生物学方法研究病毒的基因组和株系序列差异方面的情况作了详细的介绍。并对柑橘碎叶病毒研究仍未解决的问题和进一步深入研究的内容进行了分析探讨。  相似文献   

19.
柑桔(Citrus Linn)是一种热带和亚热带植物,它是我国南方重要的经济作物。柑桔的产量和品质与多种因子相联系。这些因子是:生产对象、环境因子和人为因子。本文讨论了柑桔品质与上述因子之间的相互关系,以及提高我国柑桔果实品质的方法。为了提高我国柑桔果实的品质,作者建议:(1)选择生态环境适宜的地区栽培柑桔;(2)选育和推广柑桔良种;(3)采取各种有效措施改造桔园生态环境,诸如搞好桔园基本建设,营造桔园防护林和应用合理的栽培技术等。  相似文献   

20.
柑橘黄龙病研究进展   总被引:12,自引:0,他引:12  
 柑橘黄龙病是柑橘生产中重大病害,其病原菌能够侵染几乎所有的柑橘及其近缘属植物,但目前尚无该病的有效防治方法。随着其在全球范围内的传播,该病已是近年来柑橘生产和研究受到普遍关注的热点。本文试图就近年来围绕柑橘黄龙病病原及其对宿主柑橘的影响、黄龙病的防治以及柑橘抗病育种等方面的最新研究进展作一概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号