首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study optimised the management of a Grevillea robusta (A. Cunn.) stand growing in the central highlands of Kenya. The optimisations were conducted separately for even-aged and uneven-aged management system of trees. The management was also optimised with the requirement that maize production under the tree cover must be profitable every year. Technically, the optimisation problems were solved by linking a simulation program with the non-linear optimisation algorithm of Hooke and Jeeves. The simulation program calculated the tree growth, volumes of harvested trees, and maize yields with a given set of management parameters (decision variables). The maize yield predictions and simulated timber yields were converted into gross incomes of which the production costs were subtracted. In even-aged management the objective variable was the soil expectation value with 5% discounting rate. In uneven-aged management the mean annual net income was maximised. The optimal solutions indicated that with both management systems it is optimal to concentrate on wood production. The optimal stand densities were so high that profitable maize production was not possible under the tree cover. The mean annual wood production of the optimal management schedule was more than 50m3 ha–1. Forcing profitable maize production in the solution decreased the wood production by 57% (even-aged forestry) or 27% (uneven-aged forestry) and net income by 45% (even-aged forestry) or 24% (uneven-aged forestry).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
On-farm indigenous (Cordia africana) and exotic (Grevillea robusta) tree species were compared in terms of the quality of their utility and their agronomic traits in the Meru Central district of Kenya. These two species are the most common indigenous and exotic trees, respectively, among the recorded 117 trees on farms. Interviews with farmers and collected documents on tree felling and planting showed that farmers considered C. africana to be more useful than G. robusta. However, farmers wanted to plant more G. robusta than C. africana because the easily established and fast growing G. robusta has a higher short-term contribution to the household economy. The advantages of C. africana, however, should be redefined in terms of its long-term contribution to farmers; C. africana contributes to farming more effectively than does G. robusta. The lower growth performance and relative difficulty in the establishment of C. africana can be compensated for by its higher timber quality and coppicing ability.  相似文献   

3.
The potential of allye cropping systems to sustain a high productivity with low external inputs and the reduction of maize/weed competition through weed suppression in different alley cropping and sole-cropped mulched systems was studied in Costa Rica at CATIE. Data were recorded eight years after establishment of the experiment. Plant residues ofErythrina poeppigiana trees (10 t/ha dry matter) planted at 6 by 3 m reduced weed biomass by 52%, whileGliricidia sepium trees (12 t/ha dry matter) planted at 6 by 0.5 m reduced weed biomass by 28%, in comparison to controls.Erythrina had a considerable impact on grass weeds, whileGliricidia reduced the incidence of some dicot weeds. Weed competition significantly reduced maize yield in all systems. Nevertheless weed suppression contributed to the higher maize grain yield underErythrina andGliricidia alley cropping of 3.8 t per hectare as opposed to the unmulched control yield of 2.0 t per hectare.  相似文献   

4.
Lack of empirical data on the effects of the taungya system on establishment and early growth of softwood plantations have partly contributed to controversial decisions regarding the continued suitability of the system for plantation establishment in Kenya. This study examined effectiveness of taungya systems of forest plantation establishment using Cupressus lusitanica and Pinus patula trees with Zea mays (maize) as a test intercrop on two contrasting site types (deep and shallow soils) in Mt. Elgon forest, western Kenya . Four treatments were evaluated in each site: trees with or without weed control, trees intercropped with maize, and sole maize. Results showed that tree survival, growth and nutrient uptake, and maize growth and yield were higher in the deep soil site than the shallow site. The t aungya system improved tree survival and growth, effects being greater in the deep than the shallow soil site. Both Cupressus lusitanica and Pinus patula trees had the same effects on maize growth and yield, reducing maize growth by 41–48% in the deep soil sites, and by 16–26% in the shallow site. Vector nutrient analysis and vector competition analysis of the treatment effects on growth and nutrient uptake of the trees and the maize crop suggested competition for N on the deep soils, but competition for K and P on the shallow soils. The study has demonstrated the applicability of graphical vector competition analysis in diagnosing tree–crop interactions in agroforestry.  相似文献   

5.
The water dynamics of cropping systems containing mixtures of Gliricidia sepium (Jacq.) Walp trees with maize (Zea mays L.) and/or pigeonpea (Cajanus cajan L.) were examined during three consecutive cropping seasons. The trees were pruned before and during each cropping season, but were left unpruned after harvesting the maize; prunings were returned to the cropping area in all agroforestry systems to provide green leaf manure. The hypothesis was that regular severe pruning of the trees would minimise competition with crops for soil moisture and enhance their growth by providing additional nutrients. Neutron probe measurements were used to determine spatial and temporal changes in soil moisture content during the 1997/98, 1998/99 and 1999/00 cropping seasons for various cropping systems. These included gliricidia intercropped with maize, with and without pigeonpea, a maize + pigeonpea intercrop, sole maize, sole pigeonpea and sole gliricidia. Soil water content was measured to a depth of 150 cm in all treatments at 4–6 week intervals during the main cropping season and less frequently at other times. Competition for water was apparently not a critical factor in determining crop performance as rainfall exceeded potential evaporation during the cropping season in all years. The distribution of water in the soil profile was generally comparable in all cropping systems, implying there was no spatial complementarity in water abstraction by tree and crop roots. However, available soil water content at the beginning of the cropping season was generally lower in the tree-based systems, suggesting that the trees continued to deplete available soil water during the dry season. The results show that, under rainfall conditions typical of southern Malawi, the soil profile contains sufficient stored water during the dry season (ca. 75–125 mm) to support the growth of gliricidia and pigeonpea, and that gliricidia trees pruned before and during the cropping season did not deleteriously compete for water with associated crops. Water use efficiency also appeared to be higher in the tree-based systems than in the sole maize and maize + pigeonpea treatments, subject to the proviso that the calculations were based on changes in soil water content rather than absolute measurements of water uptake by the trees and crops.  相似文献   

6.
On-farm experiments were conducted in the Philippines to study over a 4-year period the growth of two timber trees, gmelina (Gmelina arborea R. Br.) and bagras (Eucalyptus deglupta Blume), and their impact on the grain yield of intercropped maize. The experiment consisted of maize monocropping plots (control) and maize intercropped between trees planted in block (2 × 2.5 m), and hedgerow arrangement (1 × 10 m). Three maize crops were planted in the block plots before canopy closure, and seven maize crops were planted in the hedgerow and monocropping plots. Maize grain yield in the hedgerow and in the block arrangement with gmelina were respectively 37% (16.58 tons ha−1) and 68% (8.3 tons ha−1) lower than in monocropping (26.21 tons ha−1). In the plots with bagras, maize grain yield in hedgerow and in block arrangement were respectively 19% (24.8 tons ha−1) and 66% (10.4 tons ha−1) lower than in monocropping (30.6 tons ha−1). For both tree species, the diameter at breast height (dbh) was greater in hedgerow than in block arrangement, with the difference being more pronounced with age. It was estimated that gmelina planted in hedgerows would produce 6–8 m3 ha−1 of merchantable volume more than if planted in block. The study verifies the hypothesis that intercropping between widely-spaced trees rows (planted at 10 m or more) is more profitable and feasible to smallholders than either maize monocropping or woodlots, and concludes with recommendations on how to further improve the productivity of tree-intercropping systems.  相似文献   

7.
Successful agroforestry systems depend on minimizing tree-cropcompetition. In this study, field experiments and a simulation model were usedto distinguish between tree-crop competition for light and belowgroundcompetition in an alley cropping system. Maize (Zea maysL.) was harvested periodically in three treatments: between vertical barriers ofshade cloth, hedgerows of Flemingia macrophylla (Willd.)Merr., and sole maize. Radiation intercepted by the maize was calculated using asimulation model based on measured values for direct and diffuse light, hedgerowdimensions and leaf area, and solar trajectory. Radiation use efficiency wascalculated as biomass production per unit of intercepted radiation. Maizebiomass and yield in both the alley crop and the shade cloth treatment weregreatest in the center of the alleys. Grain yield between hedgerows was 3.5Mg ha−1 (averaged across the alley), significantlyless than in the shade cloth (7.4 Mg ha−1) or thesole maize (7.7 Mg ha−1) treatments. Lightintercepted by the maize in the alley crop was about half that intercepted bythe maize in the sole crop. The shade cloth intercepted less light than thehedgerows because it did not have an appreciable width. Radiation use efficiencyin the three treatments was 0.75 g mol−1 PAR anddid not differ significantly among treatments. Tree-crop competition wasoverwhelmingly for light. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Although N-rich leaf biomass of multipurpose trees is known to be a good source of N to crops, integrating such trees into crop production systems is a major challenge in the development of viable agroforestry systems. An approach to integrating calliandra (Calliandra calothyrsus Meissner) and leucaena (Leucaena leucocephala (Lam.) de Wit), two promising agroforestry tree species, into maize (Zea mays L.) production system was investigated in the subhumid highlands of central Kenya during four maize-growing seasons from 1994 to 1996. The experiment consisted of maize plots to which tree prunings obtained from hedgerows grown either in situ (alley cropping) or ex situ (biomass transfer from outside) were applied. When alley-cropped with leucaena, maize produced significantly higher yields compared to maize monoculture (both non-fertilized and fertilized) treatments, but when alley-cropped with calliandra, the yield of maize was less than that of the monocropped unfertilized control. Application of ex situ grown calliandra and leucaena prunings with or without fertilizer resulted in higher maize grain yield than in the nonfertilized and fertilized treatments. Yields of calliandra alley- cropped maize were 11% to 51% lower than those of nonalley-cropped treatments receiving calliandra prunings from ex situ grown trees; the decrease was 2% to 17% with leucaena, indicating that calliandra hedges were more competitive than leucaena hedges. The alley-cropped prunings-removed treatments produced the lowest maize yields. The study showed that, in the subhumid tropical highlands of Kenya, inclusion of calliandra hedges on cropland adversely affected maize yields. On the other hand, alley cropping with leucaena was advantageous. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
In order to improve the management of temperate alley cropping, it is important to study the growth and physiological responses of plants arising from competition across the crop-tree interface. Maize (Zea mays L.) was established between rows of seven-year-old silver maple (Acer saccharinum L.) trees in north-central Missouri, USA with four imposed treatments: (1) an unmodified control with a standard rate of N fertilization (179.2 kg N (as NH4NO3) ha−1), (2) trenching with root barrier installed, (3) supplemental fertilization treatment (standard N + 89.6 kg ha−1 N), and (4) a combination of trenching with root barrier and supplemental fertilization. Whereas soil N status had little effect on maize physiology and yield at the interface, competition for soil water was substantial in both years. Without a root barrier, soil water content, predawn and midday water potential, and midday net photosynthesis of maize plants adjacent to the tree row were reduced compared with those of plants in the alley center, but no differences across the maize crop were evident in the presence of a barrier. Grain yield of border row maize plants lacking an adjacent barrier was depressed compared with that for maize plants with a root barrier present (8.42 vs. 6.59 Mg ha−1 in 1997; 5.38 vs. 3.91 Mg ha−1 in 1998). However, the barrier did not completely restore yield to that in the alley center, suggesting that reductions in light near the tree row also limited production. Top ear height showed a similar pattern of response to the presence of a root barrier. Silver maple trees responded to root barrier installation with reduced annual diameter growth and reduced water status on some sample days. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
In semiarid Laikipia (Kenya) severe crop damage and loss of mulch material may be caused by south to south-easterly winds from June to September. Demonstration agroforestry systems which surround farms with live fences had some success in protecting crops, mulch and soil, but great care must be taken, because air may be channelled through or over them. For demonstration purposes, a deliberate gap was made in a two meter high Coleus barbatus live fence to study its effect on wind speed and damage to crops. The effectiveness of protection given by this hedge together with intercropped Grevillea robusta trees was quantified using electrical cup anemometers. The combination of hedges and trees gave protection to a maize/bean intercrop but the biomass distribution was not the most suitable one. This picture was complicated by variable wind direction and interactions between wind and the biomass of hedges and trees. The lowest efficiency of wind reduction occurred closest to the deliberate gap, where also the lowest protection by the Grevillea trees was found. South to south-easterly winds increased the gap effect and caused gradients in tree protection perpendicular to the southern hedge. This gave at times wind speeds even higher than outside the system. Only visually wind effects could be detected. Trees and hedges strongly competed with the crops if not root pruned.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
To assess possible new agroforestry scenarios the tree–soil–crop interaction model in agroforestry systems (WaNuLCAS 3.01) was used based on-site specific data collected from Tabango (Central Philippines). Three native timber trees (Shorea contorta Vid., Pterocarpus indicus Juss., and Vitex parviflora Willd.) and one widely spread exotic specie (Swietenia macrophylla King.) were simulated under different intercrop scenarios with maize (Zea mays L.) and subsequently compared. Model simulation results quantified and explained trade-off between tree and crop. For example, higher tree densities will lead to a loss of crop yield that is approximately proportional to the gain in wood volume. However, beside this trade-off effect, there is considerable scope for tree intercropping advantage under a fertilization scenario, with systems that yield about 50% of the maximum tree biomass still allowing 70% of monoculture maize yield. Maximum tree yield can still be obtained at about 20% of the potential crop yield but intermediate tree population densities (400 trees ha−1) and the resulting larger stem diameters may be preferable over the larger total tree biomass obtained at higher tree densities. Another advantage from intercropping systems is that trees directly benefit from the inputs (i.e., fertilizer) that are applied to the crops. The three native trees species studied have different performance in relation to productivity but are similar to (or even better than) S. macrophylla.  相似文献   

12.
There are abundant local legume trees and shrubs potentially suitable for alley cropping systems in the sub-Saharan Africa, which are yet to be studied. The nitrogen contribution of two years old Albizia lebbeck and S. corymbosato yield of maize grown in alley cropping was compared to that of Senna siamea, Gliricidia sepium and Leucaena leucocephala in four seasons at Ibadan. Maize shoot biomass and maize grain yield in A. lebbeck alley compared favourably with that in G. sepium and L. leucocephala. Maize biomass and grain yield in S. corymbosa alleys were the lowest. Within A. lebbeck, L. leucocpehala, and G. sepium alleys there were no significant differences in the maize yield in the alleys that received 0, 40 or 80 kg N/ha. Application of more than 40 kg N/ha in S. corymbosa alleys was not necessary as there was no significant increase in maize yield at the higher level of nitrogen. Maize yield and N uptake in A. lebbeck alleys were not significantly different from yield and N uptake in G. sepium, and L. leucocephala at the same fertilizer level. There was a significant correlation between hedgerow tree biomass and maize grain yield. At the end of twelve weeks after pruning application, the organic residues of the pruning applied in the alleys ranged from 5% in G. sepium and 44% in A. lebbeck in the first year compared with the original pruning applied which showed that the slow rate of A. lebbeck decomposition could have a beneficial effect on the soil. The maize N recovery from applied N fertilizer was low (10–22%). Percentage N recovery from the prunings was low in the non-N fixing trees (12–22%), while the recovery was high (49–59%) in A. lebbeck as well as in the other nitrogen fixing tree prunings. Thus A. lebbeck, apart from enhancing maize growth and grain yield like in L. leucocephala and G. sepium, had an added advantage because it remained longer as mulching material on the soil because of its slow rate of decomposition. It was able to survive pruning frequencies with no die-back. This indicates that A. lebbeck is a good potential candidate for alley cropping system in West Africa. S. corymbosa performed poorly compared with the other legume trees. Though it responded to N fertilizer showing a positive interaction between the hedgerow and fertilizer application, it had a high die back rate following pruning periods and termite attack.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
This study examined the effect of alley cropping of Leucaena leucocephala and Faidherbia albida on wood biomass, maize grain yield and soil nitrogen status. The treatments were: trees planted alone at 1 × 5 m spacing; trees intercropped with maize and a sole maize crop. Mulch biomass averaged 6.18 and 0.97 t ha−1 for L. leucocephala and F. albida, respectively. Corresponding wood production was 1.71 and 1.11 t ha−1. Both total N and inorganic N (NO 3 –N plus 4 + –N) were higher under F. albida and lowest under L. leucocephala. Similarly, foliar N concentration in maize was higher in plots intercropped with F. albida and least in L. leucocephala intercropping. Maize grain yield was little affected by the tree intercrop as competition for resources was reduced through periodic pruning and clean weeding. There was no gain in maize grain yield due to the presence of L. leucocephala and F. albida. These results suggest that alley cropping in Gario is justified for wood production but not for increasing maize grain yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
An on-farm trial was conducted to determine dry matter production of four fodder tree species and their effect on soil water and maize production. The trees were planted in rows intercropped with maize. The four tree species selected were Acacia karroo Hayne (indigenous fodder tree), Leucaena leucocephala (Lam.) De Wit (nitrogen fixing), Morus alba L. (fodder and fruit), and Gleditsia triacanthos L. (fodder and fuel). Volumetric soil water was measured in the upper 0.3 m of soil in each row of the trial using the time domain reflectometry technique. The neutron probe technique was used for monitoring the water content deeper in the soil. Geostatistical methods were used to analyse treatment differences in the upper 0.3 m of soil. The soil water content did not differ significantly between the maize and tree rows indicating that competition for water in the upper horizon was not the reason for lower maize yields. However, at greater soil depths (75–125 cm) trees in the wide spacing used less water than those in the narrow spacing. Light interception was an important factor in reducing maize yields in the row nearest to the trees. High soil water values recorded during summer indicated that in the current cycle of good rainfall the plants in the agroforestry trial were not stressed. Thus the trees do not compete with the crops for soil moisture in good rainfall seasons. However, this study would need further evaluation for the competition for water for the low rainfall years. Since the trees have access to water at greater depths, they are likely to be more productive into the dry season than shallow rooted crops.  相似文献   

15.
Pruned triple-row hedges ofGrevillea robusta with 11 rows of maize planted in parallel on either side were grown in 12.5×16.0 m plots on a flat, freely exposed site. There were two replicates of four orientation treatments and crop yield was recorded row-by-row over 9 seasons. After the hedges had become established there were some marked differences in maize yields between sides, especially in the first rainy seasons. The maize on the downside of prevailing winds frequently showed improved growth and yield over the non-sheltered maize, sometimes by as much as 50% over the whole subplot and up to 80% in the tree/crop interface zone. These differences were significant (p0.05) when analyzing the whole experimental period for first and for second rainy seasons separately (prevailing winds more southerly or northerly, respectively), although they varied between seasons and zones. Attributing results to shelter can only be adduced circumstantially because meteorological data were not collected at the plot level. Shading effect were not considered important over the whole sub-plot. Soil water profiles obtained from an array of gypsum resistance blocks in two of the plots (at 000° and 090°) characterized the wetting and drying patterns in this system, but expected asymmetries due to orientation effects were not apparent except, perhaps, fleetingly in the topsoil. At the end of the experiment the distribution of fine roots of both species was examined by means of root trenching. TheG. robusta root system extended almost symmetrically to the edges of the plot in the uncropped part, but only to some 4 m from either side of the hedge where cropped. Part of the upper profile to 1.3 m was shared with the maize roots, butGrevillea rooted further down to at least 2 m. as well as rooting deeper. The possible implications of such niche differentiation for below-ground resource capture are noted.  相似文献   

16.
In southern Benin, West Africa, two alley cropping systems were studied from 1986 to 1992. Yield development was followed in a maize and cassava crop rotation vs. intercropping system, with alleys of Leucaena leucocephala (Lam.) de Wit and Cajanus cajan (L.) Millsp. vs. a no-tree control, with and without NPK fertiliser. Without alleys, NPK fertilisation maintained high yield levels of 2–3 t maize dry grain plus 4–6 t ha–1 cassava root DM in intercropping, 3–4 t ha–1 maize and 6–10 t ha–1 cassava in solercropping. Without NPK, final yields seemed to stabilise at about 1 t maize plus 2 t cassava in intercropping and twice as much in each solecrop. Alley cropping induced significant yield increases by about 50% with both tree species in unfertilised, intercropped maize, and with Cajanus in fertilised, solecropped cassava. In monetary terms, the NPK-fertiliser response of stabilised yields was significant for all treatments except the solecropped Leucaena alleys. It is concluded that on Ultisols with low nutrient status in the upper rooting zone, alley cropping with low-competitive tree species may improve food crop yields but the greatest monetary output is achieved by intercropping with mineral fertiliser independent of the presence or absence of an agroforestry component.  相似文献   

17.
This study examined the hypothesis that incorporation of Gliricidia sepium (Jacq.) Walp.) (gliricidia), a fast-growing, nitrogen-fixing tree, into agroforestry systems in southern Malawi may be used to increase the input of organic fertilizer and reduce the need for expensive inorganic fertilizers. The productivity of maize (Zea mays L.), pigeonpea (Cajanus cajan L.) and gliricidia grown as sole stands or in mixed cropping systems was examined at Makoka Research Station (latitude 15° 30′ S, longitude 35° 15′ E) and a nearby farm site at Nazombe between 1996 and 2000. Treatments included gliricidia intercropped with maize, with or without pigeonpea, and sole stands of gliricidia, maize and pigeonpea. Trees in the agroforestry systems were pruned before and during the cropping season to provide green leaf manure. Maize yields and biomass production by each component were determined and fractional light interception was measured during the reproductive stage of maize. Substantial quantities of green leaf manure (2.4 to 9.0 Mg ha−1 year−1) were produced from the second or third year after tree establishment. Green leaf manure and fuelwood production were greatest when gliricidia was grown as unpruned sole woodlots (c. 8.0 and 22 Mg ha−1 year−1 respectively). Improvements in maize yield in the tree-based systems also became significant in the third year, when c. 3.0 Mg ha−1 of grain was obtained. Tree-based cropping systems were most productive and exhibited greater fractional light interception (c. 0.6 to 0.7) than cropping systems without trees (0.1 to 0.4). No beneficial influence of pigeonpea on maize performance was apparent either in the presence or absence of gliricidia at either site in most seasons. However, as unpruned gliricidia provided the greatest interception of incident solar radiation (>0.9), coppicing may be required to reduce shading when gliricidia is grown together with maize. As pigeonpea production was unaffected by the presence of gliricidia, agroforestry systems containing gliricidia might be used to replace traditional maize + pigeonpea systems in southern Malawi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Models for predicting height and diameter of individual trees in young Picea abies (L.) Karst. stands were developed. Data collected in a large survey of young forest stands in Sweden (the HUGIN young stand survey) were used in the construction of the models. Models were developed both with and without competition indices included. When constructing the competition indices trees within three metres from the subject tree were regarded as competitors. Functions with competition indices included (distance dependent) will be useful in analyses of the development of stands with different stand structure, whereas functions without competition indices (distance independent) will be useful in systems for long‐term forecasts of yield.  相似文献   

19.
The effects of spacings between hedgerows (alley widths) and the spacings of trees within hedgerows ofGliricidia sepium on growth and grain yield of maize were investigated at Senehun in southern Sierra Leone. Four between-row spacings (2, 4, 6 and 8 m) were combined with three within-row spacings (0.25, 0.50 and 1.00 m) in a split block design. Maize, at densities of 20,000, 40,000 and 53,333 plants ha–1, was established in the alleys and also as pure crops. N, P and K fertilizers were applied to all plots before pruning of the trees began. When pruning started, only the pure maize plots received fertilizer; prunings from the hedgerows were returned to the appropriate alleys in the other plots.Plots with the highest maize populations consistently gave the best yields before pruning started, but lower populations gave improved yields after pruning. Yields of maize increased with increasing alley widths before the start of pruning, after which the narrower alleys of 2 and 4 m outyielded the wider ones by almost double, probably because of the large amount of nutrients applied in prunings. Lack of light limited grain yields before the start of pruning, when there was some shading by the hedgerows. Alleys of 2–4 m wide, planted no closer than 0.50 m within rows, resulted in more than twice the yields of maize than in the 8-m alleys planted at 0.25 m within rows, once the hedgerows were well established and were being managed.  相似文献   

20.
To meet their wood, fodder and fruit needs, resource-poor farmers with only small land holdings are forced to mix trees in their food crop plots. An experiment was conducted to study the effect of nine tree species planted at 312.5 trees ha–1 (4×8 m) on the yield of bananas planted at 625 stools ha–1 (4×4 m) and beans (80000 plants ha–1) as well as the wood production of the trees when intercropped. In addition, an economic analysis was done to compare the different tree/banana/bean associations.After three and one-half years, wood volume (in m3 ha–1) ofGrevillea robusta (18.1), was highest and that ofErythrina poeppigiana (2.7),Cedrela odorata (2.4) orMarkhamia lutea (0.8) was the lowest. Volume ofCedrela serrata (13.7) was not significantly different from that ofAlbizia chinensis (12.8) but was significantly higher than that ofLeucaena diversifolia (6.8),Acrocarpus fraxinifolius (6.7) orCalliandra calothyrsus (6.0).None of the tree species had a significant influence on the yields of the bananas and none affected the yield of the bean crops until the seventh cropping season, three years after the trees were planted. In that year, Grevillea reduced bean yield by 29%, Albizia by 34% and Leucaena by 36%. From the economic analyses, all the treatments except Leucaena and Markhamia had positive net benefits relative to the control (banana/bean) but the results were highly variable.C. serrata was found to be the best tree to be intercropped in a banana/bean system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号