首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study investigated the changes of the bioavailable isoflavones, including daidzin, genistin, daidzein, and genistein, during the making of tofu. The amount of extracted daidzin and genistin in soy milk increased with increasing water-to-bean ratios from 5 to 9 and reached the maximum level at the ratios of 9-11. On the other hand, the amount of extracted free isoflavones (daidzein and genistein) was not affected by the water-to-bean ratio at the range of 5-11, and their extracted amounts in soy milk were 2-4-fold those in raw soybean. It is suggested that these free isoflavones are mainly derived from daidzin, genistin, malonyldaidzin, and malonylgenistin through enzymatic hydrolysis during the making of soy milk. Tofu made with water-to-bean ratios of 9:1 and 10:1 had the maximal retentions of daidzin and genistin, which were due to the fine homogeneous network microstructure that is supposed to be more effectively retained through hydrophilic interaction with protein. On the contrary, the retained amount of free isoflavones decreased significantly as the water-to-bean ratio increased from 7 to 11, due to their weakening hydrophobic interaction with protein. In this study it was found that the homogeneous microstructure of tofu improved the retention of hydrophilic daidzin and genistin and that the increased amount of drained water does not significantly reduce their retention in the final tofu products as generally imagined.  相似文献   

2.
Phenolic profiles and antioxidant properties of a total of 30 soybean samples, including 27 grown in the North Dakota-Minnesota region and three soybeans from the other regions, were investigated. The total phenolic content (TPC), total flavonoids content (TFC), phenolic acids, flavonols, anthocyanins, and isoflavones were quantified. Antioxidant properties of soybean extracts were assessed using 2-diphenyl-1-picryhydrazyl free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) methods. Results showed that black soybean cultivars possessed significantly higher TPC, TFC, DPPH, FRAP, and ORAC values than all yellow soybean cultivars. However, black soybean cultivars did not exhibit significantly higher individual phenolic contents (except for anthocyanins), such as phenolic acids and isoflavones, than the yellow soybean cultivars. The isoflavone profiles of North Dakota soybean cultivars were similar to those of South Dakota, but average values of total isoflavone (TI) contents were higher than soybeans grown in the other states and Korea and Japan according to the U.S. Department of Agriculture-Iowa State University Database on the isoflavone contents of foods. Correlation assays showed that TPC, TI, total phenolic acids, daidzin, genistin, malonyldaidzin, daidzein, genistein, and trans-cinnamic acid significantly ( r = 0.73, 0.62, 0.49, 0.68, 0.59, 0.59, 0.56, 0.47, and 0.76, respectively, p < 0.0001) correlated with ORAC values of yellow soybeans. Both isoflavones and phenolic acids contributed to the ORAC values of yellow soybeans. These data suggest that some selected soybean cultivars may be used as high-quality food-grade soybeans for providing high phenolic phytochemicals and antioxidant activities.  相似文献   

3.
The conversion and degradation of malonylglucosides were kinetically characterized under elevated pH/heat conditions. Malonylgenistin and malonyldaidzin were heated at 60, 80, and 100 degrees C and pH values of 8.5, 9, and 9.5. A simple kinetic model was developed, which adequately predicted the conversion and degradation reactions. The conversion and degradation rates increased as temperature and pH increased. The rates of conversion of both malonylglucosides into their respective beta-glucosides were comparable under all pH/heat treatments. However, at 100 degrees C, the rates of degradation of malonyldaidzin were approximately double those of malonylgenistin, under all pH treatments. When malonlydaidzin was heated at 100 degrees C and pH 9.5, degradation of the produced daidzin occurred. Therefore, an alternative kinetic model was developed to better predict the conversion and degradation of malonyldaidzin occurring at 100 degrees C and pH 9.5. The models developed provide soy food manufacturers with guidelines for better control of the profile and level of isoflavones..  相似文献   

4.
The soy isoflavones daidzin, glycitin, and genistin were purified from defatted soy flour using preparative-scale reverse-phase HPLC. The stabilities of the three isoflavones at different heating temperatures were investigated. Daidzin, glycitin, and genistin were lost at a rate of 26, 27, and 27% of their original concentration, respectively, after 3 min at 185 degrees C. At 215 degrees C, decreases of daidzin, glycitin, and genistin were 65, 98, and 74% after 3 min and 91, 99, and 94% after 15 min, respectively. The order of the thermal stabilities, from lowest to highest, was glycitin, genistin, and daidzin. Acetyl daidzin and acetyl genistin, daidzein, glycitein, and genistein were produced during heating at temperatures above 135 degrees C. The rate of binding of an acetyl group to form acetyl daidzin and acetyl genistin from daidzin and genistin was higher than the rate of loss of a glucoside group to form daidzein and genistein. However, acetyl daidzin and acetyl genistin decreased sharply at temperatures above 200 degrees C, while daidzein, glycitein, and genistein were relatively stable over 30 min. The stability of daidzein was higher than that of glycitein or genistein.  相似文献   

5.
Soybeans were soaked with water for 4 h, steam-cooked, inoculated with the conidia of Aspergillus oryzae, and incubated for 3 days for koji preparation. The koji was then mixed with water-soaked and steam-cooked soybeans (1:2, w/w), ground into paste, and supplemented with 15% ethanol and 12.5% NaCl or 3% ethanol and 6% NaCl for miso fermentation at 30 degrees C. Daidzin, genistin, daidzein, and genistein contents were extracted from the lyophilized and pulverized soybean powder or from the miso homogenate by a developed one-tube procedure and analyzed with an HPLC. After water soaking, daidzein and genistein contents increased markedly, whereas daidzin and genistin contents decreased. Further increases of daidzein and genistein contents and decreases of daidzin and genistin contents were observed after koji mold growth. During fermentation, fungal and lactic acid bacterial (LAB) growth in the miso products was inhibited, whereas soluble protein contents increased much more rapidly in the low-salt miso products supplemented with 3% ethanol and 6% NaCl than the other products. When the 4- and 8-week-fermented miso products were cooked with tofu for sensory evaluation, flavor ratings of the low-salt products were higher than that of a popular commercial product. In both products, the most daidzins and genistins were hydrolyzed after 4 weeks of fermentation. The hydrolytic enzymes contributing to isoflavone transformation originated from soybeans after water soaking and from koji with mold growth. It was of merit that the low-salt fermented products were fairly acceptable in flavor rating and rich in daidzein and genistein contents after 4 weeks of fermentation.  相似文献   

6.
The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a hand-weeded control, apparently due to herbicide drift.  相似文献   

7.
We determined and compared the composition and content of isoflavones in the cotyledon, hypocotyl, and root of 17 soybean sprout varieties grown under dark and light conditions. The total average isoflavone concentrations in 17 soybean sprout varieties were 2167 microg g(-1) (green sprout) and 2538 microg g(-1) (yellow sprout) in cotyledons, 1169 microg g(-1) (green sprout) and 1132 microg g(-1) (yellow sprout) in hypocotyls, and 2399 microg g(-1) (green sprout) and 2852 microg g(-1) (yellow sprout) in roots. There were no significant differences in total isoflavone concentrations between the green and yellow sprouts. However, significant differences in total isoflavone amounts were observed among the three organs, with roots exhibiting the highest total isoflavone concentrations followed by cotyledons and hypocotyls. Total daidzin concentrations of green (775 microg g(-1)) and yellow (897 microg g(-1)) sprouts increased to more than 4 times that in seeds (187 microg g(-1)). Yellow sprouts contained the highest (1122 microg g(-1)) total genistin concentrations, and green (155 microg g(-1)) and yellow (155 microg g(-1)) sprouts had more total glycitin concentrations than seeds. In cotyledons of green and yellow sprouts, genistin, daidzen, and glycitin constituted more than 67%, more than 28%, and less than 4% of the total isoflavone contents, respectively. In hypocotyls, total daidzin represented more than 45% of the total isoflavones, and total glycitin was higher than in cotyledons and roots. Malonylglycoside concentrations were highest in cotyledons, whereas glycoside concentrations were highest in hypocotyls and roots. The high accumulation of isoflavones in roots is consistent with isoflavones serving as signal molecules in the induction of microbial genes involved in soybean (Glycine max) nodulation.  相似文献   

8.
Isoflavones and carotenoids in four experimental genotypes and Hutcheson cultivar soybeans were evaluated as a function of processing treatments and maturity. Total isoflavone and carotenoid contents were affected by genotypes and maturity stages (p < 0.0001). Total isoflavones ranged from 472 microg/g (in NTCPR93-40) to 2280 microg/g (in Hutcheson). Lutein contents ranged from 895 (in NTCPR93-286) to 2119 (in Honey Brown), and beta-carotene ranged from 291 (in Hutcheson) to 491 (in NICPR92-40) microg/100 g. Mean total isoflavone retention percentages in immature Hutcheson soybeans were 46% (boiling), 53% (freezing), and 40% (freeze-drying). Mean retentions of lutein and beta-carotene, respectively, were 92 and 73% in frozen, 62 and 62% in boiled, and 34 and 27% in freeze-dried soybeans. Boiling caused a substantial increase in daidzin, genistin, and genistein. The results show that post-harvest changes in total isoflavones and carotenoids in soybeans are influenced by processing methods, but genotype has an effect on isoflavone and carotenoid profiles during seed development.  相似文献   

9.
The objective of the present study was to determine whether concentrations of different isoflavones (puerarin, genistein, genistin, daidzein, and daidzin) in shoots and roots of five selected soybean genotypes would respond the same or differently to red (650 nm peak transmittance) and far-red (750 nm peak transmittance) light treatments given under controlled environments. Levels of isoflavones (mg g(-1) dry weight biomass) present in seeds, control roots, and shoots and 10 day light-treated seedlings (light, dark, red, and far-red wavelengths) of soybean (Glycine max) were determined by high-performance liquid chromatography analysis in comparison with known isoflavone standards. Seeds of the five soybean genotypes studied consistently stored most of their isoflavones as glucosyl conjugates (e.g., daidzin, genistin, and puerarin). For the five soybean genotypes, isoflavone levels were lower in the seeds as compared with roots plus shoots of control, time zero (first true leaf stage) seedlings. Following 10 days of the respective light treatments, we found that (i) isoflavone levels were enhanced in dark-grown plants over light-grown plants for three of the five genotypes (a new finding) and the reverse occurred for a single genotype (a typical response of legumes) and (ii) generally, far-red end of day (EOD) light treatment enhanced total isoflavone levels in roots plus shoots over red EOD light treatment. Results from the present study show that phytochrome does appear to play a role in regulating isoflavone levels in developing soybean seedlings and that this influence by red/far-red-mediated phytochrome reactions is strongly dependent on the genotypes selected for study.  相似文献   

10.
The recombinant β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus was purified with a specific activity of 330 U/mg for genistin by His-trap chromatography. The specific activity of the purified enzyme followed the order genistin > daidzin > glycitin> malonyl glycitin > malonyl daidzin > malonyl genistin. The hydrolytic activity for genistin was highest at pH 6.0 and 95 °C with a half-life of 59 h, a K(m) of 0.5 mM, and a k(cat) of 6050 1/s. The enzyme completely hydrolyzed 1.0 mM genistin, daidzin, and glycitin within 100, 140, and 180 min, respectively. The soybean flour extract at 7.5% (w/v) contained 1.0 mM genistin, 0.9 mM daidzin, and 0.3 mM glycitin. Genistin, daidzin, and glycitin in the soybean flour extract were completely hydrolyzed after 60, 75, and 120 min, respectively. Of the reported β-glucosidases, P. furiosusβ-glucosidase exhibited the highest thermostability, k(cat), k(cat)/K(m), yield, and productivity for hydrolyzing genistin. These results suggest that this enzyme may be useful for the industrial hydrolysis of isoflavone glycosides.  相似文献   

11.
An ultrafast HPLC/UV-vis DAD method working at 254 nm was applied for the determination of isoflavone aglycons and glycosides (genistin, genistein, daidzein, daidzin, glycitin, glycitein, ononin, formononetin, sissotrin, and biochanin A) in roots, stems, leaves, and soy pods of soy plants and in soybeans of five varieties (Korada, Quito, Rita, OAC Erin, and OAC Vison). An Atlantis dC18 ultrafast RP chromatographic column (20 mm x 2.1 mm, 3 microm particle size) was applied for separation of the isoflavone aglycons and glycosides. A flow rate of the mobile phase (0.1% (v/v) acetic acid, pH 3.75-solvent A and methanol-solvent B) was 0.35 mL min(-1), and the column temperature was 36 degrees C. A linear gradient profile from 13 up to 22% B (v/v) from zero to 2.5 min, up to 30% B to 3.21 min, up to 35% B to 4 min, up to 40% B to 4.5 min, up to 50% B to 5.14 min, and followed by negative gradient up to 13% B to 7.71 min was used. The absolute limits of detection per sample injection (5 microL) were the highest for biochanin A (166.2 fmol) and the lowest for genistin (17.0 fmol), respectively. An accelerated solvent extraction (ASE) in combination with sonication was applied for isolation of biologically active compounds. A solid-phase extraction procedure was used to purify the extracts in the case of analysis of soy plants parts. The recoveries of 96-106% were obtained for the different concentrations of the isoflavone aglycons and glycosides and the different matrixes (overall RSDs 2-9%). The highest isoflavone concentrations were found in roots (12.5 microg g(-1) dry weight), while the amounts were about 3-1100 microg g(-1) fresh weight in different varieties of soybeans.  相似文献   

12.
Isoflavones are novel nutraceutical constituents of soybeans, but considerable amounts are lost in the whey during conventional tofu manufacturing. In this study, in a small-scale process, 2 mL of koji enzyme extract (soybean koji/deionized water, 1/3, w/v) was combined with 600 mL of soy milk, and 30 mL aliquots were incubated at 35 degrees C for 0, 30, 60, 120, and 300 min, for enzyme pretreatment. After each treatment time, soy milk was heated to 85 degrees C, CaSO4 was added to aggregate protein, and the mixture was centrifuged to separate the solids (tofu) from the whey. The tofu yield and moisture contents from soy milk treated for 30 or 60 min were higher than those from soy milk treated for 0 (control), 120, or 300 min. The protein content of freeze-dried tofu varied in a limited range, and native PAGE and SDS-PAGE patterns revealed slight quantitative and qualitative variations among products. Soy milk daidzein and genistein contents increased while daidzin and genistin contents decreased as the time of enzyme pretreatment of the soy milk increased. After 30 min of pretreatment, daidzin, genistin, daidzein, and genistein contents recovered in tofu products were higher than those of the control. In a pilot-scale process, aliquots (3 L) of soy milk were enzyme-treated for 30 min, aggregated with CaSO4, and hydraulically pressed to remove the whey. As in pretreatments, soy milk daidzein and genistein contents increased while daidzin and genistin contents decreased. In a comparison of the control and enzyme-treated tofu products, the total recoveries of daidzin, genistin, daidzein, and genistein in the tofu products increased from 54.9% to 64.2%. When the tofu products were subjected to a sensory panel test, both products were judged acceptable.  相似文献   

13.
The compositions of a diverse range of commercially available conventional and genetically modified (GM; glyphosate-tolerant) soybean varieties from maturity groups 8 and 5, respectively, grown in the northern and southern soybean regions of Brazil during the 2007-2008 and 2008-2009 growing seasons were compared. Compositional analyses included measurement of essential macro- and micronutrients, antinutrients, and selected secondary metabolites in harvested seed as well as measurement of proximates in both forage and harvested seed. Statistical comparisons utilized a mixed analysis of variance model to evaluate the relative contributions of growing season, soybean growing region, production site, phenotype (GM or conventional), and variety. The study highlighted extensive variability in the overall data set particularly for components such as fatty acids, vitamin E, and isoflavones. There were few differences between the GM and non-GM populations, and most of the variability in the data set could be attributed to regional and variety differences. Overall, the results were consistent with the expanding literature on the lack of any meaningful impact of transgene insertion on crop composition.  相似文献   

14.
Isoflavones occur primarily as glycosides (namely, malonyl-, acetyl-, and non-conjugated beta-glycosides) and a small percentage as the bioactive aglycon. The different chemical structures of isoflavones can dictate their stability during processing. Therefore, our objective was to determine the effects of pH and thermal treatments on conjugated isoflavones with regard to interconversions and loss. Conjugated daidzin and genistin were heated at 25, 80, and 100 degrees C under neutral, acidic, and basic conditions. Changes in isoflavone derivatives were monitored using high-performance liquid chromatography. Along with interconversions, considerable loss in total known isoflavone derivatives was noted for each isoflavone, especially under elevated pH and temperature. The malonylglycosides showed more stability than acetylglycosides, especially under acidic conditions. Overall, loss in isoflavone derivatives was significantly higher for daidzin than for genistin glycoside forms. Our results highlighted the significance of chemical structure with regard to stability, which is a key factor in determining soy processing conditions.  相似文献   

15.
LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans   总被引:2,自引:0,他引:2  
High-performance liquid chromatography coupled with ultraviolet and electrospray ionization mass spectrometry (HPLC/UV/ESI-MSD) was applied to the study of isoflavones in both Edamame and Tofu soy varieties, from which the immature fresh soybeans or the mature soybean seeds are consumed, respectively. Positive atmospheric pressure interface (API) MS and MS/MS were used to provide molecular mass information and led to the identification of a total 16 isoflavones, including three aglycones, three glycosides, two glycoside acetates, and eight glycoside malonates. The major isoflavones in soybean seeds were daidzein and genistein glycoside and their malonate conjugates. Trace levels of daidzein and genistein acetyl glycosides were found only in the mature dry soybean seeds. To facilitate quantitative analysis, acid hydrolysis during extraction of soy samples was selected to convert the various phytoestrogen conjugates into their respective isoflavone aglycones, allowing accurate quantitation of total phytoestrogens as aglycones. On the basis of HPLC combined with UV and MS detection, all three targeted soy isoflavone aglycones, daidzein, genistein and glycitein in hydrolyzed extracts were successfully quantified within 25 min with formononetin used as the internal standard. The standard curves of UV detection were fitted in the range of 14.16-29000 ng/mL for daidzein, 15.38-31500 ng/mL for genistein, and 11.72-24000 ng/mL for glycitein. For MS detection, the standard curves were established in the range of 3.54-1812.5 ng/mL for daidzein, 3.85-1968.75 ng/mL for genistein, and 2.93-1500 ng/mL for glycitein. Good linearities (r(2) > 0.999 for UV and r(2) > 0.99 for MS) for standard curves were achieved for each isoflavone. The accuracy and precision (RSD) were within 10% for UV detection and 15% for MS detection (n = 10). Using this method, the phytoestrogen levels of total isoflavone aglycones from 30 soybean seed varieties were then evaluated for confirmation of the technique. Total isoflavones ranged across the varieties from 0.02 to 0.12% in the Edamame varieties, which are harvested while the seeds are still immature, and from 0.16 to 0.25% in Tofu varieties, harvested when the seeds are physiologically mature. While the literature has focused on the isoflavone content of soy products and processing soy, this report provides a reliable analytical technique for screening of authenticated fresh immature Edamame soybeans and Tofu soybeans.  相似文献   

16.
Profiles of genistein, daidzein, genistin, daidzin, and their acetyl- and malonyl-beta-glycosides were determined in tofu as affected by temperature and time. Tofu was heated in water at 80, 90, and 100 degrees C for 0 (control), 10, 20, 30, and 40 min, and the contents of the isoflavones of interest were quantified using reversed-phase HPLC. Total isoflavone content decreased most likely due to leaching of isoflavones into the water. Because the content of the isoflavones of the genistein series was little affected by the treatments, the decrease in the total isoflavone content was almost exclusively due to a decrease of the daidzein series. Changes in the profile of the daidzein series suggest little decarboxylation of the malonylglycoside to the acetylglycoside, but considerable de-esterification of the malonyl- and acetylglycoside to the beta-glucoside. Strongly temperature dependent decreases of the aglycon suggest possible thermal degradation of daidzein in addition to losses due to leaching.  相似文献   

17.
Fifteen soybean [Glycine max (L.) Merrill] cultivars were grown in Seoul, Suwon, and Kyongsan, Korea, in 1998, 1999, and 2000, and their isoflavone contents were assessed. After harvest, the beans were stored for 3 years at room temperature. Soybean isoflavones were analyzed using high-performance liquid chromatography (HPLC) within each crop year and after storage. Total isoflavone contents ranged from 188.4 to 685.6 mg 100 g(-1) in 1998, from 218.8 to 948.9 mg 100 g(-1) in 1999, and from 293.1 to 483.0 mg 100 g(-1) in 2000. The year x variety, and year x location x variety interactions were significantly different in 1998, the year x location, year x variety, and year x location x variety interactions were significantly different in 1999, and the year x variety interaction was significantly different in 2000 for total and individual isoflavone contents. Total isoflavone contents of soybeans stored for 1 year were only slightly higher than those of soybeans stored for 2 or 3 years. However, the concentrations of individual isoflavones, especially 6' '-O-malonyldaidzin and 6' '-O-malonylgenistin, decreased markedly in soybeans stored for 2 or 3 years. These data suggest that it may be feasible to improve soybean cultivars with higher antioxidative substances.  相似文献   

18.
Abstract

Different rates of K, Ca, and Mg were applied to bulklots of Decatur clay loam (pH 5.8) which had been collected from an area under natural vegetation. Nitrogen and P were each applied at the rate of 100 ppm. Soybean (Glycine max L.) and corn (Zea mays L.) were planted to pots in four replications of each treatment. Plants were grown for 6 weeks and subsequently all the pots were re‐planted to soybeans. This crop rotation was repeated until six crops had been harvested from each pot.

Potassium fertilization did not affect soybean growth but increased the dry matter of corn plants. Calcium application affected the growth of neither crop, but Mg addition to the soil reduced the growth of both crops. The composition of the plants generally reflected the available amounts of each nutrient. Additionally, Mg consistently decreased K in soybeans but increased Mn in the two crops. The inclusion of corn in rotation with soybeans resulted in the following effects on the succeeding soybean harvests: more tolerance to high Mg, greater reduction of plant Ca and Mg caused by K application, and lower levels of available K and Ma in soils and soybeans. However, the greater rate of depletion of soil K and Mn under corn rotation did not appear Co affect the dry matter yields of the following soybean plants relative to the plants under the continuous soybean cropping system.  相似文献   

19.
The seeds of 322 Korean soybean varieties were collected from six different cultivated sites in Korea and classified into three groups based on the 100-seed weight as small, medium, and large. Seeds were analyzed for their concentrations of isoflavones and phenolic compounds. The total average isoflavones in soybean cultivated at Iksan (2.840 micromol g(-1)) and phenolic compounds in soybean grown at Yeoncheon (9.216 micromol g(-1)) and Iksan (9.154 micromol g(-1)) were significantly different (p<0.05). In small and medium seeds of soybeans cultivated at Yeoncheon, Yesan, and Milyang high levels of isoflavones were obtained, whereas soybeans grown in Chuncheon showed the lowest isoflavone concentrations. However, isoflavone concentrations in the large seeds of soybean cultivated at Chuncheon showed the highest level. The soybean cultivated at Yeoncheon had high levels of phenolic compounds in small, medium, and large seeds, whereas the soybean grown at Chuncheon had the lowest. On the other hand, the phenolic concentrations of large soybean cultivated at Milyang were the least. At Yeoncheon, Yesan, and Milyang, the total isoflavone and phenolic compounds levels related to their seed size was significantly different (p<0.05), whereas in the soybean of different sizes cultivated at Chuncheon, the relationship to their seed size was not significantly different. The relationships of total isoflavones and phenolic compounds of small and medium soybean seeds were significantly higher than that of large soybean seeds. The hydroxybenzoic acid group in all sizes of seeds cultivated at six sites in Korea was the major phenolic compound, followed by flavonoid and hydroxycinnamic acid. The total isoflavone concentration was positively correlated with acetylglycoside and negatively correlated with malonylglycoside in the small soybean seeds cultivated at Yeoncheon. In medium soybean seeds cultivated at Yeoncheon, a significantly positive correlation was found between acetylglycoside and glycoside, between aglycone and glycoside, and between aglycone and acetylglycoside, whereas a significantly negative correlation was shown between malonylglycoside and glycoside, between acetylglycoside and malonylglycoside, and between aglycone and malonylglycoside. In large soybean seeds cultivated at Chuncheon, significantly positive and negative correlations were similar to those of medium seeds. The results presented here can improve the understanding of the relationships among the concentrations of individual chemical compounds and each chemical compound group and total chemical compounds in soybeans of different seed sizes from different cultivated sites.  相似文献   

20.
Pharmacokinetic studies of soybean isoflavones have shown that following oral ingestion, the two major isoflavones, daidzin and genistin, are hydrolyzed in the intestine, rapidly absorbed into the peripheral circulation, and eliminated from the body with a terminal half-life of 7-8 h. These characteristics make maintenance of steady-state plasma isoflavone concentrations difficult to attain unless there is repeated daily ingestion of foods or supplements containing isoflavones. In an attempt to sustain more constant plasma isoflavone concentrations, a new slow-release formulation of a soybean isoflavone extract was prepared by microencapsulation with a mixture of hydroxypropylcellulose and ethylcellulose to alter its dissolution characteristics. In vitro experiments confirmed slow aqueous dissolution of isoflavones from this formulation when compared with the conventional isoflavone extract. The pharmacokinetics of this slow-release isoflavone extract was studied in 10 healthy postmenopausal women after oral administration of a single capsule containing the equivalent of 22.3 mg of genistein and 7.47 mg of daidzein expressed as aglycons. A comparison of the key pharmacokinetic parameters obtained in this study with those established in extensive studies performed previously in this laboratory indicated that the mean residence time of genistein and daidzein increased 2-fold with microencapsulation. These findings are indicative of a decreased rate of absorption, consistent with the observed slow in vitro dissolution rate. These findings show that it is feasible to employ polymer matrices that slow the aqueous dissolution for preparing sustained-release formulations of soy isoflavones. Further studies to optimize such formulations are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号