首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We surveyed the major capsid genes (g23) of T4-type bacteriophages using the primers MZIA1bis and MZIA6 and DNA extracted from seven upland black soils in Northeast China. In total, 99 different g23 clones were obtained. Approximately half of the clones fell into paddy groups, whereas the rest belonged to one of several groups containing only clones from upland black soils or remained ungrouped, suggesting that the T4-type phage communities in the upland black soil were relatively similar to those in paddy field soils but that specific communities exclusively inhabit the upland black soil. UniFrac analysis of all of the g23 clones obtained from various environments indicated that the T4-type phage communities varied among marine, lake, paddy field soil and upland soil environments and that the T4-type phage communities in upland black soils varied by sampling location.  相似文献   

2.
Bacteriophages (phages) are the most abundant biological entities on the planet and are important as the greatest genomic reservoirs in both marine and terrestrial environments. In this study, we analysed T4-type phage communities in an upland black soil by monitoring g23 clones in DNA extracted from seasonal soil samples with no fertilizer, chemical fertilizers, chemical fertilizers plus manure, and natural restoration treatments. PCR products with degenerate primers MZIA1bis and MZIA6 were subjected to denaturing gradient gel electrophoresis. In total, 46 clones with different g23 sequences were obtained. Phylogenetic analyses indicated that T4-type phage communities in the upland black soil were distinctly different from those in marine environments and in an Antarctic lake, which strongly suggested that T4-type phage communities in soil differed from those in aquatic environments. Among 46 clones, 18 clones formed clusters with the clones from rice field soils, 14 clones formed three new clusters, and 13 clones were left as ungrouped, which indicated that T4-type phage communities in the upland black soil were relatively similar to those in rice field soils but that specific communities also inhabit in the upland black soil exclusively.  相似文献   

3.
Many studies have shown the ecological importance of viruses as the greatest genomic reservoirs on the planet. As bacteriophages (phages) comprise the majority of viruses in the environment, we surveyed the capsid genes (g23) of T4-type phages, Myoviridae, from DNA extracts of three paddy field soils located in northern, central and southern Japan using the degenerate primers MZIA1bis and MZIA6. Denaturing gradient gel electrophoresis (DGGE) was performed to separate PCR-amplified g23 products, and 56 DGGE bands were identified as g23 fragments. Only nine clones were grouped into T-evens, PseudoT-evens and ExoT-evens, and most of the other clones were classified into Paddy Groups I-VI. No significantly different distribution of g23 clones was observed among the paddy fields at the group level, indicating that phage communities estimated from the g23 composition were common on the nationwide level. Comparison of g23 sequences showed that g23 genes in paddy fields were different from those in marine environments, and more divergence of g23 genes was estimated in the paddy fields compared to the marine environment. Two novel g23 clones with very short amino acid residues were detected, suggesting the existence of uncharacterized, novel groups of g23 genes in paddy field soils.  相似文献   

4.
Our previous study revealed the high diversity of the major capsid gene (g23) of T4-type phages that existed in the paddy field soils in Northeast China. In this study, the phylogeny and genetic diversity of the g23 gene in the paddy floodwater samples collected from five sampling sites at three sampling times during the rice (Oryza sativa L.) growth season in Northeast China are reported. In total, 104 different g23 clones were isolated, among which 50% of the clones exhibited the highest identities with the clones retrieved in paddy soils and upland black soils. The remaining clones had the highest identities with lake origins. Phylogenetic analysis revealed that 43% of the g23 clones grouped into three novel subgroups which included the clones unique to paddy floodwater, and no g23 sequences obtained in paddy floodwater fell into the paddy soil groups II, III, IV, V, VI, VII and NPC-A. UniFrac analysis of g23 clone assemblages demonstrated that T4-type phage communities in paddy floodwater were changed spatially and temporally, and the communities were different from those in paddy soils. Further comparison of the g23 clone assemblages from different environments demonstrated that T4-type phages were biogeographically distributed, and the distribution was both affected by geographical separation and ecological processes across the biomes.  相似文献   

5.
Our previous study indicated that the diversity of the major capsid gene (g23) of T4-type bacteriophages (phages) of Novosphingobium and Sphingomonas strains isolated from the floodwater of a Japanese paddy field is comparable to those of the clones obtained from other Japanese paddy fields. For more strict comparison of the diversity, this study examined g23 sequences between Novosphingobium and Sphingomonas phages and phage communities in the identical floodwater of a Japanese paddy field. The clones were obtained by applying g23-specific primers to DNA extracted from the floodwaters. Many 23 clones in the floodwater were grouped into the same clusters of Paddy Groups I-VI with g23 genes of Novosphingobium/Sphingomonas phages with some clones belonging to an additional cluster. In addition, the remaining clones belonged to the clusters of marine clones and T4-type enterophages. These findings indicate that the g23 genes in the floodwater are more diversified than those of Novosphingobium/Sphingomonas phages including g23 genes closely related to the genes of enterophages and marine origins.  相似文献   

6.
Although microbial communities in soil are well known to change with soil depth, the changes in viral communities with soil depth have not been documented. This study examined the soil depth profiles of T4-type phage communities in two Japanese rice fields from g23 clones in soil DNA extracts to a depth of 1 m. T4-type phage communities changed with soil depth, and the communities were grouped into two groups: the communities of the surface soil layers, where rice roots developed densely, and those of the subsoil layers. Although coarse- and fine-textured soils were stratified in the subsoil layers in both profiles, denaturing gradient gel electrophoresis band patterns and phylogenetic affiliation of g23 were highly similar to each other among the subsoil layers in both fields, indicating that soil texture did not affect T4-type phage communities in these fields. In addition, some clones had g23 sequences identical to those retrieved from rice fields in Northeast China, indicating that closely related viruses and their hosts distribute across the sea between rice fields in Japan and Northeast China.  相似文献   

7.
The present study examined T4-type phage communities in rice straw (RS) under the composting process by analyzing the composition of the major capsid gene ( g23 ) of T4-type bacteriophages. The g23 clones were obtained from RS throughout the composting process from RS materials to composting RS in the curing stage (for 124 days). Most of the g23 clones were phylogenetically closely related to those in rice field soils and rice field floodwaters, and Paddy Groups II and III appeared to characterize the g23 genes in the composting RS. The diversity of g23 genes in the composting RS was highest in the RS material (day 0 after the onset of composting) and in the early thermophilic stage (day 7), and decreased markedly in the middle and curing stages. This change was in contrast to that of the bacterial community, which showed higher diversity in the middle and curing stages. There was no specific clone that characterized any stage during the composting process. These findings indicate that the phage community is not the major controlling agent in determining eubacterial succession and that the thermophilic stage in the composting process efficiently annihilated T4-type phages in the composting pile.  相似文献   

8.
Abstract

The phylogenetic positions of bacterial communities in manganese (Mn) nodules from subsoils of two Japanese rice fields were estimated using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis followed by sequencing of 16S rDNA. The DGGE band patterns and sequencing analysis of characteristic DGGE bands revealed that the bacterial communities in Mn nodules were markedly different from those in the plow layer and subsoils. Three out of four common bands found in Mn nodules from two sites corresponded to Deltaproteobacteria and were characterized as sulfate-reducing and iron-reducing bacteria. The other DGGE bands of Mn nodules corresponded to sulfate and iron reducers (Deltaproteobacteria), methane-oxidizing bacteria (Gamma and Alphaproteobacteria), nitrite-oxidizing bacteria (Nitrospirae) and Actinobacteria. In addition, some DGGE bands of Mn nodules showed no clear affiliation to any known bacteria. The present study indicates that members involved in the reduction of Mn nodules dominate the bacterial communities in Mn nodules in rice field subsoils.  相似文献   

9.
Abstract

The present study examined T4-type phage communities in rice straw (RS) under the composting process by analyzing the composition of the major capsid gene (g23) of T4-type bacteriophages. The g23 clones were obtained from RS throughout the composting process from RS materials to composting RS in the curing stage (for 124?days). Most of the g23 clones were phylogenetically closely related to those in rice field soils and rice field floodwaters, and Paddy Groups II and III appeared to characterize the g23 genes in the composting RS. The diversity of g23 genes in the composting RS was highest in the RS material (day 0 after the onset of composting) and in the early thermophilic stage (day 7), and decreased markedly in the middle and curing stages. This change was in contrast to that of the bacterial community, which showed higher diversity in the middle and curing stages. There was no specific clone that characterized any stage during the composting process. These findings indicate that the phage community is not the major controlling agent in determining eubacterial succession and that the thermophilic stage in the composting process efficiently annihilated T4-type phages in the composting pile.  相似文献   

10.
We surveyed the capsid genes (g23) of T4-type bacteriophages in DNA extracted from fifteen rice field soils in Northeast China using primers MZIA1bis and MZIA6. Denaturing gradient gel electrophoresis (DGGE) was performed to separate PCR-amplified g23 products. In total, 53 DGGE bands were identified as g23 clones, nine of which belonged to a novel, Northeast China-specific group. In addition, four and six clones formed two novel groups with previously ungrouped clones obtained from Japanese rice fields. The majority of the remaining clones fell into Paddy Groups I and V, none of the clones belonged to Paddy Groups II, III, IV, and VI, indicating that phylogenetic distribution of g23 genes in rice fields in Northeast China was different from that in Japanese rice fields.  相似文献   

11.
Viruses exist everywhere on the planet. Recent development in viral genomics confirmed that genomic information is preserved among viral subsets and can be used for phylogenetic classification of viruses and for evaluation of viral diversity in the environment. The capsid gene of T4-type bacteriophages, g23, is the most widely applied gene for evaluating the diversity of the T4-type bacteriophage family. In this study, we applied denaturing gradient gel electrophoresis to PCR products of DNA with g23-specific primers that were extracted from a Japanese paddy field under long-term fertilizer trial and obtained 39 different g23 clones at the DNA level. They showed identities of 27–99% with the clones within the NCBI database at the amino acid level. They were quite distinctive from those obtained in marine environments and most of them formed six phylogenetically novel groups in the T4-type bacteriophage family with the clones obtained from another paddy field. The existence of six novel groups was confirmed from molecular analysis of all the amino acid sequences between the primers, of the amino acid sequences excluding hypervariable region, and of those of conserved regions. These findings indicate that T4-type bacteriophage communities in paddy fields consist of previously uncharacterized members phylogenetically distant from those in marine environments. The type of fertilizers and the stage during rice cultivation were not the major factors in determining T4-type bacteriophage communities in the paddy field.  相似文献   

12.
Members of the Sphingomonas -related genera ( Sphingomonas , Sphingobium , Novosphingobium and Sphingopyxis ) are dominant in bacterial isolates from the floodwater of Japanese paddy fields. Fifty-eight Sphingomonas / Novosphingobium bacteriophages (phages) were isolated to elucidate their morphology, host range and phylogenetic diversity based on the capsid gene ( g23 ) sequence. All of the phages were siphoviruses with isometric or elongated, icosahedral capsids and a long, non-contractile tail. The genomes were double-stranded DNA measuring either 40, 60, 100 or 160 kb. The host range of the phages was examined by infecting 16 bacterial isolates from the floodwater, belonging to Sphingomonas , Novosphingobium , Sphingopyxis and Porphyrobacter . The host range was widely different and varied between infection of only the host used for isolation and infection of hosts belonging to the three genera of Sphingomonas , Novosphingobium and Porphyrobacter . All phages had g23 , indicating the ubiquity of the g23 gene among Myoviridae and Siphoviridae members. Every g23 sequence of the phages belonged to one of the six uncharacterized Paddy Groups proposed by Fujii et al . (2008 ). The g23 sequences were identical at the nucleotide level for several phages with isometric and elongated capsids with 60 and 160 kb genomes, and between some phages and the clones that were retrieved from distant paddy fields. This indicates the common occurrence of horizontal transfer of g23 in the paddy fields. The g23 sequence does not correlate with the host range of those phages. In addition, a larger degree of divergence of g23 from coliphage T4 in paddy fields compared to marine environments was estimated from the present study.  相似文献   

13.
Bacterial communities at different habitats in a Japanese paddy field ecosystem were compared to understand the bacterial world in the ecosystem as a whole by analyzing data of the denaturing gradient gel electrophoresis (DGGE) band patterns and the sequenced DGGE bands. The habitats were floodwater, percolating water, microcrustacean inhabiting in floodwater, plow layer soil, rice roots, rice straw and rice straw compost incorporated in soil, rice straw placed on the soil surface, plant residues in paddy fields, and rice straw under composting process. Phylotype (band) richness, diversity, evenness, and stability of the bacterial communities at the respective habitats were evaluated based on the DGGE profile data. Phylotype richness was greater near plant residues, rice straw buried in soil and rice straw placed on soil surface, while it was smaller at microcrustacean and rice straw compost buried in soil. The samples from plow layer soil and rice straw compost buried in soil showed considerably higher index values for diversity, evenness, and stability, while those from rice straw placed on soil surface and microcrustacean had lower values of the indices than other habitats. Sequences of totally 250 DGGE bands were assigned to phyla or classes. Distribution of bacterial members to phylogenetic taxa was different among the respective habitats. Inhabitants in plow layer soil were most widely distributed among the groups (nine phyla: Proteobacteria, Chloroflexi, Chlorobi, Verrucomicrobia, Acidobacteria, Nitrospira, candidate division OP10, Cyanobacteria, and Actinobacteria), while those in floodwater and microcrustacean were restricted to only three phyla (Proteobacteria, Bacteroidetes, and Actinobacteria). Proteobacteria and Bacteroidetes were found at all the habitats and the habitats except for plow layer soil, respectively, whereas abundant members belonged to Chloroflexi and Actinobacteria in plow layer soil. “Comprehensive mapping” of DGGE fragments was conducted by principal component analysis based on evolutionary distances of the fragments to 202 reference bacterial strains to overview phylogenetic relationships of bacterial members among the respective habitats. The score plots with the first and second principal components distinctly characterized bacterial members at the respective habitats, and the similarity between the respective communities was clearly demonstrated. Overall, bacterial communities at the respective habitats were distinct and different in the diversity and stability to each other, which may have contributed to the diversity of overall bacterial communities in the paddy field ecosystem.  相似文献   

14.
To estimate the impact of water percolation on the nutrient status in paddy fields, the seasonal variations of the concentrations of cations, anions, inorganic carbon (IC), and of dissolved organic carbon (DOC) in percolating water that was collected from just below the plow layer (PW-13) and from drainage pipes at the 40 em depth (PW-40), as well as in irrigation water were measured in an irrigated paddy field. Total amounts of Ca, Mg, K, Fe, and Mn leached from PW-13 during the period of rice cultivation were estimated to range from about 390 to 770, 65 to 130, 33 to 66, 340 to 680, and 44 to 87 kg ha-1, respectively. Amounts of losses that were estimated from the differences between the input by irrigation water and the output by percolation water from the plow layer corresponded to 11 to 26, 22 to 47,5.9 to 12, and 13 to 26% of exchangeable Ca and Mg, amorphous Fe, and easily reducible Mn in the plow layer, respectively. The concentrations of Ca, Mg, K, Fe, and Mn in PW13 were higher than those in PW-40. The amounts of these nutrients that were retained in the subsoil between the 13 em and 40 em soil depth corresponded to 83, 86, 61, 99, and 89% of the amounts that percolated from the plow layer, respectively. Total amounts of IC and DOC that percolated from the plow layer ranged from 750 to 1,500 and 85 to 170 kg-C ha-1, which corresponded to 5.0 to 10.0% and 0.6 to 1.1% of the total carbon content in the plow layer, respectively. Eighty eight % of IC in the percolating water from the plow layer was also retained in the subsoil.  相似文献   

15.
Methanogenic archaeal communities inhabiting the paddy field soils in the Kojima Bay polder were investigated using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), real-time PCR and sequencing analyses. Soil samples of the plow and subsoil layers were collected in 2006 from four paddy fields that were reclaimed between 1692 and 1954. The DGGE band patterns of the targeted 16S rRNA genes amplified from the extracted DNA from the samples were different from the patterns from the paddy field soils in diluvial and alluvial areas. The numbers of targeted 16S rRNA genes, which were involved with methanogenic archaeal and other archaeal sequences, were approximately 107–108 and 106 g−1 dry soil in the plow and subsoil layers, respectively. Sequences of methanogenic archaeal 16S rRNA genes belonging to Methanocellales (Rice cluster I), Methanosarcinales and Methanobacteriales were obtained from the major DGGE bands. Whereas sequences in Methanomicrobiales, which were predominant methanogens in the diluvial and alluvial paddy fields, were not recovered. Known halophilic and methylotrophic methanogens, which are characteristic of saline and marine environments, were not detected. These results indicate that distinctive methanogenic archaeal communities have developed in the paddy field soils in the Kojima Bay polder.  相似文献   

16.
长期水耕植稻对水稻土耕层质地的影响   总被引:1,自引:0,他引:1  
为了解长期水耕植稻对南方地区水田表土层颗粒组成的影响,以浙江省为研究区,采用历史资料分析、典型样区调查及定点观察相结合的方法,研究水稻土耕作层(包括犁底层)与心土层间黏粒含量的差异,分析植稻时间对水稻土不同土层颗粒组成的影响,比较植稻期间稻田排水中泥砂物质的颗粒组成与对应土壤间的差异,探讨了长期植稻对水稻土剖面质地分异的影响。对浙江省456个代表性剖面统计,与水稻土心土层比较,耕作层和犁底层黏粒含量平均下降了14%和10%。对植稻不同时间的浅海沉积物(从10~20年至80年)、第四纪红土(从5~20年至70年)和玄武岩风化物(从5~20年至35~70年)发育的水稻土比较发现,随植稻时间的增加,耕作层和犁底层土壤砂粒含量呈现增加趋势,黏粒含量明显下降,耕作层、犁底层与心土层黏粒含量的比值逐渐下降。农田排水中泥砂物质的黏粒和粉砂含量高于对应农田土壤,而砂粒含量则低于相应的土壤。分析认为,长期水耕植稻可导致耕作层土壤砂化(即砂粒含量增加,黏粒含量下降),其原因除与水耕过程中黏粒淋淀外,排水中黏粒和粉砂细颗粒的选择性流失对耕作层砂化也有较大的贡献。  相似文献   

17.
Percolating water was sampled from the plow layer and subsoil layer in a Japanese paddy field, and the bacterial communities were compared together with floodwater by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting a partial 16S rRNA gene and subsequent sequencing. The number of DGGE bands ranged from 16 to 28 with no significant differences among the sampling sites and times. Only 2 bands were common for the three sources of water samples. DGGE bands specific for the floodwater samples and percolating water samples from the plow layer were identified, while percolating water samples from the subsoil layer did not show specific bands but displayed common bands to those of the floodwater samples (7 bands) and percolating water samples from the plow layer (1 band). Cluster analysis of the DGGE banding patterns showed a distinct clustering in the samples of percolating water from the plow layer and a closer relationship between the others. These results suggest that the bacterial communities in percolating water changed during downward movement through the plow layer and subsoil layer. Sequences of the DGGE bands specific for the samples of percolating water from the plow layer showed a close relationship with anaerobic bacteria such as iron-reducers or uncultured bacterial DNA isolated from environments that are considered to be less oxic. On the other hand, the sequences of the bands specific for the samples of floodwater and percolating water from the subsoil layer showed a close relationship with uncultured bacterial DNA isolated from freshwater environments.  相似文献   

18.
不同植稻年限土壤剖面基本性质与水-氮分布的关系   总被引:1,自引:0,他引:1  
张君  刘目兴  易军  张海林  李胜龙  段赫  杨倩 《土壤》2019,51(6):1188-1195
在江汉平原典型农业区选定不同水稻种植年限(2、18、100a)的稻田,采用野外调查与室内分析相结合的方法,量化不同稻田土壤剖面基本性质和水–氮分布特征,以揭示内在原因,探讨适宜不同水稻种植年限稻田的水–氮管理方式,为提高稻田水–氮利用率和减少稻田面源污染提供科学依据。结果表明:对于不同水稻种植年限农田,土壤剖面基本性质差异明显。耕作层和犁底层厚度随水稻种植年限的延长而增加;土壤有机质在耕作层富集,且随水稻种植年限的延长含量增加;耕作层土壤容重随水稻种植年限的延长而减小,犁底层土壤容重则增大;受耕作和淋溶条件的影响,犁底层和心土层的黏粒含量随水稻种植年限的延长而增加;饱和导水率(Ks)随水稻种植年限的延长而降低,犁底层Ks差异较大,2、18、100a稻田犁底层Ks分别为37.02、8.45、3.11cm/d。土壤剖面基本性质的差异影响水–氮的剖面分布特征。土壤水分和硝态氮含量随水稻种植年限的延长而增加,2、18、100 a稻田土壤剖面(0~100 cm)平均含水量分别为0.39、0.46、0.54cm3/cm3,硝态氮含量分别为3.75、6.27、9.85mg/kg。铵态氮储量远低于硝态氮储量,且受水稻种植年限影响较小;2、18、100 a稻田土壤剖面铵态氮与硝态氮储量比值分别为0.61、0.39和0.30。在灌溉和施肥方式上,水稻种植年限短的稻田适合少量多次的管理方式以减少渗漏损失;而年限长的稻田可适当提高单次灌溉量以减少灌溉次数,进而减少劳力消耗。  相似文献   

19.
不同水耕年限稻田土壤水分渗漏与保持特征   总被引:1,自引:2,他引:1  
以江汉平原连续水耕年限大于100年(老稻田)和由旱耕改为水耕17年(新稻田)的稻田为研究对象,通过测定土壤剖面基本理化性质和水力学参数,揭示了2种稻田土壤水分渗漏和保持特征差异。结果表明:(1)新稻田土壤的平均饱和导水率(Ks)为32.05cm/d,显著高于老稻田(17.91cm/d)。新、老稻田土壤Ks均表现为耕作层底土层犁底层,新稻田耕作层Ks分别为犁底层和底土层的6.3倍和5.7倍,老稻田耕作层Ks分别是犁底层和底土层的6.9倍和4.0倍。(2)老稻田土壤持水能力高于新稻田,同一剖面不同土层持水能力表现为耕犁底层底土层耕作层。0.03mm当量孔径的孔隙比例随土壤剖面深度的增加而降低,新稻田各层土壤比例大于老稻田。(3)新、老稻田最大有效水含量随土壤深度的增加而降低,老稻田各土层(32.25%~46.59%)均高于新稻田(26.99%~36.74%)。老稻田平均总库容(135.8mm)大于新稻田(124.4mm),新稻田滞洪库容(11.21~38.74mm)大于老稻田(8.1~60.74mm)。旱耕改水耕加重了水资源的消耗,增加了浅层地下水污染风险。  相似文献   

20.
基于最小数据集的南方地区冷浸田土壤质量评价   总被引:24,自引:0,他引:24  
调查分析了我国南方地区7个省份冷浸田土壤理化性状和生物学性状,筛选冷浸田土壤质量评价指标,建立土壤质量评价最小数据集。结果表明:冷浸田土壤有机质、全氮、C/N、有效磷与非冷浸田差异显著,分别较非冷浸田高出26.1%、11.2%、12.3%,低84.6%。冷浸田土壤含水量、有效铁、有效锰、有效锌、Fe~(2+)、Mn~(2+)、还原性物质总量含量分别较非冷浸田显著高出37.6%、91.5%、108.1%、17.0%、349.5%、143.1%、217.9%;冷浸田土壤微生物生物量碳、酸性磷酸酶活性均显著低于非冷浸田,而过氧化氢酶活性显著高于非冷浸田,蔗糖酶活性与非冷浸田相比无显著差异。冷浸田土壤线虫数量为301.9条100 g干土~(-1),显著低于非冷浸田;采用配对样本t检验和主成分分析方法,结果表明冷浸田土壤质量评价的最小数据集为pH、全氮、有效锰、Fe~(2+)、C/N、线虫数量6个指标,冷浸田土壤质量指数显著低于非冷浸田。研究结果对冷浸田土壤质量评价、土壤改良具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号