首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM: To study the effect of chronic hypoxia on L-Arginine/NO pathway in rat pulmonary artery. METHODS: Changes in pulmonary artery L-Arginine(L-Arg) transport, nitric oxide synthase (NOS) activity, plasma nitrite level and L-Arg level in HPH rats were investigated. RESULTS: (1) The mean pulmonary arterial pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) of HPH group were higher than those in control group (P<0.01). (2) Plasma L-Arg level in HPH group was not significantly changed. (3) At low (0.2 mmol/L)or high(5.0 mmol/L)concentration of L-Arg, the velocity of L-Arg transport in HPH group was lower than that in control group (P<0.05 or P<0.01). (4) The activity of pulmonary artery tNOS, iNOS and cNOS in HPH group were increased by 38.0%, 32.8% and 53.0%, respectively (P<0.01), compared with control group. (5) Plasma NO level of HPH group was decreased, which was negative correlation to mPAP and RV/LV+S (P<0.01). CONCLUSION: The decrease of nitric oxide generation might result from L-Arg transport injury, while pulmonary artery tNOS, iNOS and cNOS activity were enhanced during chronic hypoxia.  相似文献   

2.
AIM: To explore the role of endogenous hydrogen sulfide (H2S) in the mechanism of cholecystokinin octapeptide (CCK-8) to alleviate acute lung injury (ALI) induced by lipopolysaccharide (LPS). METHODS: Eighty-four Sprague-Dawley rats were randomly divided into seven groups: control, LPS (instilled intratracheally to reproduce the model of ALI), NaHS (H2S donor) +LPS, propargylglycine [inhibitor of cysathionine-γ-lyase (CSE), PPG]+LPS, CCK-8+LPS, PPG+CCK-8+LPS and CCK-8 group. Animals were sacrificed at 4 h and 8 h after agent instillation. The wet and dry ratio (W/D) of the lung weight was measured and calculated. Morphological changes of lung tissues were observed. H2S concentration in plasma, malondialdehyde (MDA) content, myeloperoxidase (MPO) and CSE activities in the lung were determined. Furthermore, the level of P-selectin of lung tissue was measured by radioimmunoassay, the CSE mRNA expression in the lung was detected by RT-PCR, and the protein content in bronchoalveolar lavage fluid (BALF) was detected. RESULTS: Compared with control, severe injury of lung tissues and increase in W/D, protein content in BALF, MDA content, MPO activity and P-selectin level in the lung were observed in rats treated with LPS. LPS also lead to a drop in plasma H2S concentration, lung CSE activity and CSE mRNA expression. Administration of NaHS before LPS could attenuate the changes induced by LPS, while H2S concentration, CSE activity and CSE mRNA expression were higher than those in LPS group. However, pre-treatment with PPG exacerbated the lung injury induced by LPS, H2S concentration, CSE activity and CSE mRNA expression were lower than those in LPS and CCK-8 +LPS group, respectively. CONCLUSION: CCK-8 attenuates LPS-induced acute lung injury by means of anti-oxidation and inhibition of PMN adhesion and aggregation, both of which are mediated by endogenous H2S.  相似文献   

3.
AIM:To study the role and the mechanism of heme oxygenas/endogenous carbon monoxide on nitric oxide synthase/nitric oxide system in rats with pulmonary hypertension induced by hypoxic hypercapnia.METHODS:Sprague-Dawley rats were randomly divided into three groups: control group (A group), hypoxic hypercapnic group (B group), hypoxic hypercapnia+hemin group (C group). Blood CO concentration (COHb%), NO concentration, HO-1 activity, iNOS, cNOS in blood serum and lung homogenate were measured, respectively. RESULTS:① mPAP and RV/(LV+S) of B group were significantly higher than those of A and C group(P<0.01).② Blood CO concentration, activity of HO-1in blood serum and lung homogenate in rats of B group were significantly higher than those of A group, but were significantly lower than those of C group (P<0.01). ③ NO concentration in blood serum and lung homogenate in rats of B group were significantly lower than those of A group, those of C group were significantly higher than those of B group (P<0.01).④The activity of iNOS in blood serum and lung homogenate in rats of B group were significantly higher than those of A group, but were significantly lower than those of C group (P<0.01). Activity of cNOS in blood serum and lung homogenate of B group were significantly lower than those of A group (P<0.01), and there was no significant difference between cNOS in B and C group.CONCLUSION:Endogenous carbon monoxide upregulated iNOS/NO system in rats with chronic pulmonary hypertension induced by hypoxic hypercapnia.  相似文献   

4.
AIM: To explore the role of endogenous and exogenous hydrogen sulfide (H2S) in acute lung injury (ALI) induced by ischmia-reperfusion (IR) of hind limbs in rats.METHODS: A Sprague-Dawley rat model of acute lung injury was induced by ischemia of the hind limbs for 4 h and reperfusion for another 4 h. The rats (n=120) were randomly divided into 4 groups: control, IR, NaHS (H2S donor)+IR, and propargylglycine +IR. The animals were sacrificed after reperfusion. Lung weight/body weight ratio (LW/BW) was measured and calculated. Morphological changes of the lung tissues were observed. The concentrations of H2S, nitric oxide (NO) and carbon monoxide (CO) in plasma were tested. The content of malondialdehyde (MDA), the activity of CSE, inducible nitric oxide synthase (iNOS) and hemeoxygenase (HO) in the lungs were determined. The polymorpho-nuclear neutrophils(PMN) and protein content in bronchoalveolar lavage fluid(BALF) were also measured. The correlation of H2S content with the above indices was analyzed.RESULTS: Compared with control group, severe injuries of the lung tissues, raised LW/BW, MDA concentration, PMN and protein contents in BALF were observed in IR group. Limb IR also made a drop in the concentration of plasma H2S and the activity of lung CSE, while the activity of iNOS and HO in the lung tissues and the levels of plasma NO and CO increased. Administration of NaHS before IR attenuated the changes induced by IR, while pre-administration of PPG exacerbated the IR injuries and increased the plasma NO level and lung iNOS activity. The H2S content was positively correlated with CSE activity, CO content and HO-1 activity (P<0.01), and negatively correlated with the other indices (P<0.01).CONCLUSION: Down-regulation of H2S/CSE is involved in the pathogenesis of acute lung injury induced by IR. Endogenous and exogenous H2S protects against lung injuries. The anti-injury effects of H2S are related with its anti-oxidative activity to attenuate the inflammatory over-reactions in the lung induced by PMN. Down-regulation of NO/iNOS system and up-regulation of CO/HO-1 system by H2S are also involved in the process of anti-injury to ALI.  相似文献   

5.
AIM: To investigate the role of hydrogen sulfide (H2S) in the cholecystokinin octapeptide (CCK-8) attenuating lipopolysaccharide (LPS)-induced lung injury. METHODS: A rat model of lung injury induced by intravenous injection of LPS was developed. Male Wistar rats were divided into normal control group, LPS group, LPS+CCK-8 group and CCK-8 group. Six hours after LPS injection, partial pressure of oxygen in the arterial blood (PaO2), H2S content and cystathionine-γ-lyase (CSE) activity in lung tissue were detected. The mRNA expression of CSE in lung tissue was determined by RT-PCR; the structure of lung tissues was observed under optical microscope. RESULTS: Compared to normal control rats, the LPS-treated rats had significantly decreased PaO2 level, increased index of quantitative assessment (IQA) score, while H2S content, CSE activity and the mRNA expression of CSE in lung tissue were significantly increased (all P<0.05). Administration of CCK-8 into LPS-treated rats increased the PaO2 level and alleviated the degree of lung injury (measured by IQA score). In addition, CCK-8 decreased H2S content, CSE activity, and the mRNA expression of CSE (all P<0.05). No significant difference of the above-mentioned parameters between CCK-8 group and normal control group was observed. CONCLUSION: CCK-8 reduces LPS-induced lung injury through inhibiting the generation of endogenous H2S.  相似文献   

6.
AIM: To examine the effect of nonselective nitric oxide synthase inhibitor, NG-nitro-L-arginine (L-NA), on mitochondria from acute lung injury induced by lipopolysaccharides(LPS) in rats. METHODS: The rats were randomly divided into control group, LPS injury group and L-NA treatment group. The model of acute lung injury was prepared with injection of LPS in rats. L-NA was respectively administrated through intraperitoneal injection at 3 h after injury induced by LPS. The rats were killed and the mitochondria in lung tissues were isolated by differential centrifugation. The activities of T-NOS, iNOS, ATPase, SOD and GSH-Px, and the contents of NO and MDA from mitochondria were respectively measured. The changes of ultrastructure in lung mitochondria were examined by electronic microscope after injury and L-NA treatment. RESULTS: The activities of T-NOS and iNOS were significantly increased, the activities of ATPase, SOD and GSH-Px were significantly decreased, the contents of NO and MDA were increased after acute lung injury. L-NA significantly enhanced the activities of ATPase, SOD and GSH-Px, and markedly decreased the contents of NO and MDA and the activities of T-NOS and iNOS. CONCLUSION: L-NA inhibits the activity of NOS in mitochondria, decreases the production of NO, improves mitochondria energy pump, ameliorates oxidative injury, and effectively protects lung tissue against acute lung injury induced by LPS.  相似文献   

7.
8.
AIM: To observe the changes of endogenous hydrogen sulfide/cystathionine-γ-lyase (H2S/CSE) system while acute lung injury induced by LPS in rats. METHODS: Eighty rats were randomly divided into six groups (n=8): Ⅰ, control group;Ⅱ, LPS 1 h group; Ⅲ, LPS 3 h group; Ⅳ, LPS 6 h group; Ⅴ, LPS 9 h group; Ⅵ, LPS 12 h group. The ALI model of rats was prepared with LPS. The rats were respectively killed at 1, 3, 6, 9 or 12 h after administration of LPS. The morphological changes of lung tissues were observed by light and electron microscope. The lung coefficient and the wet-to-dry weight ratio were measured. The contents of IL-1β and IL-10 in serum, the H2S level in plasma and the CSE activity in lung tissue were respectively detected. RESULTS: ⑴ In LPS 1 h group, the morphology, the lung coefficient, the wet-to-dry weight ratio, the H2S level and the CSE activity showed no changes compared with the control group. The contents of IL-1β and IL-10 were increased compared with the control group (IL-1β, P<0.05;IL-10, P<0.01). ⑵ In LPS 3 h, 6 h, 9 h and 12 h groups, compared with the control group, the lung tissues were significantly damaged, the lung coefficient and the wet-to-dry weight ratio were significantly increased respectively (LPS 3 h, P<0.05; LPS 6 h, 9 h, 12 h, P<0.01). The contents of IL-1β and IL-10 in serum were markedly increased (P<0.01). The H2S level in plasma and the CSE activity in lung tissue were significantly decreased (P<0.01).CONCLUSION: The changes of inflammatory cytokines may be the pathological foundation of the ALI induced by LPS and the endogenous hydrogen sulfide/cystathionine-γ-lyase system is possibly involved in the formation of the ALI.  相似文献   

9.
AIM: To investigate the effects of nitric oxide (NO) and NO synthase (NOS) inhibitor NG-nitro-L arginine (L-NA) on LPS induced-lung injury in rats. METHODS: Forty healthy male SD rats, weighing 300±20 g, were used. The animals were anesthetized with 20% urethane 1 g·kg-1. Common carotid artery (CAA) and jugular vein were exposed through a median incision in the neck. Mean arterial pressure (MAP) was measured through a pressure transducer connected with intubation of CAA. The animals were randomly divided into five groups: group 1: control; group 2: LPS (5 mg·kg-1, iv); group 3: high dose L-NA (20 mg·kg-1 intraperitoneal injection, ip); gropu 4: middle dose L-NA (10 mg·kg-1, ip); group 5: low dose L-NA (5 mg·kg-1, ip). Group1 : 0.9% saline solution was given and the animals were killed 6 h after the saline solution. Gruop 2: saline solution was given 3 h after LPS and the animals were killed 3 h after administration. Group 3, 4 and 5: L-NA was given 3 h after LPS iv and the animals were killed 3 h after administration, respectively. The pulmonary was removed immediately. The pulmonary coefficient and water content in pulmonary tissue were calculated (%). The NO2-/NO3- content in plasma, MDA content and NOS, SOD activity in the pulmonary tissue were measured. RESULTS: L-NA significantly decreased pulmonary coefficient and water content in pulmonary tissue and ameliorated LPS induced lung injury. The effect in high dose group was better than that in low dose group. L-NA significantly decreased NO2-/NO3- content in plasm, decreased MDA content and inhibited NOS activity and enhanced SOD activity in the pulmonary tissue. CONCLUSION: It may be concluded that L-NA has a beneficial effect on lung injury induced by LPS.  相似文献   

10.
AIM: To clarify the role of nitric oxide (NO) system in development of chronic hypoxic hypercapnic pulmonary hepertension. METHODS: Male Sprague-Dawley rats were randomly divided into control group and hypoxic hypercapnic group. NO content of plasma was determined, constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) were examined using the technique of immunohistochemistry, expression of cNOS mRNA and iNOS mRNA of arteriole were detected by in situ hybridization. RESULTS: Plasma NO concentration, cNOS activity and cNOS mRNA expression in arteriole of chronic hypoxic hypecapnic group were significantly lower than that of control group (P<0.01); activity of iNOS and expression of iNOS mRNA in arteriole showed significantly higher compared with control. CONCLUSION: The disturbance of NO production and NOS expression in arteriole are involved in hypoxic hypercapnic pulmonary hepertension.  相似文献   

11.
12.
AIM: To explore the mechanism underlying inducible nitric oxide (NO) caused injury of endothelial cells during inflammation. METHODS:The activity of iso-enzymes of NO synthase (NOS), NO level and iNOS expression were examined using NADPH method, Griess reaction and RT-PCR, respectively. Furthermore, the lactate dehydrogenase (LDH) release rate, malondialdehyde (MDA) content were also measured. RESULTS:Co-administration of cytokines (TNF-α 5×105 U/L, IL-1β 2×105 U/L, INF-γ 2×105 U/L) and LPS (10 mg/L) caused an obvious increase in NOS activity, NO levels (about two-fold) and a significant injury of the cells. At the same time, a significant increase in iNOS mRNA was also detected. Wheareas, treatment of the cells separately with cytokines or LPS for 24 h had no significant effect on NOS activity and NO level in cell lysates, however, it caused a significant increase in LDH release and MDA content. Also, the effect of cytokines and LPS on cell viability was concentration-and time-dependent. L-NMMA, a inhibitor of NOS, can suppress inducible NO production and protect cells against NO induced injury. CONCLUSION:Co-administration of cytokines (TNF-α, IL-1β and INF-γ) and LPS significant activated iNOS and NO production which, in turn, induced oxidative reaction in endothelial cells.  相似文献   

13.
AIM: To observe the chronological changes of pulmonary apoptosis and the expression of iNOS mRNA,nNOS mRNA and eNOS mRNA in lipopolysaccharide (LPS)-induced acute lung injury (ALI) and to investigate the mechanisms of ALI.METHODS: Rats were randomly divided into 2 groups: control group and LPS treated group.The rats were injected with either saline or LPS and killed at 1,3,6,9 and 12 h after LPS injection.The expressions of iNOS mRNA,nNOS mRNA and eNOS mRNA in the lung tissue were respectively measured with RT-PCR methods.Apoptosis and expressions of Bcl-2 and Bax were respectively determined by flow cytometry (FCM) and immunohistochemistry (IHC).The pathological changes of lung tissue were observed under light and electron microscope.RESULTS: Compared with that in control group,the expression of iNOS mRNA was significantly increased at 3,6,9 and 12 h after administration of LPS (P<0.05).The eNOS mRNA was significantly decreased at 3,6,9 and 12 h after administration of LPS (P<0.05).The nNOS mRNA had no significant change during the 12 h in LPS group.Degree of ALI was gradually worsened after administration of LPS.Apoptosis of pulmonary cells was significantly increased,and reached the top level at 9 h after administration of LPS (P<0.01).The expression of Bcl-2 was markedly decreased and the expression of Bax was significantly enhanced in alveolar and airway epithelial cells in LPS treated group.CONCLUSION: The expressions of iNOS mRNA,eNOS mRNA and nNOS mRNA are not identical in LPS-induced acute lung injury.NOS regulates the apoptosis of pulmonary cells through affecting the balance of Bcl-2 and Bax.  相似文献   

14.
AIM: To investigate the effects of sesamin on progression of renal injury in renal hypertensive and hyperlipidemic rats (RHHR). METHODS: RHHR was induced by 2K1C and high lipid baitvessel. After 7 weeks of intragastric administration with sesamin, the contents of serum creatinine (Scr), blood urea nitrogen (BUN), 24 h urinary protein excretion (UPE) were measured. In addition, the activity of total antioxidative capacity (T-AOC), superoxide dismutase (SOD), the concentrations of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the nitric oxide synthase (NOS) and nitric oxide (NO) levels in renal homogenate were measured. RESULTS: Compared with the model group, seasamin (in 100 mg·kg-1 and 33 mg·kg-1 groups) evidently decreased the contents of Scr, BUN, UP and the concentration of MDA, iNOS, H2O2 in renal tissure. It also improved the levels of NO, cNOS and activity of SOD, T-AOC in renal tissure. CONCLUSION: Sesamin ameliorates hypertensive and hyperlipidemic-induced renal injury, probably by enhancing antioxidative activity, scavenging hydroxyl radical and restraining iNOS level.  相似文献   

15.
AIM: To explore the protective effect of panaxadiols (PDS) on brain injury induced by endotoxin and its mechanism. METHODS: Rats were divided into control,LPS,LPS+dexamethasone (DEX) and LPS+PDS group, respectively. NOS activity, NO content and phosphorylated p38 expression in brain cortex were assayed 4 h after intravenous injection of LPS. RESULTS: NOS activity, NO content and phosphorylated p38 expression in brain cortex in LPS group were obviously higher than those in LPS group. NOS activity, NO content and phosphorylated p38 expression in brain cortex in LPS+DEX and LPS +PDS groups were obviously lower than those in LPS group. CONCLUSION: The protective effects of PDS against brain injury induced endotoxin may be related to decreasing NOS activity, NO content in the brain tissue, and this process is involved in p38MAPKs signal transduction.  相似文献   

16.
AIM: To investigate the role of hydrogen sulfide (H2S) in the protection against oxidative stress in rats with chronic obstructive pulmonary disease (COPD).METHODS: The rat model of COPD was established by cigarette smoking (CS) combined with lipopolysaccharide (LPS) instillation. Thirty-two healthy male Sprague-Dawley rats were randomly divided into 4 groups: control group, CS+LPS group, CS+LPS+NaHS (H2S donor) group and CS+LPS+PPG (DL-propargylglycine, an inhibitor of cystathionine-γ-lyase) group. After 30 days, the lung functions of the rats were measured, the histological changes of lungs were observed under light microscope and the pathological scores were calculated. The H2S level in plasma and the protein expression of cystathionine-γ-lyase (CSE) in the lung tissues were measured. The content of malondialdehyde (MDA), the activity of superoxide dismutase (SOD) and catalase (CAT) were detected to reflect oxidative stress.RESULTS: Compared with control group, the peak expiratory flow (PEF) decreased by 24% and intra-pressure (IP) increased by 66% in CS+LPS group. The pathological scores of the lung tissues also increased. Compared with CS+LPS group, no change in the lung function was observed after given NaHS or PPG, but the pathological scores decreased in CS+ LPS+ NaHS group. Compared with control group, the content of H2S in plasma was increased by 26% on day 16. Compared with CS+LPS group, the content of H2S in plasma of CS+LPS+PPG group was decreased by 22% after 30 days. Compared with control group, the protein expression of CSE increased, and no statistical difference among CS+LPS group, CS+ LPS+ NaHS group and CS+LPS+PPG group was observed. Compared with control group, MDA content in the lung tissues was increased by 24% in CS+LPS group, the activity of SOD was increased by 47% and the activity of CAT was increased by 52%. Compared with CS+LPS group, the MDA content in CS+LPS+NaHS group was decreased by 21%, and no statistical difference in the activity of SOD and CAT was observed. The activity of SOD decreased by 33% after given PPG.CONCLUSION: H2S plays a role as anti-oxidant in the rats with COPD. The CSE/ H2S pathway may be involved in the development of COPD.  相似文献   

17.
AIM: To observe the effects of Sini decoction against pulmonary injury induced by ex vivo ischemia-reperfusion in rats. METHODS: The model of ischemia-reperfusion was established. Twenty-four Sprague-Dawley rats were randomly divided into Sham, I/R, and SND groups. Wet to dry lung weight ratio (W/D), mean pulmonary artery pressure (MPAP), SOD activity and MDA contents in pulmonary perfusate and tissue, NOS activity and NO contents in pulmonary tissue were detected. The pathologic changes in pulmonary tissue were also observed by light microscope. RESULTS: The morphological changes of pulmonary injury were alleviated in SND group. Wet/dry ratio, MPAP and MDA contents in pulmonary perfusate and tissue were significantly lower in SND group after ischemic/reperfusion. SOD activity in pulmonary perfusate and tissue, and NO contents in pulmonary tissue were significantly higher in SND group than those in I/R group. No significant difference in NOS activity in pulmonary tissue among three groups was observed. CONCLUSION: These results indicate that SND may have a protective effect on ischemia-reperfusion injured lung by its antioxidant activity and by adjusting NO level.  相似文献   

18.
AIM: To investigate the preventive effect of PNS on chronic hypoxic pulmonary hypertension in rats. METHODS: Pulmonary arterial pressure observation, hematocrit (Hct)measurement, biochemical analysis and transmission electron microscopy were conducted to investigate the role of PNS. RESULTS: (1)Mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP) and Hct were significantly higher in hypoxia group (H group) than that of control group (C group) and were much lower in hypoxia with PNS group (HT group) than that in H group; (2) Nitric oxide (NO2-/NO3-) concentration and nitric oxide synthase (NOS) activity in the plasma and the lung tissue, total superoxide dismutase (T-SOD) and copper/zinc-containing enzyme (Cu/ZnSOD) activities in the plasma were all significantly lower in H group than that in C group and were much higher in HT group than that in H group, but NO2-/NO3- concentration and NOS activity were still markedly decreased in comparison with C group; (3) Injury of endothelial cells in pulmonary arteriole was improved obviously in HT group Compared with H group. CONCLUSIONS: These results suggest that PNSreduces the increase in mPAP, probably through adjusting NOlevel, anti-damaging effectof free radicals, inhibiting the injury of endothelial cells and decreasing Hct.  相似文献   

19.
AIM: To explore the molecular mechanism of brain tissue injury induced by endotoxin. METHODS: Rats were divided into LPS, LPS+DEX, LPS+PDS and control group, respectively. NOS activity, NO content and TLR4 mRNA expression were assayed 4 h after intravenous injection of LPS. RESULTS: NOS activity, NO content and TLR4 mRNA expression in LPS+DEX and LPS +PDS groups were obviously lower than those in LPS group. CONCLUSION: PDS may provide protective effects on the central nervous system by down-regulating TLR4 expression, reducing NOS activity and NO content in the brain tissue.  相似文献   

20.
YANG Hong  SI Qin  SUN Ren-yu 《园艺学报》2000,16(9):831-834
AIM: Effect of endothelial cell on the development of acute lung injury and the prevention of dexamethasone in acute lung injury were observed.METHODS:Rats were divided into three groups:1.Control group.2.LPS group:Venous injection with LPS(5mg/kg body weight),execute respectively at 1 h,2 h,6 h and 24 h after LPS injection. 3.dexamethasone group:intraperitoneal injection with dexamethasone ,1 h before LPS injection,execute after 2 hours after LPS injection.RESULTS: Serum NO,TNF-α levels,lung iNOS activity and lung ICAM-1mRNA expression were increased( P <0.05, P <0.01, vs control group),but serum ACE was decreased( P <0.01).Dexamethasone could improve all the changes above mentioned.CONCLUSION:Endothelial cell played a vital role in the development of acute lung injury and dexamethasone could prevent acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号