首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
AIM:To investigate the role of K+ channels in the decreased hypoxic pulmonary vasoconstriction(HPV) in chronic hypoxic rats. METHODS:Blockers of three kinds of K+ channels, 4-AP(voltage dependent K+ channel blocker), TEA(Ca2+ activated K+ channel blocker), GLIB(ATP sensitive K+ channel blocker) were used in isolated perfused rat lungs to detect the role of K+ channels in HPV. RESULTS:In normal rats, 4-AP and TEA, but not GLIB, both elicited a significant increase in pulmonary artery baseline pressure, and also potentiated the acute hypoxic pulmonary vasoconstriction. In chronic hypoxic rats, the HPV is significantly decreased, while 4-AP, TEA, GLIB all elicited a significant but smaller increase in pulmonary artery baseline pressure. Additionally, all these three blockers potentiated the HPV stronger in chronic hypoxic rats than in control rats. CONCLUSION:The opening of Kv, KCa, KATP might modulate the hypoxic pulmonary vasoconstriction in isolated rat lungs, and the increase in this modulation by potassium channel in chronic hypoxic rats might play a role in its decrease in HPV.  相似文献   

2.
3.
AIM: To investigate the roles of Panax notoginoside (PNS) and ERK1/2 signaling pathway in the pathological process of chronic hypoxic hypercapnia pulmonary hypertension in rats.METHODS: The animal model of chronic hypoxic hypercapnia pulmonary hypertension was set up in 72 male Sprague-Dawley rats and the animals were randomly divided into 6 groups: normal (N) group, hypoxic hypercapnia for 3-day (H3d) group, hypoxic hypercapnia for 1-week (H1w) group, hypoxic hypercapnia for 2-week (H2w) group, hypoxic hypercapnia for 4-week (H4w) group and PNS treatment (Hp) group.The rats in Hp group were injected with PNS (50 mg·kg-1·d-1, ip) before placing the animals into the hypoxic hypercapnia chamber.The rats in other groups were injected with normal saline (2 mL/kg, ip).The morphological changes of the pulmonary artery were observed under microscope with HE staining.Western blotting was used to detect the protein expression of p-ERK.The protein levels of p-ERK in the lung tissues and pulmonary blood vessels were determined by immunohistochemistry.RESULTS: The ratios of WA/TA in H1w, H2w, H4w and Hp groups were higher than that in N group (P<0.05).The ratio of WA/TA in Hp group was obviously lower than that in H4w group (P<0.05).The protein expression of p-ERK was barely positive in N group, but was up-regulated in the pulmonary tissues in all hypoxic rats.Compared with N group, the protein level of p-ERK was markedly up-regulated in H3d group, reached its peak in H2w group, and tended to decline in H4w group (P<0.05).In pulmonary arterial tunica intima and tunica media, p-ERK protein was dramatically expressed in all hypoxic rats compared with the control animals (P<0.05).In the lung tissues, the protein level of p-ERK in Hp group was lower than that in H4w group (P<0.05).In pulmonary arterial tunica intima and tunica media, the protein level of p-ERK in Hp group was lower by 84.86% than that in H4w group (P<0.05).CONCLUSION: ERK1/2 as a signal transducer may play an important role in the development of hypoxia and hypercapnia induced pulmonary hypertension.PNS inhibits the expression of ERK1/2, thus attenuating the development of pulmonary hypertension and improving pulmonary vascular remodeling.  相似文献   

4.
AIM: To study the protective effect of A2a adenosine receptor (A2aAR) on hypoxic pulmonary hypertension in the rats treated with salidroside. METHODS: Sprague-Dawley rats were randomly divided into 6 groups: normal control group, hypoxia group, hypoxia+salidroside (low dose) group, hypoxia+salidroside (median dose) group, hypoxia+salidroside (high dose) group, and hypoxia+CGS-21680 (a selective agonist of A2aAR) group. Pulmonary hypertension in the rats was produced for 4 weeks. Mean pulmonary artery pressure (mPAP), mean carotid arterial pressure (mCAP) and the weight ratio of right ventricle/(left ventricle+septum)[RV/(LV+S)] were measured. The expression of A2aAR in the pulmonary arterioles was determined by immunohistochemistry and in situ hybridization. The mRNA expression of A2aAR in the lung tissues was detected by real-time RT-PCR. The protein level of A2aAR in the lung tissues was analyzed by Western blotting. RESULTS: The mPAP in hypoxia group was significantly higher than that in normal control group. The mPAP in hypoxia+salidroside (high dose) group and CGS-21680 group was significantly lower than that in hypoxia group. RV/(LV+S) in hypoxia group were significantly higher than that in normal control group. RV/(LV+S) in hypoxia+salidroside (median dose) group, hypoxia+salidroside (high dose) group and CGS-21680 group were lower than that in hypoxia group. The ratio of vessel wall area/vessel total area (WA/TA) in hypoxia group was significantly higher than that in normal control group. WA/TA in hypoxia+salidroside (low dose) group, hypoxia+salidroside (median dose) group, hypoxia+salidroside (high dose) group and CGS21680 group were obviously lower than that in hypoxia group. The expression of A2aAR was significantly higher in hypoxia group than that in normal control group. The expression of A2aAR in hypoxia+salidroside (high dose) group and CGS-21680 group was obviously higher than that in hypoxia group. CONCLUSION: The A2aAR attenuates pulmonary vessel remodeling and pulmonary hypertension induced by hypoxia. Salidroside protects the pulmonary vessel from remodeling and inhibits the development of hypoxia-induced pulmonary hypertension by up-regulation of A2aAR expression.  相似文献   

5.
AIM: To investigate the effect of hypoxia on the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMC); and to evaluate the role of hypoxia-inducible factor-1α(HIF-1α), iNOS, P-ERK1/2 protein expression in hypoxic pulmonary hypertension (HPH) pathogenesis.METHODS: Cultured rat PASMC were divided into normoxic group; hypoxic group; hypoxia+ADM(adrenomedulin) group, hypoxia+L-NAME(iNOS inhibitor) group; hypoxia+PD98059 group. Proliferation was investigated by MTT and PCNA. Apoptosis was examined by flow-cytometry. Westen blotting was used to measure protein expression of HIF-1α, P-ERK1/2 and iNOS. RESULTS: (1) A value of 24 h-hypoxia was significantly higher than that in the normoxic group (P<0.01). In the hypoxia+PD98059 group, ADM was significantly lower than that in hypoxia group, whereas A value of the hypoxia+L-NAME was significantly higher than that in hypoxic group and normoxic group (P<0.01). (2) PCNA was positive in PASMC after 24 h hypoxia (P<0.01). PD98059, ADM inhibited the expression of PCNA significantly (P<0.01), whereas L-NAME increased the expression of PCNA significantly (P<0.01). (3) Apoptosis index was not significantly difference among the different groups (P>0.05). (4) HIF-1α, iNOS and P-ERK1/2 expression was poorly positive in normoxic group, positive after hypoxia for 4h (P<0.01), reaching its peak at 8 h hypoxia (P<0.01), HIF-1α, P-ERK1/2 expression declined after 24 h hypoxia. L-NAME promoted the expression of HIF-1α, PD98059 inhibited the expression of HIF-1α, iNOS and P-ERK1/2 partly. ADM inhibited the expression of HIF-1α partly, promoted the expression of iNOS. CONCLUSION: (1) Hypoxia stimulates the proliferation of PASMC, and has no obvious effects on the apoptosis of PASMC. (2) HIF-1 plays an importent role in the proliferation of hypoxic PASMC.  相似文献   

6.
AIM: To examine the effect of 15(S)-hydroxyeicosate traenoic acid (15-HETE) on eNOS activity in pulmonary artery endothelial cells (PAECs).METHODS: 1.Rat pulmonary artery (PA) rings of intrapulmonary arteries were suspended under isometric tension in oxygenated Krebs buffer in order to observe the differences on constriction induced by 15-HETE using nitro-L-arginine methyl ester (L-NAME, 10-4 mol/L, an inhibitor of eNOS) and removal of endothelium.2.The bovine PAECs was cultured for NO assay by Greiss reaction.3.Immunoprecipitation (IP) and Western blotting (WB) were used to analyze the cell extracts from bovine PAECs treated with 2×10-6 mol/L 15-HETE for 30 and 60 min, using phosphatase-eNOS (Thr495) antibody for IP and eNOS antibody for WB.RESULTS: 1.Inhibition of eNOS with L-NAME and removal of endothelium significantly enhanced 15-HETE induced contractions in rat PA rings in a concentration-dependent manner (P<0.05, P<0.01).2.15-HETE increased phospho-eNOS (Thr495) levels (P<0.01) in cultured bovine PAECs.3.10-6 mol/L 15-HETE (P<0.05) did significantly reduce nitrite production, whereas 10-5 mol/L cinnamy l 3, 4-dihydroxy-[alpha]-cyanocinnamate (CDC, P<0.05), 10-4 mol/L nordihydroguiairetic acid (NDGA, P<0.01) significantly increased nitrite production, as measured by a spectrophotometric assay.CONCLUSION: 15-HETE inhibits eNOS activity and decreases production of NO (NO-2/NO-3).The pathway of eNOS/NO is involved in 15-HETE-induced contraction in the rat PA.  相似文献   

7.
AIM:To explore the effect of Xinshuaikang on myocardial autophagy in the rats with chronic heart failure and its relationship with the MAPK/ERK1/2 signaling pathway. METHODS:The rats were divided into sham group, model group (rat model of chronic heart failure was established by ligation of anterior descending branch of left coronary artery), low-, middle-, and high-dose Xinshuaikang treatment (TL, TM and TH) groups and captopril group (treated with captopril as positive control), with 12 in each group. Doppler echocardiography was used to evaluate the cardiac function. The morphological changes of the myocardium were observed by HE staining. TUNEL staining was used to detect cardiomyocyte apoptosis. The expression of microtubule-associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ) in the myocardium was detected by immunofluorescence labeling. The protein levels of p-ERK, p-p38 MAPK, LC3-Ⅱ, beclin-1 and p62 in the myocardium were determined by Western blot. RESULTS:Compared with sham group, left ventricular end-diastolic dia-meter (LVEDD) and left ventricular end-systolic diameter (LVESD) in model group were increased, while left ventricular posterior wall thickness at end-diastole (LVPWTd), left ventricular posterior wall thickness at end-systole (LVPWTs), left ventricular ejection fraction (LVEF), cardiac output (CO), left ventricular diastolic pressure (LVDP), left ventricular systolic pressure (LVSP) and maximum rate of rise/decrease of left ventricular pressure (+dp/dtmax/-dp/dtmax) were decreased (P<0.05). The myocardial cells were deformed and necrotic, and the myocardial fibers were broken, with inflammatory cell infiltration. The apoptotic rate, the positive rate of LC3-Ⅱ, and the protein levels of p-ERK, p-p38 MAPK, LC3-Ⅱ/LC3-I and beclin-1 were increased, and the protein expression of p62 was decreased (P<0.05). Compared with model group, the levels of LVEDD and LVESD were decreased, LVPWTd, LVPWTs, LVEF, CO, LVSP, LVDP, +dp/dtmax and -dp/dtmax were increased in Xinshuaikang groups and captopril group (P<0.05). The morphological changes of myocardial cells were gradually returned to normal, and inflammatory cell infiltration, the apoptotic rate and the positive rate of LC3-Ⅱ were decreased. The protein levels of p-ERK, p-p38 MAPK, LC3-Ⅱ/LC3-I and beclin-1 were decreased, and the protein expression of p62 was increased (P<0.05). CONCLUSION:Xinshuaikang inhibits myocardial auto-phagy to play a role of cardiac protection in the rats with chronic heart failure, and its mechanism may be related to inhibition of MAPK/ERK1/2 signaling pathway.  相似文献   

8.
AIM:To investigate the change of reactive oxygen species (ROS) production in hypoxic pulmonary arterial smooth muscle cells (PASMCs) of rats, the effect of ROS on the expression of extracellular signal-regulated kinase (ERK)1/2 protein, and the role of ROS and ERK1/2 in the imbalance between proliferation and apoptosis of PASMCs.METHODS: Primary cultures of PASMCs were established and cells between passages 2 to 3 were used for experiments. PASMCs were treated with tiron, a membrane permeable ROS scavenger, and PD98059, an ERK1/2 inhibitor, under normoxia or hypoxia condition. The ROS production was measured by DCFH-DA and NBT reduction. The expression of phosphorylated-ERK1/2 (p-ERK1/2) protein was detected by immunofluorescence. Cell proliferation was examined by MTT colorimetric assay and the expression of PCNA. Cell apoptosis was detected by TUNEL.RESULTS: (1)Compared with control group, the ROS levels in hypoxia group were significantly increased (P<0.01). (2) In hypoxia group, the proliferative capacity was higher and the apoptosis index was lower than those in control group (P<0.01). Tiron significantly attenuated hypoxia-induced cell proliferation (P<0.05) and also significantly raised the apoptosis index in hypoxia cells (P<0.01). (3) The expression of p-ERK1/2 in hypoxia group were higher than that in control group (P<0.01), which were significantly suppressed by tiron (P<0.01).(4) PD98059 significantly attenuated hypoxia-induced cell proliferation (P<0.05) and also significantly raised the apoptosis index in hypoxia cells (P<0.01). The proliferative capacity and apoptosis index was similar in hypoxia+tiron+PD98059 group to those in hypoxia+tiron group (P>0.05).CONCLUSION:The hypoxia-mediated increase in PASMCs proliferation and the decrease in PASMCs apoptosis are related to the overproduction of intracellular ROS through downstream activation of ERK1/2. ROS and ERK1/2 play important roles in the hypoxic remodeling of pulmonary artery.  相似文献   

9.
AIM: To explore the effects of hydroxylamine on the pulmonary arterial pressure in chronic hypoxic hypercapnic rats. METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into 3 groups (8 rats in each group): the normal control group (NC), hypoxic hypercapnia+normal saline group (NS), hypoxic hypercapnia+hydroxylamine group (HA). The animals in NS and HA groups were kept in the O2 (9%-11%) and CO2 (5%-6%) cabin, 8 h a day and 6 days a week for 4 weeks. Before entering the cabin, the rats in HA group were administered with 1 mL hydroxylamine (12.5 mg/kg) by intraperitoneal injection, while the rats in NS group were given intraperitoneal injection of 1 mL saline solution. The mean pulmonary arterial pressure (mPAP) was measured by external jugular vein cannulation. The heart was removed, and the right ventricle (RV) and the left ventricle plus the septum (LV+S) were dissected. The ratio of the wet weight of the RV to that of the LV+S was calculated. The changes of the pulmonary vascular construction were observed under optical microscope. The concentration of H2S in the plasma was measured with a spectrometer. The expression of cystathionine-γ-lyase (CSE) in the pulmonary arterioles and bronchi was measured by immunohistochemistry and RT-PCR. RESULTS: The values of mPAP, RV/(LV+S),vessel wall area/total area (WA/TA) and media thickness of pulmonary arterioles (PAMT) in NS group and HA group were significantly higher than those in NC group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in NC group were significantly lower than those in NS group (P<0.05). The values of mPAP, RV/(LV+S), WA/TA and PAMT in HA group were significantly lower than those in NS group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in HA group were significantly higher than those in NS group (P<0.05). CONCLUSION: Hydroxylamine may decrease the pulmonary arterial hypertension induced by chronic hypoxic hypercapnia in rats by increasing the level of H2S in the plasma, the content of CSE protein and the mRNA expression of CSE, thus improving the pulmonary vascular structural remodeling.  相似文献   

10.
AIM:To study the effect of ligustrazine on pulmonary hypertensive rats induced by hypoxic hypercapnia. METHODS:Thirty rats were randomly divided into three groups:control group(A),hypoxic hypercapnic group(B), hypoxic hypercapnia+ligustrazine(lig.) group(C). RESULTS: (1) Mean pulmonary arterial pressure(mPAP)of group B was significantly higher than that of group A and mPAP of group C was significantly lower than that of group B(P<0.01),differences of mean carotid pressure(mCAP) were not significant among three groups (P>0.05); (2)Electron microscopy and immunohistochemistry showed ligustrazine could inhibit the diposition of collagenous fiber(collagen typeⅠ)in pulmonary arterioles induced by hypoxic hypercapnia; (3) Plasma endothelin level of group C was significantly lower than that of group B (P<0.01), serum (NO 2-/NO3-) of group C was significantly higher than that of group B (P<0.01). CONCLUSION:Ligustrazine can inhibit pulmonary hypertension and the diposition of collagen type Ⅰ in pulmonary arterial wall induced by hypoxic hypercapnia.  相似文献   

11.
AIM: To observe whether EGLN1 gene is involved in the growth of pulmonary arterial smooth muscle cells (PASMCs) during hypoxia when EGLN1 gene expression was interference by siRNA. METHODS: The rat primary pulmonary arterial smooth muscle cells were cultured, and the specific lipidosome of EGLN1 siRNA was constructed and transfected into the PASMCs. The transfected PASMCs were cultured under hypoxia or normoxia conditions, respectively. The viability of the PASMCs was detected by CCK-8 assay. The protein expression of EGLN1 and vascular endothelial growth factor (VEGF) was determined by Western blot. RESULTS: The viability of the PASMCs was increased and the protein expression of VEGF was up-regulated in the PASMCs under hypoxic condition in a time-dependent manner. In hypoxia or normoxia condition, the viability and VEGF protein expression of the PASMCs were suppressed by EGLN1 siRNA. CONCLUSION: EGLN1 gene may involve in the growth of rat PASMCs by regulating VEGF protein level under hypoxic condition.  相似文献   

12.
AIM: To investigate the effect of diltiazem on mean pulmonary arterial pressure (mPAP) and nitric oxide synthase (NOS) in arterioles in chronic hypoxic hypercapnic rats. METHODS: Twenty-four rats were randomly divided into three groups: control group (A), hypoxic hypercapnic group (B), hypoxic hypercapnia+ diltiazem group (C), constitutive endothelial NOS (ceNOS) were observed in arterioles of rats using the technique of immunohistochemistry, ceNOS mRNA were observed by the technique of in situ hybridization. RESULTS: (1) mPAP was significantly higher in rats of B group than that of A and C group(P<0.01). Differences of mCAP were not significant between A group and B groups (P>0.05), but mCAP was lower in rats of C group than that in B group. (2) Light microscopy showed WA/TA (vessel wall area/total area) was significantly lower in rats of C group than that of B group (P<0.01), electron microscopy showed that diltiazem inhibited the proliferation of smooth muscle cells and collageous fibers of pulmonary arterioles in chronic hypoxic hypercapnic rats. (3) Immunohistochemistry showed the average value of integral light density (LD) of ceNOS in pulmonary arterioles was significantly higher in rats of C group than that of B group (P<0.01), in situ hybridization showed LD of ceNOS mRNA in pulmonary arterioles was significantly higher in rats of C group than that of B group (P<0.01). CONCLUSION: Diltiazem inhibited pulmonary hypertension, the proliferation of smooth muscle cells and collagenous fibers of pulmonary arterioles in chronic hypoxic hypercapnic rats by incresing the expression of ceNOS in pulmonary arterioles.  相似文献   

13.
AIM: To investigate the contribution of diazoxide,an opener of mitochondrial ATP-sensitive K+ channel (MitoKATP),and mitochondrial membrane potential (ΔΨm) to change of H2O2 in rat pulmonary artery smooth muscle cells (PASMCs) and to unbalance between cell proliferation and apoptosis of PASMCs induced by hypoxia.METHODS: The rat PASMCs were isolated from fresh normal lung tissues and cultured,which were divided into 6 groups,as follows: ① control group;② diazoxide group;③ 5-HD group;④chronic hypoxia group;⑤ chronic hypoxia+diazoxide group;⑥ chronic hypoxia +5-HD group.The relative change in mitochondrial potential was detected with rhodamine fluorescence (R-123) technique.The level of H2O2 in rat PASMCs was detected with chemiluminescence method.The proliferation of rat PASMCs was examined by cell cycle analysis and MTT colorimetric assay.RESULTS: After exposed to diazoxide for 24 h,the intensity of R-123 fluorescence,the level of H2O2 and the A value in normoxic rat PASMCs were significantly increased,and the apoptosis of rat PASMCs was significantly decreased as compared with control group (P<0.05).However,there were no significant changes in these tests after the rat PASMCs had been exposed to 5-HD for 24 h.Chronic hypoxia or chronic hypoxia+diazoxide markedly increased the intensity of R-123 fluorescence,the level of H2O2 and the A value in rat PASMCs,and also markedly decreased the apoptosis of rat PASMCs as compared with control group (P<0.05),and these changes were more significant in chronic hypoxia +diazoxide group than those in chronic hypoxia group (P<0.05).5-HD partly weakened the effect of hypoxia on the intensity of R-123 fluorescence,the level of H2O2,the A value and the apoptosis of rat PASMCs (P<0.05).Significant and positive correlations were found between the intracellular H2O2 and the R-123 fluorescence or the A value.Significant and negative correlation was found between the intracellular H2O2 and the apoptosis of rat PASMCs.CONCLUSION: The results suggest that the opening of MitoKATP followed by a depolarization of ΔΨm can contribute to the increase in the level of H2O2 in rat PASMCs and to the proliferation of rat PASMCs induced by hypoxia.This might be a mechanism of the development of hypoxic pulmonary hypertension.  相似文献   

14.
AIM AND METHODS: To explore the effects calcitonin gene-related peptide (CGRP) and endothelin-1(ET-1) on the mechanisms of hypoxic pulmonary hypertension (HPH), the contents of CGRP and ET-1 in plasma of pulmonary artery and thoracic aorta and in extractives of lung and ventricular tissues of the chronic hypoxic rats were determined by radioimmunoassay. The changes of their hemodynamic indices and right heart hypertrophy index were monitored simultaneously. RESULTS: The level of pulmonary artery plasma CGRP was significantly higher than that of thoracic aorta plasma, but just the reverse was ET-1 or the ratio of ET-1 and CGRP in control rats( P<0.01). Compared with controls, the level of pulmonary artery plasma CGRP was gradually reduced in all hypoxic rats, but ET-1 was enhanced after 7 and 14 days of hypoxia and was decreased after 21 days of hypoxia. With prolonging time exposed to hypoxia, the level of thoracic aorta plasma CGRP was markedly increased in hypoxic animals compared with controls ( P<0.05), the positive correlation significantly with increased pulmonary arterial pressure( r = -0.896, P =0.05), but the lower level of thoracic aorta plasma ET-1 showed or negative correlation with pulmonary arterial pressure. CONCLUSIONS: These data suggest that the unbalance of effects of CGRP and ET may plays an important role in regulating the resistance of pulmonary circulation and has close relation with the formation of HPH.  相似文献   

15.
AIM: To explore the changes in extracellular regulated protein kinase (ERK1/2) in the hypertrophic myocardium induced by pressure overload at the different time courses and to determine the molecular mechanism in the myocardium from hypertrophy to heart failure. METHODS: C57/BL mice, aged 12 week old, were subjected to sham-operation (SH) or transversing aortic constriction (TAC) to establish left ventricular hypertrophy. Echocardiographic assessments, hemodynamic determination, organ weight measurement, morphological and histological examination were performed at 1, 4, 8, 12 and 16 weeks after surgery. Meanwhile mRNA levels of atrial natriuretic peptide (ANP), α-myosin heavy chain (α-MHC), bcl-2 and bax were measured by RT-PCR, and ERK1/2 levels were detected by Western blotting. The animals in SH group were performed the same tests then sacrificed at 16 weeks. RESULTS: (1) Compared to SH group, LVESd, LVEDd, Awsth, Awdth, Pwsth and Pwdth progressively increased after TAC. Meanwhile, ejection fraction (EF%) significantly decreased at 16th week (P<0.05). LVSP, dp/dtmax and dp/dtmin in TAC group were progressively increased after 4 weeks. From 8-12 weeks these parameters maintained stable and then sharply decreased at 16th week (all P<0.05). However, LVEDP was statistically increased at 8th week. These echocardiographic and hemodynamic changes indicated a development of LVH and eventually progressing towards to heart failure. (2) Histologically, cardiac collagen measured by percentage of Sirius red positive stained area and apoptosis index showed progressive increases from 4 to 16 weeks. (3) Compared to SH group, mRNA levels of ANP was time-dependently increased while α-MHC and Bcl-2 were time-dependently decreased. The ratio of Bcl-2 /Bax was decreased. Phosphorylation of ERK1/2 was increased at 4th week, then decreased with age of TAC (all P<0.05). CONCLUSION: Pressure-overload induced by TAC results in a development of LVH from early concentric hypertrophy to late eccentric hypertrophy, and eventually toward cardiac dysfunction or heart failure. Those changes are associated with increase in cell size and cardiac fibrosis. ERK1/2 signaling pathway may involve in the regulation of myocardial cell apoptosis in hypertrophic and failure heart.  相似文献   

16.
AIM: To clarify the role of nitric oxide (NO) system in development of chronic hypoxic hypercapnic pulmonary hepertension. METHODS: Male Sprague-Dawley rats were randomly divided into control group and hypoxic hypercapnic group. NO content of plasma was determined, constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) were examined using the technique of immunohistochemistry, expression of cNOS mRNA and iNOS mRNA of arteriole were detected by in situ hybridization. RESULTS: Plasma NO concentration, cNOS activity and cNOS mRNA expression in arteriole of chronic hypoxic hypecapnic group were significantly lower than that of control group (P<0.01); activity of iNOS and expression of iNOS mRNA in arteriole showed significantly higher compared with control. CONCLUSION: The disturbance of NO production and NOS expression in arteriole are involved in hypoxic hypercapnic pulmonary hepertension.  相似文献   

17.
AIM: To investigate the role of nitric oxide (NO)in the development of chronically hypoxic pulmonary artery hypertension (PAH) and the hemodynamic effects of inhaled NO on pulmonary circulation. METHODS: 67 male adult SD rats were randomly divided into 7 groups: (1) control (n=9);(2) chronically intermitent hypoxia (CIH, 6 h/d, 7 d/w) 1 week(n=7); (3) CIH 2 weeks (n=11); (4) CIH 3 weeks (n=11); (5) CIH 1 week+L-NAME (NO synthase inhibitor, 30 mg/kg, by gavage, n=10); (6)CIH 3 weeks+L-Arg (NO precursor, 10 mg/kg, by gavage, n=9); (7) CIH 3 weeks+inhaled NO (0.0004% for 20 min, n=10) to determine the mean pulmonary artery pressure (MPAP), weigh the right ventricle (R) and ventricular segment plus left ventricle (S+L), and calculate R/(S+L) (g/g) and R/Wt (Wt: body weight, g/kg). RESULTS: 1.MPAP increased compared with control when CIH 1 week, reaching the highest when CIH 2 weeks; R/(S+L) and R/Wt also increased notably when CIH 1 week (P<0.01); 2. The level of plasma NO2-/NO3- elevated significantly when CIH 2 weeks, but fell when CIH 3 weeks; the content of plasma ET-1(endothelin-1) also increased significantly. The level of plasma ET-1 correlated with R/(S+L) and R/Wt, r=0.43 and 0.46, respectively, both P<0.01; 3. The level of plasma NO2-/NO3- droped 33.2 % (P<0.01) after treatment with L-NAME, with R/(S+L) increasing 15.2 % (P<0.05); 4. L-Arg decreased the MPAP 17.8 %(P<0.01). CONCLUSION: The endogenous NO release increases at early stage (1-2 weeks) of chronic hypoxia, but falls at the prolonged stage; the elevated level of plasma ET-1 possibly plays an important role in remodeling of chronically hypoxic pulmonary vessels and ventricle; inhaled NO significantly decreases the chronically hypoxic PAH.  相似文献   

18.
AIM:To study the relationship between the activity of phospholipase A2 (PLA2) and chronic hypoxic pulmonary hypertension. METHODS:29 healthy SD rats were randomly divided into normal control group, chronic hypoxic group and hypoxia plus Polidatin (PD) group. The model of rat chronic hypoxic pulmonary hypertension was made by method of intermittent isobaric hypoxia for 21 days. The mean pulmonary arterial pressure (mPAP) was measured by inserting a microcatheter into the pulmonary artery. RESULTS:After exposing hypoxia for 21 days, the mPAP, R/L+S, the PLA2 activity, TXB2, MDA in plasma and lung homogenate increased significantly, while 6-k-PGF, SOD decreased significantly. Pretreatment with PD could relieve the changes mentioned above.CONCLUSION:PLA2 plays an important inducing role through its metabolic products and the interactional radicals in the formation of chronic hypoxic pulmonary hypertension.  相似文献   

19.
AIM: To investigate the preventive effect of PNS on chronic hypoxic pulmonary hypertension in rats. METHODS: Pulmonary arterial pressure observation, hematocrit (Hct)measurement, biochemical analysis and transmission electron microscopy were conducted to investigate the role of PNS. RESULTS: (1)Mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP) and Hct were significantly higher in hypoxia group (H group) than that of control group (C group) and were much lower in hypoxia with PNS group (HT group) than that in H group; (2) Nitric oxide (NO2-/NO3-) concentration and nitric oxide synthase (NOS) activity in the plasma and the lung tissue, total superoxide dismutase (T-SOD) and copper/zinc-containing enzyme (Cu/ZnSOD) activities in the plasma were all significantly lower in H group than that in C group and were much higher in HT group than that in H group, but NO2-/NO3- concentration and NOS activity were still markedly decreased in comparison with C group; (3) Injury of endothelial cells in pulmonary arteriole was improved obviously in HT group Compared with H group. CONCLUSIONS: These results suggest that PNSreduces the increase in mPAP, probably through adjusting NOlevel, anti-damaging effectof free radicals, inhibiting the injury of endothelial cells and decreasing Hct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号