首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experiment was conducted to determine the effects of different amounts of dietary methionine on growth performance, serum protein, growth hormone (GH), insulin‐like growth factor‐I (IGF‐I) concentrations and IGF‐I mRNA expression of growing meat rabbits. One hundred weaned growing meat rabbits were allocated to individual cages and randomly divided into five groups. The methionine addition concentrations of the five groups were 0, 2, 4, 6 and 8 g/kg diet (as‐fed basis) and sulphur amino acids (SAA) concentrations ranging from 3.8 to 11.6 g/kg diet, respectively. The results obtained were as follows: the average daily gain of 2, 4 and 6 g/kg diet groups was higher than that of 0 g/kg diet group (p < 0.01). The feed gain ratio of the 4 g/kg diet group was lower than those of 0 and 8 g/kg diet group (p < 0.01). Methionine concentrations did not affect serum urea nitrogen, total protein, insulin and IGF‐I concentration (p > 0.05). The quadratic effects of methionine on the serum concentration of albumin (Alb) and GH were obtained (p = 0.013, p = 0.018). The quadratic effect of methionine amount on IGF‐I mRNA expression was obtained (p = 0.045). The serum concentration of Alb of the 4 g/kg diet group was higher than those of 0 and 8 g/kg diet group (p < 0.01). The serum concentration of GH of 8 g/kg diet group was higher than that of the 0 g/kg diet group (p < 0.05). The liver IGF‐I mRNA expression of 4 g/kg diet group was higher than those of the 0 and 8 g/kg diet group (p < 0.05). Providing a diet mainly consisted of corn, wheat bran and peanut vine, the optimum dietary methionine addition concentration and SAA concentration for a weaner to 2‐month‐old growing meat rabbits were shown to be 2 and 5.7 g/kg diet respectively.  相似文献   

2.
The aim of this study was to identify factors that regulate ruminal epithelial insulin‐like growth factor‐binding protein (IGFBP) expression and determine its role in rumen epithelial cell proliferation. Primary bovine rumen epithelial cells (BREC) were incubated with short‐chain fatty acids (SCFAs) at pH 7.4 or 5.6, lactate, lipopolysaccharide (LPS), insulin‐like growth factor‐I (IGF‐I), ‐II (IGF‐II), or recombinant bovine IGFBP2 (rbIGFBP2). The mRNA expression levels of IGFBP in BREC were analyzed using quantitative real‐time polymerase chain reaction (qRT‐PCR). The proliferation rate of BREC was analyzed using a WST‐1 assay. IGFBP2 gene expression tended to be lower with SCFA treatment (p < .1), and IGFBP6 gene expression was significantly lower with SCFA treatment (p < .05). IGFBP3 and IGFBP6 gene expression tended to be higher with d ‐Lactate treatment (p < .1). IGFBP3 gene expression was significantly higher (p < .05) with LPS treatment. BREC treated with IGF‐I grew more rapidly than vehicle control‐treated cells (p < .01); however, recombinant bovine rbIGFBP2 inhibited IGF‐I‐induced proliferation. IGF‐II and/or rbIGFBP2 did not affect BREC proliferation. Taken together, SCFA treatment decreased IGFBP2 and IGFBP6 expression in rumen epithelial cells, and lower expression of these IGFBP might promote rumen epithelial cell proliferation by facilitating IGF‐I.  相似文献   

3.
Insulin‐like growth factor‐1 (IGF‐1) is one of the important factors for growth, milk production and reproductive functions and mainly released from the liver in response to growth hormone (GH) via GH receptor (GHR) in cattle. Recently, some single nucleotide polymorphisms (SNPs) were identified in the bovine GHR gene. Some GHR‐SNPs were shown to be related to plasma IGF‐1 concentration in cattle. Hence, the capacity to IGF‐1 production in the liver might be affected by GHR‐SNP and associated with performance in the future. This study examined whether GHR‐SNP is associated with IGF‐1 production in the liver of pre‐pubertal heifers. In 71 Holstein calves, blood samples for genomic DNA extraction were obtained immediately after birth. To genotype the GHR‐SNPs in the promoter region, polymerase chain reaction (PCR) products were digested with restriction enzyme NsiI (cutting sites: AA, AG and GG). All heifers at 4 months of age were intramuscularly injected with 0.4 mg oestradiol benzoate. Blood samples were obtained from the jugular vein just before (0 h) and 24 h after injection. The number of AA, AG and GG at the NsiI site was 0, 17 and 54 respectively. In AG and GG, plasma GH concentrations were higher pre‐injection than 24 h post‐injection (p < 0.01). Moreover, plasma GH concentrations in AG post‐injection were higher than in GG (p < 0.05). In contrast, the GG genotype exhibited higher plasma IGF‐1 concentrations in pre‐injection than post‐injection (p < 0.01), although oestradiol did not change IGF‐1 concentration in the AG genotype. We conclude that the GG polymorphism in the promoter region of GHR is associated with a higher potential capacity of IGF‐1 production in the liver of cattle.  相似文献   

4.
Jatropha curcas is a drought‐resistant shrub or small tree widespread all over the tropics and subtropics. The use of J. curcas (L) kernel meal in fish feed is limited owing to the presence of toxic and antinutritional constituents. In this study, it was detoxified using heat treatment and organic solvent extraction method. The detoxification process was carried out for 60 min to obtain the detoxified meal. Cyprinus carpio L. fingerlings (n = 180; avg. wt. 3.2 ± 0.07 g) were randomly distributed in five treatment groups with four replicates and fed isonitrogenous diets (crude protein 38%) for 8 weeks. The inclusion levels of the detoxified Jatropha kernel meal (DJKM) and soybean meal (SBM) were as follows: control diet was prepared with fish meal (FM) and wheat meal, without any DJKM and SBM; diets S50 and J50: 50% of FM protein replaced by SBM and DJKM respectively; diets S75 and J75: 75% of FM protein replaced by SBM and DJKM respectively. Highest body mass gain and insulin‐like growth factor‐1 (IGF‐1) gene expression in brain, liver and muscle were observed for the control group, which were statistically similar to those for J50 group and significantly (p < 0.05) higher than for all other groups, whereas growth hormone gene expression in brain, liver and muscle exhibited opposite trend. Insulin‐like growth factor‐1 concentration in plasma did not differ significantly among the five groups. Conclusively, growth performance was in parallel with IGF‐1 gene expression and exhibited negative trend with GH gene expression.  相似文献   

5.
This study aimed to characterize the relationship between the growth of rumen papillae in calves and the mRNA expression of insulin‐like growth factor‐binding proteins (IGFBPs) in the rumen papillae. The length of rumen papillae, the mRNA expression of IGFBPs in rumen papillae by quantitative real‐time PCR, and the presence of insulin‐like growth factors I and II (IGF‐I and II) by immunohistochemistry (IHC) were analyzed in nine Holstein calves divided into three groups: suckling (2 weeks, n = 3), milk‐continued (8 weeks, n = 3), and weaned (8 weeks, n = 3). The length of rumen papillae was greater (p < 0.01) in weaned calves than in suckling and milk‐continued calves, whereas the expressions of IGFBP2, IGFBP3, and IGFBP6 genes were lower (p < 0.05) in the rumen papillae of weaned calves than in milk‐continued calves. Thus, rumen papillae length and IGFBP2, 3, and 6 expressions were negatively correlated. The IHC analysis showed that IGF‐I and IGF‐II were present in the rumen epithelium of calves. These results suggested that the growth of rumen papillae after weaning is associated with the induction of IGFs by the low levels of IGFBP2, IGFBP3, and IGFBP6.  相似文献   

6.
7.
8.
It is well established that tumour cells have metabolic differences when compared with normal cells. This is particularly true for energy metabolism in which dogs with cancer have been reported to have higher blood insulin and lactate concentrations than control dogs. Moreover, some human and animal studies suggest that the insulin‐like growth factor 1 (IGF‐1) signalling pathway may play a role in tumorigenesis and tumour progression. At present, IGF‐1 has not been evaluated in dogs with multicentric lymphoma. In this prospective, cross‐sectional study, blood levels of IGF‐1, as well as other markers of energy metabolism—insulin, glucose, lactate, and β‐hydroxybutyrate—were measured in 16 dogs with histologically or cytologically confirmed treatment‐naïve lymphoma. These results were compared with 16 age‐, sex‐ and weight‐matched healthy controls. Dietary histories were collected, and protein, fat and carbohydrate intake were compared between groups. Results demonstrated that IGF‐1, insulin, glucose and insulin:glucose ratio were not different between groups. However, lactate and β‐hydroxybutyrate were higher in the dogs with lymphoma than that in the control dogs (1.74 ± 0.83 mmoL/L vs 1.08 ± 0.27 and 2.59 ± 0.59 mmol/L vs 0.77 ± 0.38 mmol/L, respectively). Median dietary protein, fat and carbohydrates did not differ between the groups. This preliminary study suggests that higher insulin and IGF‐1 levels relative to controls may not be a consistent finding in dogs with lymphoma. The significance of increased β‐hydroxybutyrate in dogs with lymphoma warrants further investigation in a larger prospective study.  相似文献   

9.
The study aimed to investigate the effects of maternal dietary methyl donors on the performance of sows and their offspring, and the associated hepatic insulin‐like growth factor‐1 (IGF‐1) expression of the offspring. A total of 24 multiparous sows were randomly fed the control (CON) or the CON diet supplemented with methyl donors (MD) at 3 g/kg betaine, 15 mg/kg folic acid, 400 mg/kg choline and 150 μg/kg VB12, from mating until delivery. After farrowing, sows were fed a common lactation diet through a 28‐days lactation period and six litters per treatment were selected to be fed until at approximately 110 kg BW. Maternal MD supplementation resulted in greater birthweight (< 0.05) and increased the piglet weights (< 0.01) and litter weights (< 0.05) at the age of day 28, compared with that in CON group. The offspring pigs in the MD group had greater ADG (< 0.05) and tended to lower F:G ratio (= 0.07) compared with that of CON group from day 28 to 180 of age. The offspring pigs from MD group had greater serum IGF‐1 concentrations and expressions of hepatic IGF‐1 gene and muscular IGF‐1 receptor (IGF‐1r) protein at birth (< 0.05), and greater hepatic IGF‐1 protein (= 0.03) and muscular IGF‐1r gene expressions (< 0.05) at slaughter, than that from the CON group. Moreover, the methylation at the promoter of IGF‐1 gene in the liver of newborn piglets and finishing pigs was greater in the MD group than that of the CON group (< 0.05). In conclusion, maternal MD supplementation throughout gestation could enhance the birthweight and postnatal growth rate of offspring, associated with an increased expression of the IGF‐1 gene and IGF‐1r, as well as the altered DNA methylation of IGF‐1 gene promotor.  相似文献   

10.
11.
12.
Since companion dogs have the same living environment as humans, they are a good animal model for the study of human diseases; this is especially true of canine spontaneous mammary tumours models. A better understanding of the natural history and molecular mechanisms of canine mammary tumour is of great significance in comparative medicine. Here, we collected canine mammary tumour cases and then assayed the clinical cases by pathological examination and classification by HE staining and IHC. miRNA‐497 family members (miR‐497, miR‐16, miR‐195 and miR‐15) were positively correlated with the breast cancer marker genes p63 and PTEN. Modulation of the expression of miR‐497 in the canine mammary tumour cell lines CMT1211 and CMT 7364 induced apoptosis and inhibited cell proliferation. Mechanistically, IRAK2 was shown to be a functional target of miR‐497 that affects the characteristics of cancer cells by inhibiting the activity of the NF‐κB pathway. Overall, our work reveals the miR‐497/IRAK2/NF‐κB axis as a vital mechanism of canine mammary tumour progression and suggests this axis as a target in breast cancer.  相似文献   

13.
β‐Hydroxybutyricacid (BHBA) is an important metabolite that involved in the development of ketosis and fatty liver in dairy cows. Dairy cows with fatty liver displayed high blood concentration of BHBA and very low‐density lipoprotein (VLDL) assembly. The effects of BHBA on VLDL synthesis and assembly in hepatocytes of cows were unclear. In this study, bovine hepatocytes were cultured and treated with different concentrations of BHBA. We found that BHBA treatment upregulated the mRNA and protein levels of apolipoprotein B100 (ApoB 100), apolipoprotein E (ApoE) and microsomal triglyceride transfer protein (MTTP) and showed in a firstly increased and then decreased trend. Meanwhile, the mRNA and protein levels of LDLR showed in a reverse trend. Consequently, VLDL content was significantly increased in medium‐dose BHBA treatment group, while decreased in high‐dose group. These results indicate that the effects of BHBA on the VLDL synthesis showed in a dose‐dependent manner that low levels of BHBA increase VLDL synthesis and high levels of BHBA decrease VLDL synthesis.  相似文献   

14.
β‐carotene is one of the most abundant carotenoids, has potential anti‐inflammatory effect, it has been reported that β‐carotene could suppress LPS‐induced inflammatory responses by inhibiting nuclear factor kappa B (NF‐κB) translocation, but the more detailed molecular mechanisms underlying the anti‐inflammatory action of β‐carotene remain to be fully understood. In this study, we investigated the influence of β‐carotene on the activation of JAK2/STAT3, MAPK, and NF‐κB signaling pathway induced by LPS in RAW264.7 cells and peritoneal macrophages. Cells were treated with different concentrations of β‐carotene for 3 hr after LPS treatment for 24 hr. The mRNA expression and the release of IL‐1β, IL‐6, and TNF‐α were evaluated by RT‐PCR and ELISA, and the level of signaling proteins of JAK2/STAT3, MAPK, and NF‐κB signaling pathway were detected by Western blot. The results showed that β‐carotene significantly suppressed (p < 0.05) LPS‐induced release of IL‐1β, IL‐6, and TNF‐α and their mRNA expression. LPS‐induced JAK2/STAT3, IκB/NF‐κB p65, JNK/p38 MAPK signal activation were significantly attenuated (p < 0.05) by β‐carotene in a dose‐dependent manner. In conclusion, β‐carotene could attenuate LPS‐induced inflammation via inhibition of the NF‐κB, JAK2/STAT3, and JNK/p38 MAPK signaling pathways in macrophages.  相似文献   

15.
16.
17.
Background: Plasma protein electrophoresis is frequently used in birds as a tool for the diagnosis and monitoring of disease. Identification of proteins in individual peaks can help improve our understanding of changes in protein concentration in physiologic and pathologic conditions. Objective: The aim of this study was to verify the presence and identity the protein(s) in the prominent α‐globulin peak of orange‐winged parrots (Amazona amazonica), black kites (Milvus migrans), and rock pigeons (Columba livia). Methods: Heparinized plasma samples were obtained from 12 birds of each species. Agarose gel electrophoresis and total protein concentration were determined using standard techniques. One plasma sample from each species was then electrophoresed using high‐resolution agarose gels to isolate the α‐globulin band. Gel strips were digested in trypsin and peptides were extracted and analyzed using liquid chromatography with tandem mass spectrometry. De novo sequencing was used to identify the protein based on homology scoring against a protein database. Results: Electrophoresis verified the presence of a single prominent α‐globulin peak, usually in the α1‐region, that had a median concentration of 9.4 g/L (range, 2.1–11.7 g/L, 21.6% of total protein) in parrots, 12.2 g/L (10.4–13.2 g/L, 35.9%) in kites, and 10.7 g/L (9.0–11.5 g/L, 40.0%) in pigeons. Mass spectrometry and sequencing analysis unequivocally identified the protein as a mature circulating form of apolipoprotein A‐I (apo A‐I) in all 3 species. Conclusions: Apo A‐I accounts for the prominent α‐globulin peak and comprises a major proportion of total protein concentration in diverse avian species. As a high‐density lipoprotein and negative acute phase protein with a pivotal role in cholesterol homeostasis, further study is warranted to determine the significance of changes in apo A‐I concentration in avian electrophoretograms.  相似文献   

18.
Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self‐renew and give rise to differentiated progeny. Previous studies have reported that MSC may be induced in vitro to develop into different types of specialized cells including male gametes. In vitro gamete derivation technology has potential applications as an alternative method for dissemination of elite animal genetics, production of transgenic animals and conservation of endangered species. This study aimed at investigating the in vitro effect of BMP4, TGFβ1 and RA on the potential for germ cell (GC) differentiation of bovine foetal MSC (bfMSC) derived from bone marrow (BM). The effect of BMP4, TGFβ1 and RA was analysed on the expression of pluripotent, GC and male GC markers on bfMSC during a 21‐day culture period. bfMSC cultured under in vitro conditions expressed OCT4, NANOG and DAZL, but lacked expression of mRNA of VASA, STELLA, FRAGILIS, STRA8 and PIWIL2. Treatment with exogenous BMP4 and TGFβ1 induced a transient increase (p < .05) in DAZL and NANOG mRNA levels, respectively. However, exposure to RA was more effective in increasing (p < .05) expression of DAZL and regulating expression of OCT4 and mRNA levels of NANOG. These data suggest that bfMSC may possess potential for early GC differentiation, where OCT4, NANOG and specially DAZL may play significant roles in controlling progression along the GC lineage.  相似文献   

19.
Transforming growth factor (TGF)‐β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF‐β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF‐β1 on muscle regeneration and adipogenesis in glycerol‐injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF‐β1 was either co‐injected with glycerol, as an ‘early treatment’ group, or injected at day 4 after glycerol, as a ‘late treatment’ group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol‐injured group (without TGF‐β1 treatment). Moreover, the Oil red O‐positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol‐injured group. Furthermore, TGF‐β1 treatment increased endomysial fibrosis and induced immunostaining of α‐smooth muscle actin. The greater inhibitory effects of early TGF‐β1 treatment than that of late TGF‐β1 treatment during regeneration in glycerol‐injured muscle suggest a more potent effect of TGF‐β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF‐β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号