首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to establish the heat production (HP) of Saanen and Anglo Nubian goats at absorptive (feeding) and at post‐absorptive (fasting) statuses to determine the adequate period of fasting required for the measurement of basal metabolism. Gas exchange was recorded via open‐circuit facemask respirometry. Six non‐lactating and non‐pregnant goats of each breed, Saanen (49.2 ± 3.2 kg of body weight, BW) and Anglo Nubian (64.0 ± 3.0 kg BW), were placed in individual pens with ad libitum access to the same total mixed ration. After a 3‐day feeding period, the animals were subjected to fasting (no feed), and the gas exchange measurement was performed for 30 min at 0, 12, 20, 36, 44, 60 and 68 h after fasting. The daily HP of the Saanen and Anglo Nubian goats averaged 557.4 ± 38.7 and 357.1 ± 35.3 kJ/kg0.75 BW day respectively. During fasting, the methane production decreased exponentially in both breeds, and the critical time when methane production was statistically equal to zero was at 31 h of fasting for the Saanen goats and at 40 h for the Anglo Nubian goats. The daily HP and respiratory exchange rate during fasting decreased up to 60 h. Taken together, our results suggest that the ideal period to measure fasting heat production (FHP) for goats fed at maintenance levels should be between 40 h and 60 h of fasting. Consequently, the daily FHP, after 60 h of fasting, of Saanen and Anglo Nubian goats was 183.3 ± 16.3 and 211.1 ± 11.5 kJ/kg0.75 BW day respectively. The results presented herein are relevant for future studies of energy metabolism in goats.  相似文献   

2.
The objective of this study was to explore the underlying mechanism of insulin‐like growth factor 1 (IGF‐1)–caused cell proliferation of rumen epithelium in goats fed a high metabolizable energy (ME) diet. In this study, young goats were fed either a low ME [LL, n = 9, ME: 0.57 MJ/kg0.75/day] or high ME [HL, n = 9, ME: 1.00 MJ/(kg0.75/day)] diet for 42 day. The time duration of G1‐phase was shortened as a result of enhanced expression of cyclin D1 mRNA in the HL group (p < 0.05). It was suggested that a high ME diet promoted cell transition from G0/G1 to S‐phase via cyclin D1. The level of phosphorylation of ERK was higher in HL than LL group (p < 0.05). In cell culture, the ERK was phosphorylated by IGF‐1 treatment. The proliferative effects of insulin‐like growth factor 1 (IGF‐1, 25 ng/ml) on [3H] thymidine (TdR) incorporation into DNA and on cyclin D1 protein expression of rumen epithelial cells were inhibited by PPP (the inhibitor of type 1 IGF receptor) (p < 0.05) and ERK inhibitor (p < 0.05) in vitro. Thus, IGF‐1 up‐regulated cyclin D1 expression and accelerated G1‐phase progression in the cell cycle through Ras/Raf/MEK/ERK pathway in rumen epithelium of goats.  相似文献   

3.
High‐fat (HF) or high‐carbohydrate (HC) diets (30% fat, 18.9% carbohydrate; HF and 10% fat, 46.3% carbohydrate; HC) and lengths of adaptation were investigated in cats (Felis catus; 10 ± 2 months, 3.6 ± 0.3 kg). Cats randomly received each treatment for 14 days in a crossover design with a 14‐day washout period between each diet. Three 22‐h indirect calorimetry studies were conducted after acute (day 0), semichronic (day 4) and chronic (day 13) dietary exposure. Blood samples were collected after a 24‐h fast on days 1, 5 and 14. When cats consumed the HC and HF diet, oxidation of the restricted nutrient exceeded intake while oxidation of the nutrient in excess matched intake. Mean max energy expenditure (EE) of cats consuming the HF and HC diet were 107 and 102 kcal/kg0.67/day and occurred at a mean of 4 and 12 h post‐feeding respectively. Maximal fat (0.90 g/h) and carbohydrate (carbohydrate; 1.42 g/h) oxidation were attained at 26 min and 10.4 h post‐feeding respectively. The changes observed in macronutrient oxidation and EE suggest that cats adapt whole‐body nutrient metabolism in response to changes in dietary macronutrient content, but may require longer than 14 day to adapt to a macronutrient that is present at a lower concentration in the diet.  相似文献   

4.
The metabolic fecal nitrogen and digestibility estimates in the grasscutter were determined using 12 captive-bred adult animals fed with four experimental diets differing primarily in crude protein content using nitrogen balance trial approach. Grasscutters required 343.5 mg N kg-0.75 d-1 of nitrogen to meet maintenance requirements, which were met on diets containing 7.4% crude protein. The true digestibility of nitrogen was moderate (52%) but within the range for eutherians. Dry matter intake increased with decreasing dietary nitrogen content, suggesting that animals on nitrogen-deficient diets displayed appreciable compensatory intake. Metabolic fecal nitrogen was 3.5 g N kg-1 dry matter intake, and endogenous urinary nitrogen was 257.5 mg N kg-0.75 d-1. The low value of metabolic fecal nitrogen found for grasscutters affected the dry matter intake required for nitrogen balance, and it may allow grasscutters to exploit nitrogen poor diets.  相似文献   

5.
Ruminant methane yield (MY) is positively correlated with mean retention time (MRT) of digesta. The hormone triiodothyronine (T3), which is negatively correlated with ambient temperature, is known to influence MRT. It was hypothesised that exposing sheep to low ambient temperatures would increase plasma T3 concentration and decrease MRT of digesta within the rumen of sheep, resulting in a reduction of MY. To test this hypothesis, six Merino sheep were exposed to two different ambient temperatures (cold treatment, 9 ± 1 °C; warm control 26 ± 1 °C). The effects on MY, digesta MRT, plasma T3 concentration, CO2 production, DM intake, DM digestibility, change in body weight (BW), rumen volatile fatty acid (VFA) concentrations, estimated microbial protein output, protozoa abundance, wool growth, water intake, urine output and rectal temperature were studied. Cold treatment resulted in a reduction in MY (p < 0.01); digesta MRT in rumen (p < 0.01), hindgut (p = 0.01) and total digestive tract (p < 0.01); protozoa abundance (p < 0.05); and water intake (p < 0.001). Exposure to cold temperature increased plasma T3 concentration (p < 0.05), CO2 production (p = 0.01), total VFA concentrations (p = 0.03) and estimated microbial output from the rumen (p = 0.03). The rate of wool growth increased (p < 0.01) due to cold treatment, but DM intake, DM digestibility and BW change were not affected. The results suggest that exposure of sheep to cold ambient temperatures reduces digesta retention time in the gastrointestinal tract, leading to a reduction in enteric methane yield. Further research is warranted to determine whether T3 could be used as an indirect selection tool for genetic selection of low enteric methane‐producing ruminants.  相似文献   

6.
Three experiments were carried out to determine the crude protein requirements for maintenance (CPm) and weight gain (CPg) of meat quail and to develop protein‐requirement prediction models. Experiment 1 was conducted to determine CPm by the nitrogen‐balance technique. The regression of nitrogen balance on nitrogen intake revealed a CPm requirement of 2.94 g/kg0.75/day. Experiment 2 was aimed at determining CPm by the comparative‐slaughter technique. Retained nitrogen (RN) and nitrogen intake (NI) were quantified considering the metabolic weight of the birds. The linear regression of RN on NI provided a CPm estimate of 6.63 g/kg0.75/day. Experiment 3 was conducted to determine CPg. The regression of body nitrogen from the carcasses on fasted body weight revealed CPg estimates of 407.68 (0–7 days), 501.76 (8–14 days), 470.40 (0–14 days), 517.44 (15–21 days), 627.20 (22–28 days), 423.36 (29–35 days), and 517.44 mg/g (15–35 days). The protein‐requirement prediction models developed for meat quail aged 0–7, 8–14, 0–14, 15–21, 22–28, 29–35, and 15–35 days were CP = 2.94.W0.75 + 0.408.G; CP = 2.94.W0.75 + 0.502.G; CP = 2.94.W0.75 + 0.470.G; CP = 2.94.W0.75 + 0,517.G; CP = 2.94.W0.75 + 0.627.G; CP = 2.94.W0.75 + 0.423.G; CP = 2.94.W0.75 + 0.517.G, respectively, where: W0.75 =  metabolic weight (kg), and G =  daily weight gain (g).  相似文献   

7.
This study aimed to estimate the essential amino acid profile and the ideal ratio for the maintenance of poultry by deletion method. A nitrogen balance (NB) trial was conducted using 198 adult roosters, housed individually in metabolic cages. The treatments were 33 purified diets being 11 diets with an amino acid mixture providing high protein intake of 500 mg N/BWkg0.75 per day, 11 diets providing medium protein intake of 250 mg N/BWkg0.75 per day (in each diet, one amino acid tested was diluted 50%) and 11 diets providing low protein intake of 125 mg N/BWkg0.75 per day (made by omitting the amino acid tested). Each treatment had six replicates. After 48 h of fasting receiving water plus sucrose, the roosters were fed 40 g of the diets by tube once a day for 3 days. The excreta were collected within 72 h after the first feeding. The diets and excreta were analysed for nitrogen content. For each amino acid studied, a linear regression was fitted by NB and amino acid intake (AAI). The maintenance requirements were estimated as the AAI to maintain the NB equal to zero. The daily amino acid requirements for maintenance were estimated to be Lys 11, Met 29, Thr 23, Trp 5, Arg 50, Val 29, His 6, Gly 54, Phe 49, Leu 78 and Ile 21 mg/BWkg0.75 per day. Therefore, the amino acid ratio for maintenance was concluded to be Lys 100, Met 276, Thr 220, Trp 48, Arg 467, Val 275, His 60, Gly 511, Phe 467, Leu 735 and Ile 198% independent of the scale. The essential amino acid profile and the ideal ratio for the maintenance of poultry estimated in this study contributed to improve the factorial model for estimating essential amino acid requirements for poultry.  相似文献   

8.
9.
The objective of this research was to estimate the energy and protein requirements for maintenance and growth in male (castrated and intact) and female Saanen goat kids between 15 and 30 kg BW. To determine the net energy requirements for maintenance (NEm) and the net protein requirements for maintenance (NPm), 75 goats (25 castrated and 26 intact males and 24 females) were used. Twenty‐one goats (seven castrated and eight intact males and six females) were randomly assigned for slaughter to estimate the initial empty body composition. The 54 remaining animals (18 castrated and 18 intact males and 18 females) were randomly assigned in a split‐plot design using a 3 × 3 factorial arrangement with three sexes and three levels of intake (ad libitum and restricted feed to 75% or 50% of the ad libitum intake). Within each sex, six blocks (three goats per block) were formed and one goat was randomly assigned to each level of intake. The 75% and the 50% of ad libitum rationing were determined daily, based on the DMI of the animal fed ad libitum on the previous day. All animals within block were slaughtered when the animal fed ad libitum reached 30 kg BW. The net energy requirements for gain (NEg) and the net protein requirements for gain (NPg) were obtained using 58 animals (20 castrated and 20 intact males and 18 females). The animals were fed ad libitum and slaughtered at targeted BW (15, 23 or 30 kg). Sex did not affect NEg and NPm (277.8 kJ/kg0.75 BW day and 2.98 g CP/kg0.75 BW day respectively), as well as NPg (180.9 ± 6.48 g/kg EBW gain) in Saanen goat kids. However, castrated males and females had similar NEg (varied from 12.6 ± 0.424 to 17.9 ± 1.38 MJ/kg EBW gain), greater than intact males (varied from 9.74 ± 0.420 to 10.7 ± 0.984 MJ/kg EBW gain), as the BW increased from 15 to 30 kg.  相似文献   

10.
Equid digestion is often conceptualized as a high‐throughput/low‐efficiency system, in particular compared with ruminants. It is commonly assumed that ruminants have an advantage when resources are limited; the effect of low food intake on digestive physiology of horses has, however, not been explored to our knowledge. We used four adult ponies [initial body mass (BM) 288 ± 65 kg] in two subsequent trials with grass hay‐only diets [in dry matter (DM): hay1, mid‐early cut, crude protein (CP) 10.5%, neutral detergent fibre (NDF) 67.6%; hay2, late cut, CP 5.8%, NDF 69.5%], each fed subsequently at four different dry matter intake (DMI) levels: ad libitum and at 75, 55 and 30 g/kg0.75/day. We particularly expected digesta mean retention times (MRT) to increase, and hence fibre digestibility to increase, with decreasing DMI. Ponies maintained BM on the first, but lost BM and body condition on DMI55 and DMI30. MRTs were negatively correlated to DMI and ranged (for particles <2 mm) from 23/31 h (hay1/2) on the ad libitum to 38/48 h on DMI30. Digestibilities of DM, nutrients and fibre components decreased from DMI75 to DMI30; apparent digestibilities of organic matter and NDF (hay1/2) dropped from 47/43% and 42/37%, respectively, on the ad libitum DMI to 35/35% and 30/28% on DMI30. Additional differences evident between the two hays included a higher estimated ‘true’ protein digestibility for hay1 and finer faecal particles on hay2; there were no differences in faecal particle size between intake levels. The results suggest that below a certain food intake threshold, the major digestive constraint is not fermentation time but nutrient supply to gut bacteria. The threshold for such an effect probably varies between feeds and might differ between ruminants and equids.  相似文献   

11.
Within a given free-range flock, some hens prefer to spend the majority of their time in the shed (stayers), while others frequently access the range (rangers). Laying performance has been associated not only with the development of these sub-populations but also with different body weights (BW). The purpose of this study was to determine if range usage, BW or a combination of both is associated with energy metabolism and as such contribute to improved hen performance. Forty-eight Lohmann Brown hens at 74 wk of age were selected from a commercial free-range farm based on their BW and range usage over a 56-week period. Using a 2 × 2 factorial arrangement, hens were either classified as heavy (mean ± SEM; 2.01 ± 0.02 kg, n = 24) or light (1.68 ± 0.01 kg, n = 24), and also classified as rangers (accessed the range for 84.1% of available days, 242 ± 3.75 d; n = 24) or stayers (accessed the range for 7.17% of available days; 23.4 ± 6.08 d, n = 24). Stayers had significantly higher metabolizable energy (ME) intake per metabolic BW per d (0.852 vs. 0.798 MJ/kg BW0.75 per d; P = 0.025), higher heat production (0.637 vs. 0.607 MJ/kg BW0.75 per d; P = 0.005), higher heat increment (0.267 vs. 0.237 MJ/kg BW0.75 per d; P = 0.005) and retained more nitrogen (1.59 vs. 1.46 g/hen per d; P = 0.023) compared to the rangers. Light hens had significantly higher metabolic energy intake per metabolic BW (0.854 vs. 0.796 MJ/kg BW0.75 per d; P = 0.018), net energy (NE) intake (0.595 vs. 0.551 MJ/kg BW0.75 per d; P = 0.032), and retained energy (0.225 vs. 0.181 MJ/kg BW0.75 per d; P = 0.032), as well as lower heat production (0.936 vs. 1.003 MJ/hen per d; P = 0.002) compared to heavier hens. An interaction was observed across levels of analysis i.e. between light stayers and light rangers. The light rangers had significantly higher NE intake compared to the light stayers (9.77 vs. 9.27 MJ/kg BW0.75 per d; P = 0.024). In conclusion, light hens were more energy efficient compared to heavy hens. Moreover, light rangers had a more efficient feed utilisation compared to the light stayers.  相似文献   

12.
Pharmacokinetics and milk levels of ceftriaxone were studied in healthy and endometritic cows following single intravenous administration. The drug was detected up to 8 h of dosing in plasma of healthy and endometritic cows and the drug disposition followed three-compartment open model. The values of Vdarea, AUC, t1/2β, ClB, MRT and P/C ratio were 0.50 ± 0.19 L.kg−1, 62.2 ± 23.3 μg.ml−1.h, 1.02 ± 0.07 h, 0.30 ± 0.09 L.kg−1.h−1, 1.55 ± 0.25 h and 0.52 ± 0.27, respectively, in healthy and 1.55 ± 0.52 L.kg−1, 37.0 ± 17.1 μg.ml−1.h, 1.56 ± 0.25 h, 0.56 ± 0.14 L.kg−1.h−1, 2.14 ± 0.34 h and 1.44 ± 0.60, respectively, in endometritic cows. The drug was detected in milk for 36 h after administration. For MIC90 of 0.5 μg.ml−1 the most appropriate dosage for ceftriaxone, would be 9.0 mg.kg−1 repeated at 6 h intervals for the treatment of endometritis in cows.  相似文献   

13.
We conducted two experiments with heavy Iberian pigs to determine the ileal digestibility of amino acids (AA) in acorns and freshly cut herbage, and the effects of adding fresh herbage upon the supply of ileal digestible AA when pigs were fed on holm‐oak acorns. In Experiment 1, carried out in cannulated pigs of 107 kg bodyweight (BW), daily intake of acorns reached 44.9 g DM/kg0.75 BW. Arg, His and Thr showed the lowest apparent ileal digestibility (AID) values, whereas Met, the branched‐chain AA and Phe had the highest coefficients. The AID of total EAA was 0.716 but only 0.222 for NEAA. Most of the digestive and absorptive processes of acorn protein occurred before the hindgut. Acorn provides (per kg DM) 2.27 g apparent ileal digestible Lys and 22.7 g apparent total digestible AA. Standardized ileal digestibility (SID) values for EAA, NEAA and total AA were 0.924 ± 0.020, 0.784 ± 0.041 and 0.860 ± 0.029. In Experiment 2 fresh herbage was given to six cannulated Iberian pigs of 140 kg either as a single feed (13.7 g DM/kg0.75 BW) or as a supplement to acorns (28.4 g DM/kg0.75 BW). When only freshly cut forage was offered the AID of the EAA, NEAA and total AA was close to 0.65 and supplied (per kg DM ingested) 5.61 g AID Lys and 91.7 g digestible AA. Standardized ileal values were 0.744 ± 0.023, 0.912 ± 0.038 and 0.831 ± 0.030 respectively. The addition of fresh forage to the acorns led to a significant decrease in AID of AA in acorn due to digesta transfer to the hindgut: His (p < 0.01), Met (p < 0.001), Phe (p = 0.092), Thr (p < 0.05) and Val (p < 0.05), but Arg, Lys and the branched‐chain AA remained unaffected. The main contribution of herbage to AA nutrition of the grazing Iberian pig relies mainly on increasing the supply of digestible AA for pig tissues.  相似文献   

14.
A study was conducted to determine the effect of two levels of linoleic acid (LA) intake at either high or low α‐linolenic acid (ALA) intake on their conversion and subsequent deposition into long‐chain (20–22 C‐atoms) polyunsaturated fatty acids (LC PUFA) in muscle and backfat in growing pigs. In a 2 × 2 factorial arrangement, 32 gilts from 8 litters were assigned to one of four dietary treatments, varying in LA and ALA intakes. Low ALA and LA intakes were 0.15 and 1.31 g/(kg BW0.75/day), respectively, and high ALA and LA intakes were 1.48 and 2.65 g/(kg BW0.75/day) respectively. There was a close positive relation between intake of ALA and the concentration of ALA in backfat and in intramuscular fat. Dietary ALA did not affect the concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but increased docosapentaenoic acid (DPA) in backfat. High ALA intake did not significantly affect DHA but significantly increased EPA, 20:3 n‐3 and DPA concentrations in intramuscular fat. The n‐3 LC PUFA proportion in backfat was increased from approximately 1–3%, which may be useful to enrich meat with these fatty acids. The effect of ALA intake on n‐3 LC PUFA was suppressed by LA intake. Dietary ALA suppressed the concentration of n‐6 LC PUFA in blood plasma by more than 50%. When compared at equal incremental dose, the inhibiting effect of ALA on blood arachidonic acid was stronger than the stimulating effect of LA as precursor.  相似文献   

15.
A nitrogen (N) balance digestion trial was conducted to determine the protein requirement of collared peccaries (Pecari tajacu). In a 4 × 4 Latin square design, four captive adult male peccaries were fed four isoenergy diets containing four different levels of N (11.7, 16.3, 22.8, and 26.7 g N/kg of dry matter—DM). After 15 days of adaptation, a total collection of feces and urine was carried out for five consecutive days. Regression analyses between N intake and N in feces and urine allowed to calculate the metabolic fecal nitrogen (MFN = 2.3 g N/kg of dry matter intake—DMI) and daily endogenous urinary N (EUN = 185 mg N/kg0.75). Likewise, by regression analyses between consumption of nitrogen and the nitrogen balance (NB = N ingested ? N excreted, mg N/kg0.75), a daily requirement of 514 mg N/kg0.75 was calculated. Therefore, if food intake is unrestricted, collared peccaries require a minimum in their diet of about 5.4% crude protein on DM basis. These values are almost as low as those found for browsing and frugivorous wild ruminants, which reinforce the proposition that peccaries’ digestive physiology is nearer to that of domestic and wild ruminants than domestic pigs. This relatively low protein requirement of collared peccary and its great ability to digest protein reveal the relevance of the forestomach for the species on nitrogen/protein metabolism and allow the use of diets with lower crude protein levels than the commercial ones used for the domestic pig, which reduces feed costs.  相似文献   

16.
Redberry juniper (Juniperus pinchotii Sudworth) is an invasive, evergreen tree that is rapidly expanding throughout western and central Texas. Goats will consume some juniper on rangelands; however, intake is limited. The objective of our research was to determine how the age and body condition of goats influence their consumption of juniper and an artificial feed containing 4 monoterpenes. Two separate experiments were conducted. Experiment 1 examined the intake of redberry juniper foliage and used 39 goats either young (2 yr) or mature (> 6 yr). One-half of each age group was fed appropriate basal rations to reach either a high (HBC) or low body condition (LBC). Goats in LBC ate more (P < 0.01, 8.6 g · kg−1 body weight [BW] ± 0.7 SE) juniper than those in HBC (2.3 g · kg−1 BW ± 0.3 SE), and young animals consumed more (P < 0.05, 7.2 g · kg−1 BW ± 0.7 SE) juniper than mature goats (3.9 g · kg−1 BW ± 0.5 SE) across body condition treatments. In experiment 2, 36 goats, either young (2 yr) or mature (> 6 yr) and in either HBC or LBC, were offered a synthetic ration treated with 20.8 g · kg−1 of 4 monoterpenes found in redberry juniper. Goats in LBC ate more (P < 0.01, 25.3 g · kg−1 BW ± 1.0 SE) of the terpene-treated feed than those in HBC (17.5 g · kg−1 BW ± 0.7 SE), and young animals ate more (P < 0.05, 22.5 g · kg−1 BW ± 0.8 SE) than mature goats (20.3 g · kg−1 BW ± 0.8 SE) across body condition treatments. Total intake as a proportion of body weight was also affected by body condition. Age and body condition are important factors that influence intake of chemically defended plants. A better understanding of how these attributes affect diet selection will aid livestock producers in improving grazing management.  相似文献   

17.
The objective of this study was to develop a prediction equation for methane‐related traits in beef cattle and evaluate this equation using datasets with different cattle breeds and roughage rates. Enteric methane emission (CH4, l/day) was measured using open‐circuit respiration chambers. Dry matter intake (DMI, kg/day), body weight (BW, kg), daily gain (DG, kg), total digestible nutrients (TDN, %DMI), and roughage rate (Rrate, %) were used as independent variables, and methane‐related traits—CH4, CH4 per DMI (CH4/DMI, l/kg), and methane conversion factor (MCF, %)—were used as dependent variables. The best‐fit equations to predict methane‐related traits using a total of 76 records were CH4 = –676.7 + 0.04194 × BW + 29.88 × DMI + 7.883 × TDN + 4.367 × Rrate, CH4/DMI = –52.24 – 1.193 × 10–3 × BW – 5.905 × DG + 1.077 × TDN + 0.5008 × Rrate, and MCF = –11.43 – 5.308 × 10–4 × BW – 1.223 × DG + 0.2336 × TDN + 0.1157 × Rrate. The predictive ability of the developed equations differed between roughage rates but not between breeds. For CH4, the predictive ability of the developed equations was better compared with previously reported equations in the low roughage rate dataset, but not in the high roughage rate dataset. Our results suggest that the developed equations of methane‐related traits can be applied in beef cattle fed with low roughage diets.  相似文献   

18.
The net and metabolizable energy (NE and ME) requirements of Dorper cross‐bred female lambs with BWs of 20–35 kg were assessed in a comparative slaughter trial. Thirty‐five Dorper × thin‐tailed Han cross‐bred female lambs weaned at ~50 days of age (20.3 ± 2.15 kg BW) were used. Seven randomly selected lambs were slaughtered at the start of the trial (baseline group). An intermediate group consisting of seven randomly selected lambs fed ad libitum was slaughtered when the lambs reached an average BW of 28.5 kg. The remaining 21 lambs were allotted randomly to three levels of dry matter intake: ad libitum or restricted to 70% or 40% of the ad libitum intake. All the lambs were slaughtered when the sheep fed ad libitum reached a BW of 35 kg. Total body energy, nitrogen, fat, ash and moisture content were determined. In a digestibility trial, an additional 15 Dorper × thin‐tailed Han cross‐bred female lambs (28.7 ± 1.75 kg BW) were housed in metabolism cages and used in a completely randomized design experiment to evaluate the ME value of the diet at the three feed intake levels. The maintenance requirements for NE and ME were 245.5 and 380.3 kJ/kg metabolic shrunk body weight (SBW0.75) respectively. The partial efficiency of energy use for maintenance was 0.645. The NE requirements for growth ranged from 1.18 to 5.18 MJ/d for the lambs gaining 100–350 g/d from 20 to 35 kg BW. Partial efficiency of ME for growth was 0.44. In conclusion, the current study suggests that the NE requirement for maintenance and growth of Dorper early‐weaned cross‐bred female lambs is lower than the current AFRC and NRC recommendations.  相似文献   

19.
To evaluate the effects of enzymatically treated Artemisia annua L. (EA) on growth performance and some blood parameters of broilers exposed to heat stress (HS), 320 22‐day‐old Arbor Acres male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1°C and fed the basal diet. Broilers in the HS, HS‐EA0.75, HS‐EA1.00 and HS‐EA1.25 groups were reared under HS (34 ± 1°C for 8 h/day and 22 ± 1°C for 16 h/day), and fed basal diet with 0, 0.75, 1.00 and 1.25 g/kg EA, respectively. The experiment ended at 42 days. Dietary 1.00 and 1.25 g/kg EA decreased blood pH and elevated body weight gain, feed intake and carcass yield compared to the HS group. Broilers fed EA diets had lower serum concentrations of malondialdehyde and corticosterone and activities of alanine aminotransferase and aspartate aminotransferase, and higher serum total superoxide dismutase activity, tri‐iodothyronine concentration and tri‐iodothyronine/thyroxine than the HS group. Serum catalase activity in HS‐EA1.00 and HS‐EA1.25 groups and activity to inhibit hydroxyl in the HS‐EA1.00 group were higher than the HS group. In conclusion, dietary 0.75–1.25 g/kg EA addition alleviated HS induced impairments in broilers.  相似文献   

20.
The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin (MBF) were determined in six healthy female goats of age 1.00–1.25 years after repeated administration of MBF. The MBF was administered intramuscularly (IM) at 2 mg kg?1 day?1 for 5 days. Plasma concentrations of MBF were determined by high‐performance liquid chromatography, and PK parameters were obtained using noncompartmental analysis. The MBF concentrations peaked at 1 hr, and peak concentration (Cmax) was 1.760 µg/ml on day 1 and 1.817 µg/ml on day 5. Repeated dosing of MBF caused no significant change in PK parameters except area under curve (AUC) between day 1 (AUC0–∞D1 = 7.67 ± 0.719 µg × hr/ml) and day 5 (AUC0‐∞D5 = 8.70 ± 0.857 µg × hr/ml). A slight difference in mean residence time between 1st and 5th day of administration and accumulation index (AI = 1.13 ± 0.017) suggested lack of drug accumulation following repeated IM administration up to 5 days. Minimum inhibitory concentration (MIC) demonstrated that Escherichia coli (MIC = 0.04 µg/ml) and Pasturella multocida (MIC = 0.05 µg/ml) were highly sensitive to MBF. Time‐kill kinetics demonstrated rapid and concentration‐dependent activity of MBF against these pathogens. PK/PD integration of data for E. coli and P. multocida, using efficacy indices: Cmax/MIC and AUC0–24hr/MIC, suggested that IM administration of MBF at a dose of 2 mg kg?1 day?1 is appropriate to treat infections caused by E. coli. However, a dose of 5 mg kg?1 day?1 is recommended to treat pneumonia caused by P. multocida in goats. The study indicated that MBF can be used repeatedly at dosage of 2 mg/kg in goats without risk of drug accumulation up to 5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号