首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

To evaluate the relationship between the amount of available Silicon (Si) in paddy soils and their mineral properties on the Shounai Plain in Japan, which is formed from several parent materials, we evaluated the amount of available Si, the particle size distribution, the oxide composition of crystalline minerals and the amount of oxalate-extractable Si (Sio), iron (Feo) and aluminum (Alo) in the soil. The amount of available Si in the soil and the oxide content of the crystalline minerals differed among four soil groups that were distinguished by their clay mineral composition. There was no difference in the particle size distribution among the soil groups. The amount of available Si was positively related to the SiO2/Al2O3 ratio of clay, the CaO concentration of silt and fine sand, and the amounts of Sio, Feo and Alo in the soil. The amount of available Si in the soils was negative correlated with the Na2O and K2O concentrations of silt, the K2O concentration of fine sand, and the coarse sand content. These results suggest that the amount of available Si in soils is affected by the weathering resistivity of their minerals and that the particle size distribution and mineral composition are related to the available Si of the soils. Mineralogical properties, including the particle size distribution and mineral composition such as the SiO2/Al2O3 ratio × clay fraction content and the amounts of CaO and MgO in silt-sized particles, were positively correlated with the amount of available Si in the soil, but these correlations were not found for fine sand-sized particles. The Sio, Feo and SiO2/Al2O3 ratio × clay fraction contents contributed approximately 50% to the amount of available Si in the soils. The amount of available Si in the soil was divided into two groups according to the location of the paddy field. The amount of soil-available Si in the alluvial plain was affected by the geology upstream through the mineral composition.  相似文献   

2.
Soils that are forming on volcanic parent materials have unique physical and chemical properties and in most cases, on wet and humid climates, are classified as Andisols. The main purpose of this study is to examine if the soils that are forming on volcanic materials under a dry Mediterranean climate, in Nisyros Island (Greece), meet the requirements to be classified as Andisols. Soils from seven sites were sampled and examined for their main physico-chemical properties and selective dissolution analysis. Dithionite–citrate–bicarbonate (DCB) extractable Al and Fe (Áld, Fed), acid ammonium oxalate extractable Al, Fe, and Si (Álo, Feo and Sio), and sodium pyrophosphate extractable Al and Fe (Alp, Fep) were measured. In addition, Al and Si were determined after reaction with hot 0.5 M NaOH, (AlNaOH and SiNaOH) and with Tiron-(C6H4Na2O8S2), (AlT and SiT). P-retention was also measured. The soils are characterised by coarse texture, low organic matter content, low values of cation exchange capacity (CEC), and high pH values. Values of Sio, Alo and Feo are less than 0.022%, 0.09% and 0.35% respectively, highlighting the lack of noncrystalline components. The ratio (Fed–Feo)100/Fed is quite high expressing the degree of crystallisation of free iron oxides. For all samples tested, values of the Alo + 1/2Feo index are extremely low (< 0.24%). High SiNaOH and SiT (arising 2.76% and 2.18% respectively) indicate the presence of silica in amorphous forms. P-retention values are very low (< 12.6%). The results indicated the absence of noncrystalline minerals except for amorphous silica, and do not exhibit andic or vitric soil characteristics to be classified as Andisols.  相似文献   

3.
We studied the mineralogical properties of Andisols of the Kitakami mountain range. Soils of the northern and central parts of the mountain range contained higher levels of acid oxalate extractable silicon (Sio), aluminum (A1o), and iron (Feo) but smaller amounts of sodium pyrophosphate-extractable aluminum (Alp), iron (Fep), and carbon (Cp) than those of the southern part. Consequently, the soils of the northern and central parts of the mountain range contained large amounts of allophane and ferrihydrite whereas in the soils of the southern part A1 (Fe)-humus complexes and 2:1 and 2:1:1 clays predominated. The amount of sand (20-2,000 μm) in the soils tended to decrease sharply from the north to the south of the mountain range. The soils of the northern and central parts of the mountain range contained larger amounts of heavy minerals in their fine sand fraction (20-200 μm). The soils of the southern part, on the other hand, contained larger amounts of fine-grained quartz (2-20 μm). All the soils of the mountain range contained substantial amounts of volcanic glass in their sand fraction. However, on a total soil basis, the amount of volcanic glass in the soils decreased from the north to the south of the mountain range and the trend was parallel to that of the sand content of the soils. From these results, we concluded that (i) the soils of the northern and central parts of the mountain range were derived mainly from tephras and (ii) the soils of the southern part were strongly influenced by long-range eolian dust.  相似文献   

4.
Recent studies with Andisols show that the carbon (C) stabilization capacity evolves with soil age relative to the evolution of the mineral phase. However, it is not clear how soil mineralogical changes during pedogenesis are related to the composition of soil organic matter (SOM) and 14C activity as an indicator for the mean residence time of soil organic matter (SOM). In the present study, we analyzed the contribution of allophane and metal–SOM complexes to soil C stabilization. Soil organic matter was analyzed with solid-state 13C nuclear magnetic resonance spectroscopy. Additionally, the soil was extracted with Na-pyrophosphate (Alp, Fep) and oxalate (Alo, Sio, and Feo). Results supported the hypothesis that allophane plays a key role for SOM stabilization in deep and oldest soil, while SOM stabilization by metal (Al and Fe) complexation is more important in the surface horizons and in younger soils. The metal/Cp ratio (Cp extracted in Na-pyrophosphate), soil pH, and radiocarbon age seemed to be important indicators for formation of SOM–metal complexes or allophane in top- and subsoils of Andisols. Changes in main mineral stabilization agents with soil age do not influence SOM composition. We suggest that the combination of several chemical parameters (Alp, Fep and Cp, metal/Cp ratio, and pH) which change through soil age controls SOM stabilization.  相似文献   

5.
The iron oxides fractions of four major physiographic units obtained from a transect of calcareous materials were studied to assess the effects of key pedogenic processes and local hydrology conditions as well as physiographic units in controlling iron oxides forms in the north-west of Iran. Samples from different horizons belonging to six pedons were selected and analyzed for soil physicochemical properties, clay minerals, and Fe oxides forms (Fed, Feo, Fep). In general, the soils indicated some variation in the concentration of iron oxides that could be related to rate of weathering, pedogenic accumulations, geomorphologic conditions (as results of different in physiographic units), wet and dry cycle, and organic matter. A wide relative variation in mean values of Fed (6.4–9.9 g kg?1), Feo (2.9–4 g kg?1), and Fep (0.68–1.3 g kg?1) was observed among physiographic units. On the plateau unit, the presence of the most stable geomorphologic conditions and high rate in situ weathering (reflected in clay content), coupled with minor deposition of sediment suggest that the soils have more dynamic conditions than other units, reflecting in the greatest amount Fed and the lowest Feo/Fed ratio. Fed content of the soils containing less clay content (15–25%) was significantly different from those with greater clay content (25–35%).  相似文献   

6.
The various iron fractions were quantified by selective dissolution (Fed, Feo, Fet) in four Red Mediterranean soils, developed on metarhyolite and metadolerite. They were similar in all profiles. A strong trend of iron removal from the surface horizon and of its subsequent illuvial translocation to the argillic horizons was observed. In all profiles, Feo was not related to the organic matter content indicating the Mediterranean xeric soil environment. The Feo/Fed ratio and the percentage of crystalline iron oxides (Fed-Feo) suggested that the pedoenvironment in which the profiles P1, P2 were formed, allowed the high crystallization of iron oxides. As indicated by the Fed/Fet values, the weathering process was more intense in the metarhyolite-developed soils. In contrast, the metadolerite-developed soils present conditions of poorly crystallized iron oxides and a lower degree of development.  相似文献   

7.
8.
Original and published data on the contents of X-ray amorphous oxalate-soluble compounds of Al, Fe, and Si in mesomorphic eluvial soils of cold, moderately cold, and moderately warm continental humid and semihumid regions are generalized. The groups of soils developed from mafic igneous, metamorphic, and pyroclastic rocks are considered. It is shown that the content of oxalate-soluble oxides (OSOx) in the horizons of their maximal accumulation varies from less than 1% to 20–30%; the Alox/Feox ratio varies from 1 to 6.5. The leading factor dictating the amount and quality of the OSOx in the soils is the presence or absence of volcanic glass in the parent materials. The boundary between the soils with and without volcanic glass corresponds to the OSOx content of 5% and the Al2O3ox/Fe2O3ox ratio equal to 2. These criteria are more reliable than the Alox/Feox ratio used by foreign soil scientists to specify Andosols (Alox/Feox > 2). The contents of oxalate-soluble oxides of Al and Fe do not depend on the total contents of these oxides in the parent material and seem to be related to the presence of these elements in minerals with different resistance to weathering. Under the natural conditions described in this paper, the content of OSOx shows a very weak response to zonal (temperature-controlled) climatic changes and/or to changes in the degree of humidity and the continentality of the climate.  相似文献   

9.
We tested whether a ‘Lockerbraunerde’ from the heights of the Zittauer Gebirge in Eastern Saxony exhibited andic properties and classified it according to the rules of the World Reference Base for Soil Resources (WRB, 1998). To achieve this, we characterized a selected soil by means of routine soil analysis; selective dissolution procedures; X‐ray diffraction (XRD); X‐ray fluorescence (XRF), and Transmission Electron Microscopy (TEM). We used field criteria (Thixotropy; NaF‐field test) to obtain a map of the spatial distribution of soils with potential andic properties. We found that the soil fulfilled all requirements to be classified as an Andosol. The composition of the colloidal phases was exactly intermediate between sil‐andic and alu‐andic. At the same time, the soil had a spodic horizon [determined through the depth function of the Alo+½Feo criterion]. As there was no indication of vertical translocation of metal‐organic complexes, but sufficient evidence to suggest the downward movement of mobile Al/Si‐phases, we maintain to classify the soil as an Endoskeleti‐Umbric Andosol and propose the existence of a pedogenetic pathway intermediate between Podsolisation and Andosolization. We conclude that the spodic horizon in the WRB is not well defined because of the dominance of the Alo+½Feo criterion over morphological evidence. We further suggest the German soil taxonomy to be modified to better represent soils containing short range order minerals.  相似文献   

10.
Pedogenetic differentiation of soil properties in aggregates Besides the pedogenetic differentiation of soils in horizons a differentiation within horizons across aggregates seems possible. The objective of this study is to check if there is a differentiation of soil properties across aggregates. From a Braunerde, a Podzol-Braunerde, and 2 Podsols from Bavaria and Slovakia aggregates of 10–30 mm in diameter were selected manually from both topsoil and subsoil horizons and mechanically fractionated into a core and a surface fraction. In the aggregate fractions Corg, Alo, and Fed were determined. Corg is generally depleted in the surface fractions of the A-horizons compared to the core fractions. This may be due to favoured microbial degradation of organic matter compared to the aggregate core and preferential leaching of organic C. In the subsoil horizons of the Braunerde Corg is lower in the aggregate surface fraction, in the Podzol, however, it is higher. In Podzols preferential C-input and sorption to aggregate surfaces seems to dominate. Lower Alo? and Fed?concentrations in the aggregate surface fractions of all A-horizons may be explained by preferential acidification of aggregate surfaces as the aggregate surfaces mainly buffer the proton input into structured mineral soils. In the B-horizons only in Braunerde Alo and Fed are lower in the aggregate surface fractions than in the core fractions. The Podzol B-horizons show preferential illuvial enrichment of sesquioxides at aggregate surfaces. Thus, pedogenesis results in the differentiation of soil properties not only between horizons but also within horizons on the level of aggregates. The resulting different chemical properties of aggregate surface and core fractions may affect the sorption capacity of structured soils.  相似文献   

11.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

12.
The island of Milos (Greece), part of the South Aegean volcanic arc with a typical Mediterranean climate, is covered with volcanic deposits of different ages. The objective of this study was to investigate the physicochemical and mineralogical properties of the soils developing on these volcanic deposits and their classification. Samples were taken from seven locations of soil on different parent material and of different ages. There were substantial differences in their particle size distribution, with sand ranging from 19% to 92%, silt from 3.5% to 50%, and clay from 5% to 46%. Organic matter content was low (< 2.0%). The soil pH ranged from 5.6 to 8.0. In two of the profiles, CaCO3 equivalents of 1.4% to 24.6% were found and a calcic horizon identified. The cation exchange capacity (CEC) and specific surface area (SSA) varied between profiles ranging from 3 cmol(+) kg− 1 to 47 cmol(+) kg− 1 and 30 m2 g− 1 to 380 m2 g− 1, respectively. The soils exhibited high base saturation. The amounts of Al, Fe and Si extracted with ammonium oxalate (Αlo, Feo and Sio) were particularly low (< 0.1%, < 0.17%, and < 0.1%, respectively) which demonstrates the absence of amorphous clay-silicate minerals (allophane). Fe extracted with dithionite citrate bicarbonate — DCB (Fed) was greater than Feo sharing the dominance of crystalline Fe oxides. Al and Si extracted with hot 0.5 M NaOH (Al2Ο3NaOH and SiΟ2NaOH) and with Τiron-C6H4Na2O8S2, (Al2Ο and SiΟ). SiΟ2NaOH and SiΟ were particularly high (mean values 3.4% and 4.5%, respectively), showing that amorphous silica was present. The clay fraction of the soil was dominated by the presence of 2:1 (vermiculite and smectite) and 1:1 (kaolinite) clay-silicates. Alo+ 1/2Feo was low (< 0.18%), while the P-retention in most soils was less than 15%. These soils do not exhibit andic properties and hence cannot be classified as Andisols. The silica saturation index (ISS) may be used for these soils to describe a pedogenetic environment rich in Si which favours the formation of pedogenic amorphous silica. The climate is the major determinant of the evolution of these soils.  相似文献   

13.
A comparison was made between two soil climosequences on north- and south-facing slopes in northern Italy to determine the influence of slope aspect on soil processes. The climosequences span an elevational gradient ranging from moderate (1200 m a.s.l.) to high alpine (2420 m a.s.l.) climate zones on surfaces having an age of about 15 000 years. The soils were investigated with respect to organic C, oxalate and dithionite extractable Fe, Al and Si, elemental losses (Ca, Mg, K, Na, Fe, Al, Si, Mn) and clay minerals. The stocks of soil org. C as well as of oxalate-extractable Fe and Al was greatest in the subalpine zone near the timberline. There are no clear differences in organic C content between the soils on north- and south-facing sites. Fe-oxalate and to a lesser extent Alo-stocks were, however, greater on north-facing sites, indicating that weathering is greater there. Eluviation and illuviation of Al and Fe within the soil profile, typical for podzolisation, was more distinctly expressed on the N slopes. The probability of ITM (Imogolite-type-material) formation in the soil seemed to be greater on south-facing sites. On the north-facing sites, element leaching was most intense in the subalpine zone close to the timberline while on the south-facing sites this was only the case for the base cations. The N slopes exhibited higher leaching of elements which generally indicates a higher weathering intensity. On south-facing sites, typical podzolisation processes were measurable only above 2000 m a.s.l. The development of smectites is also a reflection of the weathering intensity; smectite was discernible in the surface horizon at all sites on N slopes but the highest amount was detected in the sub-alpine climate zone. For the south-facing sites only in the alpine climate zone could smectite be detected. Higher temperatures and an increased number of freeze-thaw cycles on south-facing slopes should theoretically enhance rates of chemical weathering. This could, however, not be confirmed with our measurements. The degree of chemical weathering increases from the south- to the north-facing sites that are characterised by lower temperatures, lower evapotranspiration and consequently by a higher humidity. Although precipitation in Alpine regions is abundant, the availability and flux of water through the soil is the prime factor in weathering intensity.  相似文献   

14.
Andosol formation involves the rapid, abundant and in situ formation of non‐crystalline materials from tephra deposits. A large amount of humus complexed with Al also accumulates in the A horizons. As these materials are rich in Al or Fe compared to the parent tephra, the concentrations of the major and minor elements change significantly during Andosol formation. The objectives of this study were to examine how the rock type of the tephra and its weight loss during the formation process affect the changes in the element concentrations of Andosols. A total of 95 samples with different rock types from 18 pedons of Andosols in Japan were used to determine the total concentrations of 54 elements. Principal component analysis suggested that the degree of weathering and the rock types of parent tephra are the important factors in the variation of the element concentrations in Andosols. Three rock types, dacitic, andesitic and basaltic‐andesitic, were identified from the V and Zn contents of ferromagnetic minerals separated from the Andosol samples. Basaltic Andosols were identified from the abundant coloured volcanic glass and olivine in the sand fraction. Regarding concentrations of 41 elements, at least one group based on rock type was significantly different from one to three other groups at the P= 0.05 level. The content of oxalate‐extractable Si (Sio), Al (Alo) and Fe (Feo) was used as an index to show the extent of Andosol development. Relatively strong correlations between the element concentrations and Sio, Alo and Feo as well as other weathering indices were found in the andesitic samples. Among these elements, at least 27 (Be, Al, Ti, Fe, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Tl, Pb, Th and U) were enriched in the Andosols and the increases in these concentrations were related to total weight loss due to soil formation processes.  相似文献   

15.
北京西北部山丘地区成土母质对褐土的影响   总被引:1,自引:1,他引:1  
徐礼煜 《土壤学报》1983,20(3):238-252
北京附近低山丘陵地区的土壤,曾称棕壤[7,13],至五十年代初期始更名为褐土,并沿用至今.褐土,作为一个独立的土类,是由C.A.查哈罗夫于1924年首先提出的.格拉西莫夫(1954,1979)曾对褐土的研究作了全面的总结和概述.  相似文献   

16.
Four soils were treated with HNO3, CaCO3 and K2SO4 to enable observation of the response of the soil solution composition and the solution A1 ion activity (Al3+) to the treatments and to time. The clay fraction of three of the soils was dominated by illite, kaolinite and quartz. The fourth was minated by kaolinite and iron oxides. The initial pH in 0.01 M CaCl2 varied between 4.0 and 5.0 and the organic carbon content from 0.7 to 1.1%. The soil solutions from soils dominated by kaolinite, illite and quartz were generally supersaturated with respect to quartz and well ordered kaolinite, and unsaturated with respect to illite. The soil solutions from the soil dominated by kaolin and iron oxide were generally unsaturated with respect to quartz but still saturated with respect to ell crystallized kaolin. Within mineral groups such as Al2SiO5 compounds, A12Si2O5(OH)4 (kaolinite group), and Al(OH)3 (A1 oxide) minerals, the more soluble forms became less supersaturated or unsaturated with time for many treatments. Lime treatment usually increased the ion activity product of AI(OH)3 in all soils, and of minerals with the composition, Al2SiO5, in the illite/kaolinite soils. Acid treatment reduced the apparent solubility of Al(OH)3, and the A1 silicates in the Al2SiO5, and Al2, Si2, O5,(OH)4, mineral groups on all soils. These results are interpreted to indicate that lime treatment led to the formation of trace quantities of more soluble A1 minerals that subsequently controlled (Al3+), whereas acid treatment dissolved trace quantities of such minerals leaving less soluble minerals to control (Al3+). The results suggest that, in mineral soils such as these, (Al3+) is under the control of inorganic dissolution and precipitation processes. These processes conform to expectations given the free energy of various inorganic aluminium compounds. Furthermore the sequence of dissolution and formation processes appears to be governed by the Gay-Lussac—Ostwald step rule.  相似文献   

17.
Pale-podzolic soils occupying slope positions in a small stream valley are more acidic and contain less pedogenic chlorites in the clay fraction than those soils occupying uplands. These characteristics are thought to be caused by more intensive leaching of matter from eluvial horizons due to intensive lateral interflow of soil water. Soddy-gleyic soils of the stream bottomland are rich in organic matter and have a slightly acidic reaction in the A1 horizon and an alkaline reaction in the calcareous subsoil. Both factors lead to accumulation of Feox and Alox supplied to bottomland positions from uplands and slopes and those formed in situ.  相似文献   

18.
Studies were conducted to examine factors which might influence the status and distribution of S in some surface horizons and typical profiles of soils derived from Xiashu loess on the upper slope (US), middle slope (MS) and lower slope (LS) of Nanjing-Zhenjiang-Yangzhou hilly zone. The total S contents varied from 70.30 to 350.21 mg/kg, and the average for all surface soils was 218.3 mg/kg. The average S contents in the profiles followed the sequence: USo) and the ratio of amorphous iron oxide to free iron oxide (Feo/Fea), but no significant relationship was found between total S and the ratio of free iron oxide to total iron (Fed/Fet). Inorganic sulphate in paddy soils (MS and LS) was nearly higher in surface soil than in subsurface soil and subsoil, it, however, remained relatively unchanged with increasing depth for the original soil profile (US). The average organic S accounted for 94% of the total S in the surface soils, but the percentage decreased with depth in the profiles. Like the total S, the organic and inorganic S contents were highly significantly correlated with organic matter, total N, Feo and Feo/Fed ratio, but they were insignificantly related to Fed/Fet ratio. The C/S and N/S ratios in this study were somewhat lower than the results reported by others. The C/N/S ratios varied considerably within the same profile and among different soils but they fell within the range of values reported worldwide.  相似文献   

19.
试论中国淋溶土的成土过程与基本特性   总被引:2,自引:2,他引:2  
肖笃宁  谢志霄 《土壤学报》1994,31(4):403-412
淋溶土是我国的一类重要土壤,总面积约12.5万km^2。在我国现行的土壤分类系统中,有几个土类-暗棕壤、棕壤、酸性棕壤、白浆土以及部分褐土可归属于淋溶土^1)。这些土壤大都是温带针阔叶混交林下的森林土壤,生物地球化学循环别具特征。据30个剖面的统计分析,其B/A层粘粒含量比值,从暗中壤-棕壤-黄棕壤,为1.47-1.88-2.53,经统计土壤发育过程中粘粒的生成量(或损失量)相差七倍。上述几种土壤  相似文献   

20.
The bioavailability and mobility of heavy metals in soil are strongly influenced by the chemical or geochemical species of the metals in soils. We determined the geochemical fractions of copper (Cu), lead (Pb), and zinc (Zn) in garden soils, using the seven-step Zeien and Bruemmer fractionation scheme in relation to metal uptake by two leaf vegetables (lettuce, Latuca sativa, and amaranthus, Amaranthus caudatus). Our objective was to develop predictive models for assessing the lability of these metals from the soil metal fractions. The sums of fractions of Cu, Pb, and Zn did not differ by more than 10% from the “pseudo” total concentrations of the metals determined independently by aqua regia digestion. The general distribution of Cu and Pb among the soil fractions was in the order organic-matter-bound > Feo and Fec > Mnox > exchangeable > residual > mobile, except for Cu, where residual and the exchangeable were reversed. Zinc was fairly evenly distributed among organic matter (20%), Feo (22%), Fec (20%), and residual (21%). Averaged across sites, Cu, Pb, and Zn concentrations in the lettuce were almost twice as great as the concentrations in amaranthus even though they were raised in the same fields. The variance in Cu, Pb, and Zn uptake by amaranthus was predicted up to 51–99% from soluble, exchangeable, organic matter, and Feo-bound fractions; the variance in metal uptake by lettuce was best predicted from Fec- and Feo-bound fractions up to 76–90%. Our results indicated differential accessibility to metal fractions by lettuce and amaranthus grown in the same field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号