首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
生物絮团对锦鲤生长及养殖水体水质的影响   总被引:1,自引:0,他引:1  
为了研究生物絮团对观赏鱼类生长影响及对养殖水质净化效果,通过设置对照组和生物絮团组(碳氮比为20:1)进行了锦鲤养殖效果对比试验。30d的试验结果显示,生物絮团组锦鲤的特定生长率相比对照组显著提高(P0.05),饲料系数相比对照组显著降低(P0.05),成活率两者之间无显著差异(P0.05)。在池塘水质净化方面,生物絮团组的亚硝酸盐氮浓度和氨氮含量变化趋势一致,呈现先升高后逐渐下降的趋势,生物絮团系统达到稳定后,生物絮团组的二态氮含量显著低于对照组(P0.05)。研究表明,生物絮团技术应用在锦鲤养殖中能有效净化池塘水质,同时可促进锦鲤生长。生物絮团通过实现饲料中蛋白质的二次有效利用,提高了饲料利用效率,降低了养殖成本、减少了水体污染。  相似文献   

2.
3.
不同盐度对生物絮团、对虾生长以及酶活性的影响   总被引:1,自引:0,他引:1  
在不同盐度条件下进行凡纳滨对虾的生物絮团养殖试验,研究盐度对生物絮团养殖水质和对虾生长及其酶活性的影响。试验设5个盐度梯度(10、15、20、25、30),生物絮团初始量为20 mL/L,对虾密度为500尾/m^3,试验周期30 d。试验结果显示,15盐度组与20盐度组的对虾体质量增长率最大,达70.73%,10盐度组的体质量增长率最小,达50.24%。盐度越高生物絮团生长越快,30盐度组17 d生物絮团沉降量达200 mL/L,之后逐渐降至43 mL/L,其他组呈相同变化趋势。试验过程中水体总碱度与pH持续降低,但不同组间差异不显著(P>0.05)。盐度越高氨氮累积越快,30盐度组在第6 d达到最大质量浓度8.62 mg/L,之后降至0 mg/L,其他组呈相同趋势变化。盐度越低亚硝态氮累积越快,10盐度组在第6 d达到最大质量浓度9.18 mg/L,之后降至0 mg/L,其他组呈相同趋势变化。硝态氮在不同盐度中呈前期上升的趋势,第16 d之后开始缓慢下降。15盐度组的淀粉酶活性显著高于其他组(P<0.05),其他各组之间无显著差异(P>0.05)。脂肪酶在25盐度组活性最高,盐度升高或者降低酶活性均降低。在10、15、20盐度组中,超氧化物歧化酶、碱性磷酸酶、酸性磷酸酶活性均维持在较高水平,在相同盐度下,肌肉酶活性低于肝胰脏。  相似文献   

4.
我国一直采用高密度的水产养殖方式,但是随着我国经济能力和各方面实力的不断增长,传统的水产养殖模式已经不能满足当代时代发展的要求了,它所带来的环境污染和资源浪费对我国的生态环境影响十分重大,这种传统的养殖方式最终会被我国水产养殖领域淘汰,而生物絮团技术具有净化水质和提高资源利用率的特点,这种新型的健康生态养殖技术吸引了水产养殖领域的注意力。为改善我国生态环境已经有部分养殖场引进了这种技术。本文将从水产养殖中生物絮团的应用和作用进行论述和分析。  相似文献   

5.
生物絮团技术在水产养殖中的应用研究   总被引:3,自引:0,他引:3  
传统的水产养殖模式所带来的环境污染、资源浪费和病害频发等问题已成为制约我国水产养殖业可持续发展的主要因素。生物絮团技术(BFT)具有净化水质、提高饵料利用率及病害防控等优点,被认为是有望解决上述问题的新型健康生态养殖技术,已在国内外得到一定规模的应用,并获得了良好的经济、社会和生态效益。本文重点介绍了生物絮团的形成与培养、生物絮团的主要影响因素及其在水产养殖中的应用效果。研究认为,BFT能够改良水质、节约养殖用水、降低饲料成本、提高养殖对象存活率、增加养殖产量和效益;将BFT与生物膜技术相结合,能够更有效地维持养殖水体中适宜的生物絮团含量,避免生物絮团的过量沉积,并能提高水质改良及增产增收的应用效果,具有广阔的应用前景。  相似文献   

6.
采用模拟实验与现场实验相结合的方法,通过添加3种微生态制剂及碳水化合物作为碳源,研究了其在生物絮团形成与水质调节中的作用,并分析了其对水中无机氮含量、悬浮物、细菌总数及幼参生长的影响,为阐明生物絮团在刺参工厂化苗种培育中的生态环境调控作用提供依据。结果表明,亚硝态氮易于在培育池水体中累积,可高达0.25 mg/L;添加芽孢杆菌后,水中总悬浮物含量和细菌总数均为最高值,且未检测到弧菌和大肠菌群;第20天,仅添加蔗糖组幼参增重与特定生长率均明显高于其他复合碳源组和对照组(P0.05),分别为44.34 g和2.19%/d;而添加蔗糖和芽孢杆菌组增重与特定生长率均明显高于其他处理组和对照组(P0.05),分别为66.60 g和3.01%/d;复合碳源组幼参增重与特定生长率随着玉米淀粉含量增加而逐渐降低,但与对照差异均不显著(P0.05)。结果显示,以蔗糖为碳源,添加芽孢杆菌形成的生物絮团不仅可以改善水体水质和微生态结构,还可以明显促进幼参的生长。  相似文献   

7.
前期研究表明,生物絮团技术(biofloc technology,BFT)适于异育银鲫(Carassius auratus gibelio)养殖。为进一步优化BFT养殖模式,本研究设置3个实验组:BFT模式下EM菌添加组(BB组)、枯草芽孢杆菌(Bacillus subtilis)添加组(BI组)和BFT对照组(B组),以均体重(1.60±0.50)g的异育银鲫为研究对象,探讨BFT模式下外源添加益生菌对养殖动物生长、消化酶活性及肠道组织结构的影响。结果表明:(1)益生菌添加组异育银鲫增重率和特定生长率显著高于对照组(P0.05),BB和BI组的增重率分别提高了216.70%和184.04%,特定生长率分别提高了141.18%和125.49%,BB和BI组间差异不显著(P0.05);(2)益生菌添加组(BB组和BI组)的消化酶(淀粉酶、脂肪酶和胃蛋白酶)活性均显著高于对照组(B组)(P0.05)。益生菌添加组间,BB组淀粉酶活性显著高于BI组(P0.05),脂肪酶和胃蛋白酶活性亦高于BI组,但差异不显著(P0.05);(3)益生菌添加组肠道肌层厚度和黏膜下层厚度显著高于对照组(B组)(P0.05),BB组异育银鲫肠道黏膜皱襞高度和皱襞间质宽度与BI和对照组相比,均无显著差异(P0.05)。研究表明,BFT养殖模式下外源添加益生菌可以更好地促进异育银鲫生长。  相似文献   

8.
生物絮团技术在水产养殖中的应用现状   总被引:2,自引:0,他引:2  
生物絮团在集约化水产养殖中具有净化水质、增强养殖动物机体免疫力和提高饲料利用率的作用。文章结合生物絮团的形成和作用机理,着重阐述了生物絮团技术在水产养殖中的应用现状,总结了生物絮团技术在工厂化养殖生产中存在的一些问题,并对未来的研究及发展方向进行了展望。  相似文献   

9.
为探讨生物絮团技术应用于龟鳖类养殖中的可行性,并确定其最佳添加量,通过调控中华草龟 (Chinemys reevesii) 养殖水体中的碳氮比(质量比),分析生物絮团形成及其对水质和菌落的影响。实验以添加蔗糖设计碳氮比为10∶1 (CN-10)、15∶1 (CN-15)、20∶1 (CN-20) 的实验组和对照组 (CG),进行为期40 d的养殖。结果显示,各组生物絮团体积指数 (FVI) 随碳氮比的增加而增大,在28 d后趋于稳定;碳氮比≥10时氨氮和亚硝酸盐处理效果显著,其中CN-15组40 d后氨氮和亚硝酸盐的去除率分别为76.7%和64.4%。碳氮比为15∶1时能促进龟池生物絮团的形成,并可有效降低水中氨氮、亚硝酸盐水平。对实验组 (CN-15) 与对照组的生物絮团进行高通量测序,发现2种水体中生物絮团的优势菌门均为变形菌门、拟杆菌门、放线菌门,但各优势菌门占比有所差异。研究表明,添加不同碳氮比可影响中华草龟养殖水体生物絮团的形成、水质和菌群结构。碳氮比为15∶1是形成生物絮团的最适比例,在促进生物絮团形成的同时,对水质也具有较强的调节能力。  相似文献   

10.
生物絮团对中华锯齿米虾生长及水质的影响   总被引:1,自引:0,他引:1  
实验以枯草芽孢杆菌和光合细菌为研究对象,研究了生物絮团对中华锯齿米虾养殖水体酸碱度、氨氮、亚硝酸氮、COD等水质指标的调节及其在促进米虾生长方面的作用。结果显示,添加了生物絮团的实验组,比对照组养殖水体的亚硝酸氮含量降低54%,COD水平降低39%,氨氮含量降低35%,pH值稳定保持在适宜的水平,中华锯齿米虾的存活率和增重率也有显著提高。结果表明,生物絮团的使用,能够有效调节水质,促进中华锯齿米虾的生长。  相似文献   

11.
The aim of this study was to evaluate the effect of light limitation on the water quality, bacterial counts and performance of Litopenaeus vannamei postlarvae reared with biofloc at low salinity (≈9 g L?1). Two treatments were designed: T1 = culture with natural sunlight and T2 = culture in darkness. After 28 days, in both treatments, the final weight of shrimp was over 0.6 g with a specific growth rate over 7.4% d?1, and a survival rate over 70%. In both treatments, Vibrio sp. concentration presented low values (culture with natural sunlight = 0.1 to 9.9 × 102 CFU mL?1, culture in darkness = 0.4 to 11.7 × 102 CFU mL?1) and Bacillus sp. had high values (culture with natural sunlight = 0.7 to 66.0 × 104 CFU mL?1, culture in darkness = 0.7 to 65.8 × 104 CFU mL?1). All water quality parameters remained within the ranges suitable for shrimp culture, except for alkalinity during the first stage of the study. Although in some sampling periods some significant differences were found in bacterial counts and water quality parameters, shrimp productive performance under culture with biofloc at low salinity was not affected significantly by light limitation.  相似文献   

12.
The experiment was conducted with three biofloc treatments and one control in triplicate in 500 L capacity indoor tanks. Biofloc tanks, filled with 350 L of water, were fed with sugarcane molasses (BFTS), tapioca flour (BFTT), wheat flour (BFTW) and clean water as control without biofloc and allowed to stand for 30 days. The postlarvae of Litopenaeus vannamei (Boone, 1931) with an Average body weight of 0.15 ± 0.02 g were stocked at the rate of 130 PL m?2 and cultured for a period of 60 days fed with pelleted feed at the rate of 1.5% of biomass. The total suspended solids (TSS) level was maintained at around 500 mg L?1 in BFT tanks. The addition of carbohydrate significantly reduced the total ammonia‐N (TAN), nitrite‐N and nitrate‐N in water and it significantly increased the total heterotrophic bacteria (THB) population in the biofloc treatments. There was a significant difference in the final average body weight (8.49 ± 0.09 g) in the wheat flour treatment (BFTW) than those treatment and control group of the shrimp. Survival of the shrimps was not affected by the treatments and ranged between 82.02% and 90.3%. The proximate and chemical composition of biofloc and proximate composition of the shrimp was significantly different between the biofloc treatments and control. Tintinids, ciliates, copepods, cyanobacteria and nematodes were identified in all the biofloc treatments, nematodes being the most dominant group of organisms in the biofloc. It could be concluded that the use of wheat flour (BFTW) effectively enhanced the biofloc production and contributed towards better water quality which resulted in higher production of shrimp.  相似文献   

13.
A 56‐day experiment was conducted to investigate the effect of no carbohydrate addition applied to control water quality in water‐reusing biofloc systems for tilapia (GIFT Oreochromis niloticus) cultivation. Reusing water‐contained flocs was initially inoculated into six 300 L indoor tanks. Thirty fish (average individual weight 99.62 ± 7.34 g) were stocked in each tank. Glucose was extra added into three tanks (GLU‐tanks) according to biofloc technology, while other tanks were no carbohydrate added (NCA‐tanks). Concentrations of total ammonia nitrogen in GLU‐tanks and NCA‐tanks were fairly consistent and below 4.74 ± 0.35 mg/L. Nitrite concentrations in NCA‐tanks were significantly lower than GLU‐tanks, which were below 0.59 ± 0.10 mg/L during the later culture period. NCA‐tanks achieved a low relative abundance of denitrifiers and high concentrations of nitrate. Soluble reactive phosphorous in NCA‐tanks was consistently increased, which was decreased to a low level in GLU‐tanks. However, growth parameters in NCA‐tanks were similar to GLU‐tanks (> .05) and reach a high finial density of 24.32 ± 1.04 kg/m3. Cetobacterium sp. was the first‐dominant bacterial genus in all tanks, which was a commonly indigenous bacterium in the intestinal tract of freshwater fish. The results demonstrate the feasibility of no carbohydrate addition in water‐reusing biofloc systems for tilapia.  相似文献   

14.
为研究池塘多元养殖模式下不同饲料投喂模式对脊尾白虾()生长、消化酶活性、体成分及养殖水环境的影响,实验以脊尾白虾及其养殖水为研究对象,设置3个实验组,分别为投喂冰鲜饲料组(Diet1组)、投喂配合饲料组(Diet3组)及两者1:1混合投喂组(Diet2组)。每个实验组设3个重复,实验周期为45 d,实验每隔5 d测脊尾白虾体重和养殖水质指标并分析;实验结束时,采集脊尾白虾样品,用于消化酶及体成分的测定与分析。结果显示:(1)不同饲料投喂30 d后,Diet2组脊尾白虾的体重显著高于Diet1组和Diet3组(>0.05);增重率与特定生长率随时间呈下降趋势。(2)从Diet1组至Diet3组饲料中蛋白水平逐渐降低,而脊尾白虾蛋白酶活性逐渐降低,淀粉酶活性逐渐提高;各实验组脂肪酶活性差异不显著(P>0.05)。Diet2组脊尾白虾水分含量显著低于Diet1组和Diet3组(>0.05)。(4)随着实验的进行,脊尾白虾养殖水环境中COD、氨氮、亚硝酸盐、硝酸盐、无机氮及无机磷均呈上升趋势,实验结束时,各水质指标由高到低依次为Diet1组、Diet2组、Diet3组。因此,池塘多元养殖模式下混合投喂"冰鲜饲料+人工配合饲料",有利于脊尾白虾的生长、消化及蛋白积累,然而对养殖水环境仍存在一定的污染,研制环保型人工配合饲料仍是大势所趋。  相似文献   

15.
为了探明不同鲤养殖模式生物絮团系统中鱼体的生长及水质变化情况。采用陆基围隔法,分别设置了鲤单养、鲤+鳙二元混养及鲤+鳙+鲢三元混养3种鲤养殖模式,每种模式设3个重复,测定了鲤不同养殖模式下鱼体的生长及水质参数,实验共进行90 d。结果显示,与单养模式相比,二元混养和三元混养鲤的存活率和鱼体蛋白质效率均显著偏高,而其总饲料系数则显著偏低。3种养殖模式中鲤肌肉的水分和粗脂肪含量相互之间差异均不显著,三元混养模式鲤肌肉的粗蛋白和灰分含量均显著高于单养模式。在3种养殖模式生物絮团系统中,生物絮团形成量与水温之间在19.3~28.5°C范围内呈显著的正相关。整个实验过程中,二元混养和三元混养水体的总氨氮、亚硝酸态氮、总无机氮、正磷酸盐及总悬浮颗粒物含量均低于单养模式,而硝酸态氮、总碱度、有机悬浮颗粒物及叶绿素a含量均高于单养模式,除叶绿素a之外,其余水质参数相互之间差异均不显著。研究表明,与传统的混养系统相似,在生物絮团养殖系统中,符合生物学原则的混养模式同样能够有效发挥养殖系统的生态功能,提高养殖效率。  相似文献   

16.
通过向养殖水体中泼洒糖蜜构建生物絮团养殖模式,分析生物絮团营养组成,并探讨生物絮团对罗氏沼虾体组成和消化酶活性的影响。试验分对照组和试验组(生物絮团组),其中试验组在养殖过程中泼洒糖蜜。试验在室内水泥池内(2 m×2 m×0.6 m)进行,每个处理有3个重复,每个重复225尾虾(0.26 g±0.02 g),试验周期为90 d。养殖过程中不换水,糖蜜的泼洒量根据饲料投喂量进行计算(C/N为20)。结果显示:添加糖蜜能够显著促进生物絮团的形成,到第90天时,试验组的絮团体积达21.22 mL/L;而对照组为6.03 mL/L;试验组絮团粗蛋白含量为29.47%,粗脂肪含量为4.32%,二者均显著高于对照组,而粗灰分含量为11.36%,显著低于对照组;泼洒糖蜜对罗氏沼虾体组成的影响不显著,对照组和试验组肌肉粗蛋白含量分别为21.09%和21.20%,粗脂肪含量分别为2.91%和3.06%;另外,向水体中泼洒糖蜜对罗氏沼虾消化酶活性影响显著。试验组罗氏沼虾肠脂肪酶活性、胃脂肪酶活性和胰脂肪酶活性均显著高于对照组;试验组罗氏沼虾糜蛋白酶活性、胰蛋白酶活性也均显著高于对照组。但泼洒糖蜜对肠淀粉酶、胃蛋白酶、胃淀粉酶、胰淀粉酶和纤维素酶活性没有显著影响。试验表明,生物絮团营养组成丰富,能够有效提高消化酶活性。  相似文献   

17.
To evaluate effect of substrate integration in biofloc based system, a 52‐day growth experiment was conducted using black tiger shrimp, Penaeus monodon juveniles (3.32 ± 0.07 g). The factorial design consisted of floc, F (with or without) as first factor and substrate (bamboo mat, B; nylon mesh, N; and without substrate) as second factor. This resulted six treatments; F + B, F + N, F, B, N and a control without biofloc and substrate. Shrimps were stocked at 110 nos. m–3 in Fibre Reinforced Plastic (FRP) tanks and, rice flour was used as carbon source in biofloc based treatments. Incorporation of nylon mesh and bamboo mat in biofloc system trapped 31.3%–38.6% and 8.5%–13.5% total suspended solids respectively and reduced bottom solid deposition. Among the substrate based groups, significantly better development of biofilm with higher microbial population noticed in F + B compared with nylon mesh. Similarly, significantly higher final growth (p < 0.01) was recorded in F + B system followed by F + N while no significant difference in body weight recorded among floc, F or substrate based groups (B, N). Biofloc and substrate integration (F + B and F + N) resulted significantly (p < 0.01) lower feed conversion ratio compared to control and floc. Incoporation of bamboo substrate in biofloc, (F + B) improved shrimp immune responses through higher hemocyte counts and prophenoloxidase activity compared to other treatments. The study revealed that integration of substrate in the biofloc system improved growth performance, FCR and immune parameters in shrimp by trapping the suspended biofloc particles, better water quality parameters, enhanced biofilm growth and provision of quality natural food.  相似文献   

18.
A 60‐day indoor growth trial was conducted to study the effects of biofloc on the growth performance of a Penaeus monodon (Fabricius, 1798), water quality and biological indicators including biofloc volume, chlorophyll‐a, heterotrophic bacteria and Bacillus quantity. Two concentrations of sucrose (0 and 75%) were added daily to the P. monodon culture systems (2.94 ± 0.11 g), which were conducted indoors in fibre‐glass tanks (500 L). Results showed that the final body weight and weight gain of the adding 75% sucrose group were significantly higher (< 0.05) than that of the control, as well as significantly (P < 0.05) improved specific growth rates and survival rates, and reduced feed coefficient. Adding 75% sucrose promoted heterotrophic bacteria, Bacillus and phytoplankton reproduction, and significantly (< 0.05) reduced the concentration of ammonia‐N (NH4‐N), nitrite‐N (NO2‐N) and nitrate‐N (NO3‐N). The changes of water quality indicators in the two groups showed the similar trend at the end of the experiment, and the ammonia‐N, nitrite‐N, nitrate‐N and phosphate‐P concentrations in the 75% sucrose group were significantly (< 0.05) lower than those of the control group, Chlorophyll‐a concentrations peaked at 389.12 μg/L in the biofloc sucrose group at 18:00 h, and heterotrophic bacteria peaked 8 h after sucrose was added. The addition of sucrose also reduced the pH of the water. Our research showed that adding sucrose promoted biofloc formation and shortened the formation time; increased the number of heterotrophic bacteria and algae which might play a role in improving water quality by assimilating ammonia‐N and other harmful substances in the water; supplemented food for P monodon growth; and reduced the feed coefficient.  相似文献   

19.
为探究添加不同碳源物质所形成的生物絮团对团头鲂鱼种生长、消化酶以及抗氧化酶活性的影响,设计5个不同碳源物质的添加组[淀粉组、葡萄糖组、蔗糖组、甜蜜素组和复合碳源组(葡萄糖∶淀粉=1∶1)],其中淀粉组为对照组,每个碳源添加组设置3个重复。每个水泥池投放团头鲂鱼种20尾,初始体质量为(36.74±0.82)g,实验期为8周。结果发现:(1)形成的生物絮团可以有效地调节水质,降低水体中的氨氮和亚硝酸盐氮水平;(2)与对照组相比,葡萄糖组团头鲂鱼种的鱼体末质量显著提高23.1%,增重率显著提高39.4%,特定生长率也显著提高23.6%,饲料系数显著降低28.1%,但存活率并没有显著差异;(3)肠道组织光镜观察表明,团头鲂鱼种肠道单层柱状上皮附近存在未消化的生物絮团;(4)添加不同碳源形成的生物絮团对团头鲂鱼种体成分没有显著的影响;(5)复合碳源组的肠道总蛋白酶的活性(3.64±0.53)U/mg显著高于对照组275.3%,淀粉酶活性显著高于对照组(淀粉组)289.2%、葡萄糖组166.7%和蔗糖组860%;(6)葡萄糖组的团头鲂超氧化物歧化酶(SOD)活性为(238.67±13.63)U/mg,显著高于对照组的SOD活性72.5%,葡萄糖组团头鲂的过氧化氢酶(CAT)酶活性为(192.31±17.06)U/mg,显著高于对照组的CAT活性40.4%,与对照组的丙二醛(MDA)水平相比,葡萄糖组、蔗糖组、甜蜜素组和复合碳源组分别显著降低了69.0%、59.7%、38%.0和48.8%。研究表明,水体中添加葡萄糖为碳源能显著提高团头鲂鱼种的生长性能和抗氧化水平,并有效改善水质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号