首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes encoding an acidic wheat class IV chitinase (383), an acidic wheat β 1,3-glucanase (638) and a rice cationic peroxidase (POC1) were introduced into ‘Nantes Coreless’ carrot (Daucus carota) by Agrobacterium-mediated transformation. The genes were introduced singly or in various combinations followed by selection imposed by the herbicide phosphinothricin. Regenerated plantlets were screened for presence and expression of the three transgenes using PCR, Southern and Northern hybridisations. Eighteen transgenic lines expressing a single transgene and 2 lines each co-expressing 638/383 and 383/POC1 were assessed for resistance to the necrotrophic fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Percentage leaf area diseased was measured 4 and 7 days after inoculation (dai) and compared to non-transformed control plants. Six lines expressing β-1,3-glucanase 638 alone had no enhanced resistance to B. cinerea at 4 dai and only slight resistance to S. sclerotiorum; there was no effect at 7 dai. Two out of the six lines expressing 383 alone had enhanced tolerance to both pathogens with a 20–50% reduction in disease development at 7 dai. Two lines co-expressing 638/383 had slight reductions in disease by (10–20%) similar to that of the lines expressing chitinase 383 alone. Highest levels of disease resistance were seen in transgenic lines expressing POC1, alone or in combination with chitinase 383. Disease symptoms were slower to develop and symptoms were reduced by up to 90% for B. cinerea and 70% for S. sclerotiorum. The 383/POC1 co-expressing plants developed disease at levels similar to that of POC1 alone. Petioles of plants over-expressing POC1 had higher levels of lignin accumulation constitutively compared to control plants, which was greatly enhanced following inoculation with S. sclerotiorum. These results indicate that peroxidase over-expression can lead to significant disease reduction against necrotrophic pathogens in transgenic carrot plants.  相似文献   

2.
Accumulation of pathogenesis-related proteins is thought to play a role in pathogen-induced plant defense responses. Although early accumulation of hydrolytic enzymes such as chitinase and β-1,3-glucanase has been associated previously with genetically-inherited and induced systemic resistance, their role in resistance in tomato(Lycopersicon esculentum)to the phytopathogenic fungusAlternaria solaniis not yet understood. Here we describe the accumulation patterns of specific isozymes of pathogenesis-related proteins in the resistant tomato genotypes 71B2, NC EBR-1, NC EBR-2 and the susceptible cultivar Piedmont. Western blot analysis demonstrated that four isozymes of chitinase (26, 27, 30, and 32kDa) were induced in all genotypes upon challenge withA. solani,but only resistant lines had significantly higher constitutive levels of the 30kDa isozyme as well as total chitinase activity. In addition, the 30kDa chitinase isozyme was found to accumulate to significantly higher levels in resistant lines during pathogenesis than the susceptible genotype. Two isozymes of β-1,3-glucanase (33 and 35kDa) were detected in all genotypes, but a slightly higher constitutive level was detectable in all resistant lines when compared to the susceptible. Similar accumulation patterns of these isozymes were observed in all genotypes during the course of pathogenesis. Purified preparations of acidic and basic tomato chitinase and β-1,3-glucanase isozymes were tested for their antifungal activity againstA. solani in vitro.Results presented in this study indicate that only basic isozymes of chitinase and β-1,3-glucanase were inhibitory toA. solaniwhereas, no inhibitory activity was observed with the acidic isozymes. The results of this study suggest that a higher constitutive level of chitinase and β-1,3-glucanase and the induction pattern of a 30kDa chitinase isozyme in early blight resistant breeding lines is related to genetically-inherited resistance of tomato toA. solani.  相似文献   

3.
The effect of a novel synthetic signal molecule, acibenzolar-S-methyl (CGA-245704; benzo [1,2,3] thiadiazole-7-carbothioic acid S-methyl ester), in inducing resistance in sugarcane against red rot disease caused by the fungusColletotrichum falcatum Went was studied. Application of CGA-245704 as a soil drench or along with marcotting rooting mixture induced resistance in sugarcane to challenge inoculation withC. falcatum. When the pathogen was inoculated by the plug method, it caused discoloration in the untreated control stalk tissues; however, in the stalk tissues pretreated with acibenzolar-S-methyl, pathogen colonization was considerably reduced. When the pathogen was inoculated by nodal swabbing, its penetration was arrested in the sensitized stalk tissues. An induced systemic resistance effect was found to persist up to 30 days in the pretreated cut canes. Increased phenolic content and accumulation of pathogenesis-related (PR) proteins,viz., chitinase, β-1,3-glucanase and thaumatin-like protein (PR-5), were observed in sugarcane plants treated with acibenzolar-S-methyl.  相似文献   

4.
UV irradiation enhanced the resistance of grapefruit against the development of green mold décay caused byPenicillium digitatum, the main postharvest pathogen of citrus fruit, and significantly inhibited the fungus’ growth at the fruit wound sites. Immunoblotting analysis using specific citrus chitinase and β-1,3-endoglucanase antibodies, showed that UV irradiation, wounding of the fruit, or a combination of these two treatments, induced the accumulation of a 25 kD chitinase protein in the fruit’s peel tissue. On the other hand, UV irradiation or wounding of the fruit alone was unable to induce the accumulation of 39 and 43 kD β-1,3-endoglucanase proteins, but the combination of the two treatments increased these protein levels. It is suggested that both chitinase and β-1,3-endoglucanase may play a role in the UV-induced resistance of grapefruit againstP. digitatum. Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 403/99. http://www.phytoparasitica.org posting June 3, 1999.  相似文献   

5.
In this study, the biocontrol ability of seven grapevine-associated bacteria, previously reported as efficient against Botrytis cinerea under in vitro conditions, was evaluated in two vineyard orchards with the susceptible cv. Chardonnay during four consecutive years (2002–2005). It was shown that the severity of disease on grapevine leaves and berries was reduced to different levels, depending on the bacterial strain and inoculation method. Drenching the plant soil with these bacteria revealed a systemic resistance to B. cinerea, even without renewal of treatment. Accordingly, this resistance was associated with a stimulation of some plant defense responses such as chitinase and β-1,3-glucanase activities in both leaves and berries. In leaves, chitinase activity increased before veraison (end-July) while β-1,3-glucanase reached its maximum activity at ripening (September). Reverse patterns were observed in berries, with β-1,3-glucanase peaking at full veraison (end-August) and chitinase at a later development stage. Highest activities were observed with Acinetobacter lwoffii PTA-113 and Pseudomonas fluorescens PTA-CT2 in leaves, and with A. lwoffii PTA-113 and Pantoea agglomerans PTA-AF1 in berries. These results have demonstrated an induced protection of grapevine against B. cinerea by selected bacteria under field conditions, and suggest that induced resistance could be related to a stimulation of plant defense reactions in a successive manner.  相似文献   

6.
Pseudomonas fluorescens strains CHA0 and Pf1 were investigated for their biocontrol efficacy against Banana bunchy top virus (BBTV) in banana (Musa spp.) alone and in combination with chitin under glasshouse and field conditions. Bioformulation of P. fluorescens strain CHA0 with chitin was effective in reducing the banana bunchy top disease (BBTD) incidence in banana under glasshouse and field conditions. In addition to disease control, the bioformulation increased the economic yield significantly compared to the untreated control. Increased accumulation of oxidative enzymes, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), pathogenesis-related (PR) proteins, chitinase, β-1,3-glucanase and phenolics were observed in CHA0 bioformulation amended with chitin-treated plants challenged with BBTV under glasshouse conditions. Indirect ELISA indicated the reduction in viral antigen concentration in P. fluorescens strain CHA0 with chitin-treated banana plants corresponding to reduced disease ratings. The present study revealed that induction of defence enzymes by P. fluorescens with chitin amendment reduced the BBTD incidence and increased bunch yield in banana.  相似文献   

7.
Benzothiadiazole (BTH) and DL-β-aminobutyric acid (BABA) induced systemic resistance was investigated in susceptible and resistant pea genotypes against Uromyces pisi. Resistance was characterized by reduced infection frequency mainly due to decreases in appressorium formation, stomatal penetration, growth of infection hyphae and haustorium formation. Changes in β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase and peroxidase activities and in total phenolics content, demonstrate that U. pisi resistance is induced by BTH and BABA treatments at early and late stages of the fungal infection process, but that the chemicals operate via different mechanisms. In fact, our study showed that BTH treatment primed the activity of pathogenesis related-proteins such as β-1,3-glucanase, chitinase and peroxidase in both susceptible and resistant genotypes. On the other hand, BABA treatment did not increase the enzymatic activities in the studied genotypes, but significantly increased their total phenolic contents.  相似文献   

8.
Salicylic acid (SA) is an inducer of systemic acquired resistance (SAR) and could be a potential candidate in the control of plant virus diseases. In this study we assayed under controlled conditions the potential effect of three doses of exogenous SA treatment on tomato plants infected with Potato virus X (PVX) and measured their effects on: different physiological parameters (gas exchange, stable isotopes, chlorophyll content), the activation of secondary metabolism, viral accumulation and induction of the expression of pathogenesis-related proteins (PRs) such as ß-1, 3-glucanase (PR2) and chitinase (PR3). SA treatment increased the expression of PR2, the activity of phenylalanine ammonia lyase (PAL) and the concentration of antioxidant compounds at 7 days post-treatment. Earlier expression of PR3 compared to PR2 was observed. SA treatment delayed the detection of PVX by ELISA in uninoculated leaves of mechanically infected tomato plants. Although the effect of PVX infection on physiological parameters was weak, moderate SA treatments showed enhanced photosynthesis, particularly for infected plants. The results obtained confirm that SA promotes major changes in the induction of resistance in tomato plants and suggest that treatment with exogenous SA could be considered to reduce the infections caused by PVX.  相似文献   

9.
The Ya Li pear (Pyrus bretschneideri) trees were sprayed three times with 2.5 mM salicylic acid (SA) around 30, 60 and 90 days after full flowering. The fruit were harvested at commercial maturity (about 120 days after full flowering), inoculated with Penicillium expansum, and incubated at 20 °C, 95–100% RH. The results showed that resistance to the pathogen of the mature pear fruit was remarkably enhanced by the SA sprays. Disease incidence in the SA-treated fruit was 58.0% or 26.5%, and lesion diameter on SA-treated fruit was 58.4% or 29.0% lower than that in/on fruit without SA treatment (control) on day 12 or 17 after incubation, respectively. The SA spray applied to the trees around 30 days after full flowering notably enhanced accumulation of hydrogen peroxide in the young fruit. Meanwhile, activities of defense enzymes, including peroxidase, phenylalanine ammonia-lyase (PAL), chitinase or β-1,3-glucanase in the young fruit from SA-treated trees was 29.5%, 60.0%, 24.4% or 35.7% higher than that in the control fruit 4 days after the SA spraying. Furthermore, after harvest, activities of PAL, chitinase and β-1,3-glucanase were still significantly higher in the mature pear fruit from the trees sprayed three times with SA than those of the control fruit. Activities of the antioxidant enzymes including catalase and ascorbate peroxidase in the young fruit were significantly reduced by SA spraying. However, the activity of another antioxidant enzyme, glutathione reductase in the young fruit was significantly enhanced by SA spraying. These results suggest that enzymes exerting their functions in different ways may be coordinately regulated by SA in the pear fruit. Our study indicates that treatment of SA sprays on the trees may provide further protection against postharvest disease of Ya Li pear fruit in practice and could be used as an alternative and economical approach to reduce application of chemical fungicides.  相似文献   

10.
An inoculation procedure was developed to obtain efficient and synchronous infection on detached tomato leaves by Botrytis cinerea. In spray-inoculated leaves incubated at 20 °C, the infection process consisted of three phases: the formation of primary necrotic lesions (until 20 hpi), a quiescent phase (20-72 hpi), and the expansion of a proportion of the primary lesions (from 72 hpi onwards), resulting in full tissue maceration. At 4 °C, the infection progressed slowly but steadily without inducing necrotic responses in the host. The actin and -tubulin genes of B. cinerea were cloned, characterized and used as probes on blots containing RNAs from leaves at various stages of the infection. The genes displayed a similar expression pattern throughout the infection and the hybridization signal reflected the amount of fungal biomass. The actin mRNA accumulated to higher levels than the -tubulin mRNA. Tomato PR protein mRNAs (chitinase, -1,3-glucanase and PR-1) were induced during the infection, albeit with different kinetics and to different levels. At 20 °C, -1,3-glucanase and PR-1 mRNAs were induced more rapidly than chitinase mRNAs. At 4 °C, mRNAs encoding extracellular -1,3-glucanase and intracellular, as well as extracellular chitinase were hardly induced.  相似文献   

11.
Chitinases were studied in an endomycorrhiza-resistant mutant and wild type pea (Pisum sativum L. cv. Frisson) in order to characterize plant hydrolases specific to pathogenic (Aphanomyces euteiches andChalara elegans) or mycorrhizal (Glomus mosseae) root interactions. Stimulation of constitutive and induction of new chitinase activities was detected by native PAGE for acidic proteins in both pea genotypes inoculated with pathogenic fungi. In contrast, a different additional chitinase isoform was induced inG. mosseae-colonized roots. This isoform was also not elicited in chemically-stressed roots, confirming its mycorrhiza-specificity. Investigations of basic chitinase and-1,3-glucanase activities provided further evidence for differential pea responses during pathogenic and symbiotic interactions.  相似文献   

12.
A mitogen-activated protein kinase (MAPK) pathway has been demonstrated as a key pathway in plant defense against pathogen attacks. With proteomics approaches, we specifically studied activation events downstream of a MAPK kinase, tMEK2, in tomato. Overexpression of a constitutively activated tomato MAPK kinase gene (tMEK2MUT) enhanced resistance of transgenic tomato lines to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogenesis-related genes, PR1b1, β-1,3-glucanase, and endochitinase were up-regulated by tMEK2MUT. Two-dimensional electrophoresis and matrix-assisted laser desorption/ionisation-time-of-flight-mass spectrometry analysis of total soluble leaf proteins indicated that β-1,3-glucanase and endochitinase are among the up-regulated proteins in these transgenic plants. Co-expression studies using a transient gene expression system have indicated that β-1,3-glucanase and endochitinase genes up-regulated by tMEK2MUT were down-regulated by different specific phosphatases through dephosphorylation of certain downstream signaling molecules. Our observations indicate that increased products of β-1,3-glucanase and endochitinase genes downstream of tMEK2 may play an important role in achieving disease resistance.  相似文献   

13.
Leaves of apple (Malus domestica cv. Elstar) were infected with a cloned isolate of the apple scab Venturia inaequalis. The intercellular washing fluid (IWF) of these plants was collected and the variation in the composition of proteins in the IWF was analysed by SDS-PAGE and two-dimensional gel electrophoresis during and after the infection with V. inaequalis, the causal agent of apple scab. The subsequent analysis of induced proteins by electron spray ionization quadrupole time of flight mass spectroscopy revealed the presence of -1,3-glucanase, chitinase, thaumatin-like protein and a cysteine-like protease in M. domestica leaves infected by V. inaequalis. These results were confirmed by immunoblotting with antibodies against some of these proteins. Moreover, a non-specific lipid transfer protein was identified in uninfected leaves: the amount declined to a non-detectable level within the first week after infection by V. inaequalis. The analysis of the IWF of M. domestica cv. Remo, bearing resistances to apple scab, powdery mildew and fire blight, showed a protein pattern comparable to that of the IWF from V. inaequalis infected leaves from cultivar Elstar indicating the constitutive production at least of some of the pathogenesis-related proteins in the resistant cultivar.  相似文献   

14.
Infection of groundnut leaves with the early leaf spot pathogen Cercospora arachidicola leads to a marked increase in extracellular 1,3-β-glucanase activity, limited to the infected tissue. Three isoforms of low molecular weight and extreme pI values, typical of pathogenesis-related proteins, were induced. These β-glucanases, when acting together, were capable of degrading the pathogen cell wall in vitro. Glucanases from homogenates of infected leaf tissue were partially purified by ion-exchange chromatography to give enzymes with molecular weights of 35, 32 and 20 kDa and pI values of 3·8, 3·6 and > 9, respectively. They were electrophoretically identical to the β-glucanases found in the intercellular washing fluid. Treatment of groundnut plants with 200 μM mercuric chloride induced the accumulation of identical extracellular β-glucanases. During the course of the infection an increase in peroxidase activity was also observed, but chitinase activity remained more or less constant.  相似文献   

15.
An antagonistic bacterium, Serratia marcescens strain B2, controlled rice blast after being sprayed onto rice phylloplane, as did the bacterial suspension when poured into rhizosphere soil of rice plants. Three days after root treatment, rice blast conidia were sprayed onto rice foliage. A week after pathogen inoculation, rice blast was suppressed and lesions caused by the pathogen decreased in size. Brown deposits were observed around sites of pathogen infection after root treatment. Induced resistance was not associated with an increase in the activitiy of peroxidase, phenylalanine ammonia lyase, tyrosine ammonia lyase, β-1,3-glucanase, β-1,4-glycosidase, N-acetylhexosaminidase or chitinase. However, lipoxygenase levels were elevated after the root treatment with strain B2 following inoculation with the pathogen. Strain B2 was not detected in rice foliage after root treatment. These data suggest that strain B2 induced resistance against rice blast caused by Pyricularia oryzae. Received 1 November 2001/ Accepted in revised form 25 January 2002  相似文献   

16.
The aim of this study was to learn more about the accumulation of defense-related proteins in stem tissue from carnation cultivar Pallas inoculated with 2 near-isogenic races, the avirulent race 1 and the virulent race 8 of Fusarium oxysporum f.sp. dianthi. Stem tissue was used, from which the epidermis, cortex and medulla were peeled off from the vascular cylinder. It appeared that chitinase activity was constitutively expressed in the intercellular fluids (IFs) of untreated leaves, stems and roots of carnation. The total chitinase activity in the IFs of stem tissue increased with time after inoculation. This increase was similar after inoculation with the virulent, the avirulent race and water. At least four chitinase isoenzymes, three acidic and one basic isoform, were detected in the IFs of inoculated plants. In contrast, total 1,3--glucanase activity was not detected in the IFs of untreated leaves, stems and roots. Furthermore, the increases in 1,3--glucanase activity in IFs of stem tissue were markedly higher in the compatible and incompatible interactions than in the water control, indicating that this activity is specially induced by elicitors common to both races 1 and 8 of Fusarium oxysporum f.sp. dianthi. Using an antiserum against 1,3--glucanase P3 of tomato, 2 bands were detected on immunoblots in the IFs of stem tissue inoculated with races 1 and 8. No bands were visible after inoculation with water. Total peroxidase activity increased with time in all combinations. One basic and one acidic peroxidase isoform were present in these IFs. Peroxidase activity in a cell wall fraction prepared from stem tissue was clearly higher, and its increase faster, than the activity in the soluble stem fraction. These increases were similar in the virulent, the avirulent race and the water control. The growth of the fungus Trichoderma viride was inhibited by the IFs obtained from stem tissue inoculated with the virulent and the avirulent race of Fusarium oxysporum f.sp. dianthi. However, the growth of Fusarium oxysporum f.sp. dianthi itself was not affected by these IFs.  相似文献   

17.
Chitinase and-1,3-glucanase activities were assayed in roots, hypocotyls and cotyledons of downy mildewsusceptible and -resistant sunflower (Helianthus annuus L.) cultivars. While the highest-1,3-glucanase activity was in roots, that of chitinase activity was in hypocotyls. Inoculation of both sunflower cultivars withPlasmopara halstedii resulted in a marked increase of chitinase and-1,3-glucanase activities. The increase was observed earlier in incompatible than in compatible reactions. Both enzymes occurred in root tissue as a complex mixture of isoenzymes. At least three different peaks with chitinase activity and three with glucanase activity could be resolved by gel filtration chromatography on Sephacryl S-100 and chromatofocusing on PBE 94 (pH 7-4). Following ammonium sulfate precipitation and ion-exchange on CM- and DEAE-Trisacryl, three glucanase and chitinase fractions, referred to as basic, neutral and acidic, were separated on the basis of their Chromatographic behaviour. A different pattern of distribution of chitinase and-1,3-glucanase fractions was observed between inoculated and non-inoculated plants in both resistant (cv. RS-105) and susceptible (cv. Peredovik) cultivars. In healthy plants-1,3-glucanase was mainly found in the basic (cv. Peredovik) and neutral (cv. RS-105) fractions, whereas chitinase was in the basic fraction for both cultivars. The neutral and acidic fractions of chitinases were induced in the compatible and incompatible reactions. Inoculation of the plants induced the neutral-1,3-glucanase fraction in resistant and susceptible cultivars and the acidic only in the susceptible one. Induction of the basic fraction of both activities was not observed in any case.  相似文献   

18.
Two antisera raised against acidic β-1,3-glucanase and acidic chitinase from tobacco were used to investigate the subcellular localization of the two enzymes in Fusarium culmorum -infected wheat spike by means of the immunogold labelling technique. The studies demonstrated that the distribution of β-1, 3-glucanase and chitinase were very similar in the uninoculated healthy and infected wheat spikes. The enzymes were localized mainly in the cell walls of different tissues including the lemma, ovary and rachis of the wheat spike, while the cytoplasm and organelles of cells in these tissues showed almost no labelling. However, the accumulation of β-1,3-glucanase and chitinase in the infected wheat spikes differed distinctly between resistant and susceptible wheat cultivars. The labelling densities for the two enzymes in the infected lemma, ovary and rachis of the susceptible cultivar Agent increased only slightly as compared to the corresponding uninoculated healthy tissues, whereas higher labelling densities of β-1,3-glucanase and chitinase were found in the infected tissues of wheat spikes from the resistant cultivar Arina compared to the corresponding uninoculated healthy tissues. Furthermore, the labelling of β-1,3-glucanase and chitinase also occurred over the cell walls of the hyphae in the infected wheat spike, but not over the hyphal cytoplasm. In addition, labelling for the two enzymes was often detected over the cell wall appositions and the electron-dense material located between the host cell and the hyphal cell in the infected tissues of the resistant wheat cultivar. The findings reported in the present study indicate that β-1,3-glucanase and chitinase accumulation in the F. culmorum -infected wheat spike may be involved in resistance to pathogen spread in the host tissue.  相似文献   

19.
A bacterial strain was isolated from the rhizosphere of healthy watermelon plants in a heavily wilt-diseased field. This isolate was tentatively identified as Paenibacillus polymyxa (SQR-21) based on biochemical tests and partial 16S rRNA sequence similarity. The purified antifungal compounds were members of the fusaricidin group of cyclic depsipeptides having molecular masses of 883, 897, 947, and 961 Da with an unusual 15-guanidino-3-hydroxypentadecanoic acid moiety, bound to a free amino group. The strain SQR-21 was not able to produce antifungal volatile compounds but was able to produce cellulase, mannase, pectinase, protease, β-1,3-glucanase and lipase enzymes. However, the strain did not show any chitinase activity. Biocontrol potential of this strain was evaluated against Fusarium oxysporum cause of Fusarium wilt disease of watermelon in a greenhouse experiment. This strain combined with organic fertiliser decreased the disease incidence by 70% and increased the dry plant weight by 113% over the control.  相似文献   

20.
Preparations of pathogenesis-related (b) proteins (PRs) from differentNicotiana species, tomato,Gynura aurantiaca, bean, and cowpea were compared to each other and to bean chitinase and a constitutive apple agglutinin by electrophoresis in polyacrylamide gels both in the absence and in the presence of SDS, and by serological double diffusion analysis using antisera against tobacco PRs and bean chitinase. PRs from different plant genera displayed a similar but not identical range of relative mobilities in both native and SDS gels, whereas bean chitinase and apple agglutinin were clearly different. None of the antisera reacted with any of the PR preparations from plant genera other than the one from which the antigen(s) had been derived. Whilst PRs within the genusNicotiana are serologically related and can be identical, PRs from different plant genera seem to be sufficiently different to be considered as genus-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号