首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To estimate pharmacokinetic variables and measure tissue fluid concentrations of meropenem after IV and SC administration in dogs. ANIMALS: 6 healthy adult dogs. PROCEDURE: Dogs were administered a single dose of meropenem (20 mg/kg) IV and SC in a crossover design. To characterize the distribution of meropenem in dogs and to evaluate a unique tissue fluid collection method, an in vivo ultrafiltration device was used to collect interstitial fluid. Plasma, tissue fluid, and urine samples were analyzed by use of high-performance liquid chromatography. Protein binding was determined by use of an ultrafiltration device. RESULTS: Plasma data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean +/- SD values for half-life, volume of distribution, and clearance after IV administration for plasma samples were 0.67 +/- 0.07 hours, 0.372 +/- 0.053 L/kg, and 6.53 +/- 1.51 mL/min/kg, respectively, and half-life for tissue fluid samples was 1.15 +/- 0.57 hours. Half-life after SC administration was 0.98 +/- 0.21 and 1.31 +/- 0.54 hours for plasma and tissue fluid, respectively. Protein binding was 11.87%, and bioavailability after SC administration was 84%. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of our data revealed that tissue fluid and plasma (unbound fraction) concentrations were similar. Because of the kinetic similarity of meropenem in the extravascular and vascular spaces, tissue fluid concentrations can be predicted from plasma concentrations. We concluded that a dosage of 8 mg/kg, SC, every 12 hours would achieve adequate tissue fluid and urine concentrations for susceptible bacteria with a minimum inhibitory concentration of 0.12 microg/mL.  相似文献   

2.
Enrofloxacin and marbofloxacin were administered to six healthy dogs in separate crossover experiments as a single oral dose (5 mg/kg) and as a constant rate IV infusion (1.24 and 0.12 mg/h.kg, respectively) following a loading dose (4.47 and 2 mg/kg, respectively) to achieve a steady-state concentration of approximately 1 microg/mL for 8 h. Interstitial fluid (ISF) was collected with an in vivo ultrafiltration device at the same time period as plasma to measure protein unbound drug concentrations at the tissue site and assess the dynamics of drug distribution. Plasma and ISF were analyzed for enrofloxacin, its active metabolite ciprofloxacin, and for marbofloxacin by high performance liquid chromatography (HPLC). Lipophilicity and protein binding of enrofloxacin were higher than for marbofloxacin and ciprofloxacin. Compared to enrofloxacin, marbofloxacin had a longer half-life, higher Cmax, and larger AUC(0-infinity) in plasma and ISF after oral administration. Establishing steady state allowed an assessment of the dynamics of drug concentrations between plasma and ISF. The ISF and plasma-unbound concentrations were similar during the steady-state period despite differences in lipophilicity and pharmacokinetic parameters of the drugs.  相似文献   

3.
OBJECTIVE: To determine pharmacokinetics, safety, and penetration into interstitial fluid (ISF), polymorphonuclear leukocytes (PMNLs), and aqueous humor of doxycycline after oral administration of single and multiple doses in horses. ANIMALS: 6 adult horses. PROCEDURE: The effect of feeding on drug absorption was determined. Plasma samples were obtained after administration of single or multiple doses of doxycycline (20 mg/kg) via nasogastric tube. Additionally, ISF, PMNLs, and aqueous humor samples were obtained after the final administration. Horses were monitored for adverse reactions. RESULTS: Feeding decreased drug absorption. After multiple doses, mean +/- SD time to maximum concentration was 1.63 +/- 1.36 hours, maximum concentration was 1.74 +/- 0.3 microg/mL, and elimination half-life was 12.07 +/- 3.17 hours. Plasma protein binding was 81.76 +/- 2.43%. The ISF concentrations correlated with the calculated percentage of non-protein-bound drug. Maximum concentration was 17.27 +/- 8.98 times as great in PMNLs, compared with plasma. Drug was detected in aqueous humor at 7.5% to 10% of plasma concentrations. One horse developed signs of acute colitis and required euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that doxycycline administered at a dosage of 20 mg/kg, PO, every 24 hours will result in drug concentrations adequate for killing intracellular bacteria and bacteria with minimum inhibitory concentration < or = 0.25 microg/mL. For bacteria with minimum inhibitory concentration of 0.5 to 1.0 microg/mL, a dosage of 20 mg/kg, PO, every 12 hours may be required; extreme caution should be exercised with the higher dosage until more safety data are available.  相似文献   

4.
OBJECTIVE: To determine the pharmacokinetics of itraconazole after IV or oral administration of a solution or capsules to horses and to examine disposition of itraconazole in the interstitial fluid (ISF), aqueous humor, and polymorphonuclear leukocytes after oral administration of the solution. ANIMALS: 6 healthy horses. PROCEDURE: Horses were administered itraconazole solution (5 mg/kg) by nasogastric tube, and samples of plasma, ISF, aqueous humor, and leukocytes were obtained. Horses were then administered itraconazole capsules (5 mg/kg), and plasma was obtained. Three horses were administered itraconazole (1.5 mg/kg, IV), and plasma samples were obtained. All samples were analyzed by use of high-performance liquid chromatography. Plasma protein binding was determined. Data were analyzed by compartmental and noncompartmental pharmacokinetic methods. RESULTS: Itraconazole reached higher mean +/- SD plasma concentrations after administration of the solution (0.41 +/- 0.13 microg/mL) versus the capsules (0.15 +/- 0.12 microg/mL). Bioavailability after administration of capsules relative to solution was 33.83 +/- 33.08%. Similar to other species, itraconazole has a high volume of distribution (6.3 +/- 0.94 L/kg) and a long half-life (11.3 +/- 2.84 hours). Itraconazole was not detected in the ISF, aqueous humor, or leukocytes. Plasma protein binding was 98.81 +/- 0.17%. CONCLUSIONS AND CLINICAL RELEVANCE: Itraconazole administered orally as a solution had higher, more consistent absorption than orally administered capsules and attained plasma concentrations that are inhibitory against fungi that infect horses. Administration of itraconazole solution (5 mg/kg, PO, q 24 h) is suggested for use in clinical trials to test the efficacy of itraconazole in horses.  相似文献   

5.
OBJECTIVE: To evaluate the pharmacokinetics and pharmacodynamics of morphine after IV administration as an infusion or multiple doses in dogs by use of a von Frey (vF) device. ANIMALS: 6 dogs. PROCEDURE: In the first 2 crossover experiments of a 3-way crossover study, morphine or saline (0.9%) solution was administered via IV infusion. Loading doses and infusion rates were administered to attain targeted plasma concentrations of 10, 20, 30, and 40 ng/mL. In the third experiment, morphine (0.5 mg/kg) was administered IV every 2 hours for 3 doses. The vF thresholds were measured hourly for 8 hours. Plasma concentrations of morphine were measured by high-pressure liquid chromatography. RESULTS: No significant changes in vF thresholds were observed during infusion of saline solution. The vF thresholds were significantly increased from 5 to 8 hours during the infusion phase, corresponding to targeted morphine plasma concentrations > 30 ng/mL and infusion rates > or = 0.15 +/- 0.02 mg/kg/h.The maximal effect (EMAX) was 78 +/- 11% (percentage change from baseline), and the effective concentration to attain a 50% maximal response (EC50) was 29.5 +/- 5.4 ng/mL. The vF thresholds were significantly increased from 1 to 7 hours during the multiple-dose phase; the EC50 and EMAX were 23.9 +/- 4.7 ng/mL and 173 +/- 58%, respectively. No significant differences in half-life, volume of distribution, or clearance between the first and last dose of morphine were detected. CONCLUSIONS AND CLINICAL RELEVANCE: Morphine administered via IV infusion (0.15 +/- 0.02 mg/kg/h) and multiple doses (0.5 mg/kg, IV, every 2 hours for 3 doses) maintained significant antinociception in dogs.  相似文献   

6.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

7.
OBJECTIVE: To compare pharmacokinetic and pharmacodynamic characteristics of fentanyl citrate after IV or transdermal administration in cats. ANIMALS: 6 healthy adult cats with a mean weight of 3.78 kg. PROCEDURE: Each cat was given fentanyl IV (25 mg/cat; mean +/- SD dosage, 7.19 +/- 1.17 mg/kg of body weight) and via a transdermal patch (25 microg of fentanyl/h). Plasma concentrations of fentanyl were measured by use of radioimmunoassay. Pharmacokinetic analyses of plasma drug concentrations were conducted, using an automated curve-stripping process followed by nonlinear, least-squares regression. Transdermal delivery of drug was calculated by use of IV pharmacokinetic data. RESULTS: Plasma concentrations of fentanyl given IV decreased rapidly (mean elimination half-life, 2.35 +/- 0.57 hours). Mean +/- SEM calculated rate of transdermal delivery of fentanyl was 8.48 +/- 1.7 mg/h (< 36% of the theoretical 25 mg/h). Median steady-state concentration of fentanyl 12 to 100 hours after application of the transdermal patch was 1.58 ng/ml. Plasma concentrations of fentanyl < 1.0 ng/ml were detected in 4 of 6 cats 12 hours after patch application, 5 of 6 cats 18 and 24 hours after application, and 6 of 6 cats 36 hours after application. CONCLUSIONS AND CLINICAL RELEVANCE: In cats, transdermal administration provides sustained plasma concentrations of fentanyl citrate throughout a 5-day period. Variation of plasma drug concentrations with transdermal absorption for each cat was pronounced. Transdermal administration of fentanyl has potential for use in cats for long-term control of pain after surgery or chronic pain associated with cancer.  相似文献   

8.
OBJECTIVE: To develop a high-performance liquid chromatography (HPLC) assay for cetirizine in feline plasma and determine the pharmacokinetics of cetirizine in healthy cats after oral administration of a single dose (5 mg) of cetirizine dihydrochloride. ANIMALS: 9 healthy cats. PROCEDURES: Heparinized blood samples were collected prior to and 0.5, 1, 2, 4, 6, 8, 10, and 24 hours after oral administration of 5 mg of cetirizine dihydrochloride to each cat (dosage range, 0.6 to 1.4 mg/kg). Plasma was harvested and analyzed by reverse-phase HPLC. Plasma concentrations of cetirizine were analyzed with a compartmental pharmacokinetic model. Protein binding was measured by ultrafiltration with a microcentrifugation system. RESULTS: No adverse effects were detected after drug administration in the cats. Mean +/- SD terminal half-life was 10.06 +/- 4.05 hours, and mean peak plasma concentration was 3.30 +/- 1.55 microg/mL. Mean volume of distribution and clearance (per fraction absorbed) were 0.24 +/- 0.09 L/kg and 0.30 +/- 0.09 mL/kg/min, respectively. Mean plasma concentrations were approximately 2.0 microg/mL or higher for 10 hours and were maintained at > 0.72 microg/mL for 24 hours. Protein binding was approximately 88%. CONCLUSIONS AND CLINICAL RELEVANCE: A single dose of cetirizine dihydrochloride (approx 1 mg/kg, which corresponded to approximately 0.87 mg of cetirizine base/kg) was administered orally to cats. It was tolerated well and maintained plasma concentrations higher than those considered effective in humans for 24 hours after dosing. The half-life of cetirizine in cats is compatible with once-daily dosing, and the extent of protein binding is high.  相似文献   

9.
The objective of this study was to determine the pharmacokinetics (PK) of enrofloxacin in pigs and compare to the tissue interstitial fluid (ISF). Six healthy, young pigs were administered 7.5 mg/kg enrofloxacin subcutaneously (SC). Blood and ISF samples were collected from preplaced intravenous catheters and ultrafiltration sampling probes placed in three different tissue sites (intramuscular, subcutaneous, and intrapleural). Enrofloxacin concentrations were measured using high-pressure liquid chromatography with fluorescence detection, PK parameters were analyzed using a one-compartment model, and protein binding was determined using a microcentrifugation system. Concentrations of the active metabolite ciprofloxacin were negligible. The mean ± SD enrofloxacin plasma half-life, volume of distribution, clearance, and peak concentration were 26.6 ± 6.2 h (harmonic mean), 6.4 ± 1.2 L/kg, 0.18 ± 0.08 L/kg/h, and 1.1 ± 0.3 μg/mL, respectively. The half-life of enrofloxacin from the tissues was 23.6 h, and the maximum concentration was 1.26 μg/mL. Tissue penetration, as measured by a ratio of area-under-the-curve (AUC), was 139% (± 69%). Plasma protein binding was 31.1% and 37.13% for high and low concentrations, respectively. This study demonstrated that the concentration of biologically active enrofloxacin in tissues exceeds the concentration predicted by the unbound fraction of enrofloxacin in pig plasma. At a dose of 7.5 mg/kg SC, the high tissue concentrations and long half-life produce an AUC/MIC ratio sufficient for the pathogens that cause respiratory infections in pigs.  相似文献   

10.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

11.
OBJECTIVE: To characterize the plasma pharmacokinetics and clinical effects of pirfenidone administered IV in healthy horses. ANIMALS: 6 adult horses. PROCEDURES: A 15 mg/kg dose of pirfenidone was administered IV over 5 minutes. Physical variables were recorded and blood samples collected prior to infusion; 2.5 minutes after beginning infusion; at the end of infusion; and at 3, 6, 9, 12, 15, 20, 25, 30, 40, 50, 60, 75, and 90 minutes and 2, 2.5, 3, 4, 6, 8, 12, and 24 hours after completion of infusion. Plasma concentrations of pirfenidone and its metabolites were determined. RESULTS: Mild clinical effects, including tachycardia and muscle fasciculations, were observed during drug administration but stopped at the end of the infusion. Pirfenidone and 2 metabolites, hydroxypirfenidone and carboxypirfenidone, were detected by the end of the 5-minute infusion. Mean peak plasma concentration of pirfenidone was 182.5 micromol/L, detected at the end of the infusion. Mean peak plasma concentrations of hydroxypirfenidone and carboxypirfenidone were 1.07 and 3.4 micromol/L, respectively, at 40 minutes after infusion. No parent drug or metabolites were detected at 24 hours. Distribution of pirfenidone best fit a 2-compartment model, and the drug had mean +/- SEM elimination half-life of 86.0 +/- 4.7 minutes, mean body clearance of 6.54 +/- 0.45 mL/kg/min, and apparent volume of distribution at steady state of 0.791 +/- 0.056 L/kg. CONCLUSIONS AND CLINICAL RELEVANCE: Intravenous administration of pirfenidone was tolerated with transient adverse affects during infusion, and drug clearance was rapid.  相似文献   

12.
The purpose of this study was to establish the pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in the plasma and interstitial fluid (ISF) following subcutaneous (s.c.) administration of enrofloxacin. Ultrafiltration probes were placed in the s.c. tissue, gluteal musculature, and pleural space of five calves. Each calf received 12.5 mg/kg of enrofloxacin. Plasma and ISF samples were collected for 48 h after drug administration and analyzed by high pressure liquid chromatography. Plasma protein binding of enrofloxacin and ciprofloxacin was measured using a microcentrifugation system. Tissue probes were well tolerated and reliably produced fluid from each site. The mean +/- SD plasma half-life was 6.8 +/- 1.2 and 7.3 +/- 1 h for enrofloxacin and ciprofloxacin, respectively. The combined (ciprofloxacin + enrofloxacin) peak plasma concentration (Cmax) was 1.52 microg/mL, and the combined area under the curve (AUC) was 25.33 microg/mL. The plasma free drug concentrations were 54% and 81% for enrofloxacin and ciprofloxacin, respectively, and free drug concentration in the tissue fluid was higher than in plasma. We concluded that Cmax/MIC and AUC/MIC ratios for free drug concentrations in plasma and ISF would meet suggested ratios for a targeted MIC of 0.06 microg/mL.  相似文献   

13.
Pharmacokinetics and metabolic inertness of doxycycline in young pigs   总被引:5,自引:0,他引:5  
The disposition of doxycycline hyclate after IV administration of 20 mg/kg of body weight was studied in 6 pigs. Median elimination half-life, estimated in 4 pigs, was 3.92 hours. Mean (+/- SEM) total body clearance was 1.67 +/- 0.18 ml/min/kg, and mean apparent volume of distribution at steady state was 0.53 +/- 0.04 L/kg. In 2 pigs, secondary peaks in the logarithmic serum concentration-time profile suggested discontinuous enterohepatic cycling, and precluded using these pigs in the pharmacokinetic analysis. The extent of doxycycline binding to serum protein was 93.1 +/- 0.2%. Serum or urine from 3 of the pigs was analyzed by use of photodiode array detection and mass spectrometry of a high-performance liquid chromatographic column effluent. These procedures documented lack of doxycycline biotransformation in pigs. It is concluded that, despite an elimination half-life shorter than that reported in other species, doxycycline may be a valuable antimicrobial drug for use in swine practice, pending the development of appropriate formulations.  相似文献   

14.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

15.
The pharmacokinetics of doxorubicinol, a cytotoxic metabolite of the anticancer drug, doxorubicin, were studied in four healthy sulphur-crested cockatoos (Cacatua galerita) after a 20 min intravenous infusion of 2 mg/kg. Plasma doxorubicinol concentrations were measured by HPLC. The pharmacokinetic parameters were estimated using a non-compartmental method. The mean (+/- SD) peak concentration was 8341 +/- 3132 microg/L at 17.5 +/- 5.0 min after the start of the infusion, and doxorubicinol concentrations declined biexponentially to 154.3 +/- 34.5 microg/L, 40 min after the end of the infusion. Systemic clearance was 0.940 +/- 0.473 L/h/kg, mean residence time was 0.165 +/- 0.133 h, and steady-state volume of distribution was 0.123 +/- 0.0526 L/kg. The terminal half-life was 0.660 +/- 0.611 h. Detectible but unquantifiable concentrations of doxorubicinol were present in the plasma ultrafiltrate of two birds during the infusion, indicating very extensive plasma protein binding. Physiological, haematological and biochemical monitoring over 3 weeks showed that doxorubicinol at a single infused dose of 2 mg/kg caused no toxicities of major concern.  相似文献   

16.
The pharmacokinetic determinants of doxycycline were calculated after a single IV administration of the drug (20 mg/kg of body weight) in 5 Angus calves with mature rumen function and 4 Holstein calves with immature rumen function. Doxycycline disposition was best described by means of an open 2-compartment model. Median elimination half-life was 14.17 hours (Angus) and 9.84 hours (Holstein). Mean (+/- SEM) total body clearance was 1.07 (+/- 0.06) and 2.20 (+/- 0.21) ml/min/kg in Angus and Holstein calves, respectively. Mean extent of doxycycline binding to serum proteins was 92.3% (+/- 0.8%). The large steady-state volume of distribution (1.31 +/- 0.11 L/kg in Angus and 1.81 +/- 0.24 L/kg in Holstein calves), despite the small free fraction in serum, suggested a relatively unrestricted access of drug into the intracellular compartment and/or appreciable tissue binding. Results of mass spectrometric analysis of serum and urine from calves administered doxycycline IV revealed absence of biotransformation, because only parent drug could be detected. Thus, doxycycline may be a valuable antibiotic for use in food animals pending further studies on tissue residues, safety, and efficacy.  相似文献   

17.
Lidocaine is administered as an intravenous infusion to horses for a variety of reasons, but no study has assessed plasma lidocaine concentrations during a 12-h infusion to horses. The purpose of this study was to evaluate the plasma concentrations and pharmacokinetics of lidocaine during a 12-h infusion to postoperative horses. A second purpose of the study was to evaluate the in vitro plasma protein binding of lidocaine in equine plasma. Lidocaine hydrochloride was administered as a loading dose, 1.3 mg/kg over 15 min, then by a constant rate IV infusion, 50 microg/kg/min to six postoperative horses. Lidocaine plasma concentrations were measured by a validated high-pressure liquid chromatography method. One horse experienced tremors and collapsed 5.5 h into the study. The range of plasma concentrations during the infusion was 1.21-3.13 microg/mL. Lidocaine plasma concentrations were significantly increased at 0.5, 4, 6, 8, 10 and 12 h compared with 1, 2 and 3 h. The in vitro protein binding of lidocaine in equine plasma at 2 microg/mL was 53.06+/-10.28% and decreased to 27.33+/-9.72% and 29.52+/-6.44% when in combination with ceftiofur or the combination of ceftiofur and flunixin, respectively. In conclusion, a lower lidocaine infusion rate may need to be administered to horses on long-term lidocaine infusions. The in vitro protein binding of lidocaine is moderate in equine plasma, but highly protein bound drugs may displace lidocaine increasing unbound concentrations and the risk of lidocaine toxicity.  相似文献   

18.
OBJECTIVE: To evaluate disposition of fentanyl in goats after IV and transdermal administration. ANIMALS: 8 healthy 2-year-old goats weighing 31.8 to 53.6 kg (mean+/-SD, 40.4+/-7.5 kg). PROCEDURE: Each goat was given 2 treatments consisting of fentanyl administered IV (2.5 microg/kg of body weight) and via a transdermal patch (50 microg/h). There was a 2-month interval between treatments. Blood samples were collected at specified times and analyzed in duplicate to determine plasma fentanyl concentrations. Pharmacokinetic values were calculated, using a computerized modeling program. RESULTS: Administration of fentanyl was tolerated by all goats. Intravenous administration of fentanyl resulted in a transitory increase in rectal temperature that was not clinically important. Terminal elimination half-life after IV administration was 1.20+/-0.78 h, volume of distribution at steady state was 1.51+/-0.39 L/kg, and systemic clearance was 2.09+/-0.62 L/kg/h. Transdermal administration of fentanyl resulted in variable plasma concentrations, with peak plasma concentrations ranging from 1.12 to 16.69 ng/ml (mean+/-SD, 6.99+/-6.03 ng/ml) and time to peak concentration ranging from 8 to 18 hours (mean+/-SD, 13+/-4.5 hours). After removal of the transdermal patch, mean+/-SD terminal elimination half-life was 5.34+/-5.34 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Intravenous administration of fentanyl (2.5 microg/kg) in goats results in a relatively short half-life that will limit its use for management of pain. Transdermal administration of fentanyl (50 microg/h) in goats results in variable plasma concentrations that may exceed those anticipated on the basis of a theoretical delivery rate, but stable plasma concentrations of fentanyl may not be achieved.  相似文献   

19.
OBJECTIVE: To determine the pharmacokinetics after SC administration of an experimental, long-acting parenteral formulation of doxycycline hyclate in a poloxamer-based matrix and after IV and IM administration of an aqueous formulation of doxycycline hyclate in goats. ANIMALS: 30 clinically normal adult goats. PROCEDURES: Goats were allocated to 3 groups (10 goats/group). One group of goats received doxycycline hyclate (10 mg/kg) IM, a second group received the same dosage of doxycycline hyclate IV, and the third group received the long-acting parenteral formulation of doxycycline hyclate SC. Serum concentrations of doxycycline were determined before and at various intervals after administration. RESULTS: The long-acting parenteral formulation of doxycycline hyclate had the greatest bioavailability (545%); mean +/- SD maximum serum concentration was 2.4 +/- 0.95 microg/mL, peak time to maximum concentration was 19.23 +/- 2.03 hours, and elimination half-life was 40.92 +/- 4.25 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the long-acting parenteral formulation of doxycycline hyclate distributed quickly and widely throughout the body after a single dose administered SC, and there was a prolonged half-life. Bioavailability of the longacting parenteral formulation of doxycycline hyclate after SC administration was excellent, compared with bioavailability after IV and IM administration of an aqueous formulation of doxycycline hyclate. Although no local tissue irritation and adverse effects were detected, clinical assessment of drug-residues and toxicologic evaluations are warranted before this long-acting parenteral formulation of doxycycline hyclate can be considered for use in goats with bacterial infections.  相似文献   

20.
Six mature Holstein bulls were each given 10 mg of phenylbutazone (PBZ)/kg of body weight, PO. Of the 6 bulls, 3 were given 10 mg of PBZ/kg by rapid IV administration 4 weeks later. Plasma concentration-vs-time data were analyzed, using nonlinear regression modeling (sum of exponential functions). The harmonic mean of the biologic half-life of PBZ was 62.6 +/- 12.9 hours after oral administration and 61.6 +/- 7.2 hours after IV administration. The mean residence time was 94.61 +/- 8.44 hours and 90.49 +/- 8.93 hours for oral and IV administration, respectively. The mean total body clearance was 0.0015 +/- 0.0003 L/h/kg, with the mean apparent volume of distribution 0.134 +/- 0.021 L/kg. Mean bioavailability was 73 +/- 2% after oral administration. Phenylbutazone was adequately absorbed from the gastrointestinal tract in bulls. The apparent volume of distribution was small, indicating that PBZ distributed mainly into plasma and extracellular fluid. The total body clearance was also small, which accounted for the long half-life of PBZ in bulls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号