首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic wastes can be usefully recovered to produce organic amendments, for example, compost, to be used for crop production, thus reducing impacts through efficient waste management. The aim of this work was to study the effects of compost obtained from municipal waste in combination with poultry manure on plant growth, nitrate reductase (NR) activity and absorption and distribution of heavy metals (HM) in plant tissues of tomatoes, grown in pots in greenhouses. Two compost types obtained from municipal waste mixed with poultry manure (C1?=?3:2 and C2?=?2:3) were used at two different ages (105 d and 173 d) and at two mix rates with soil (32.5?g pot?1 and 65?g pot?1); soil with no compost amendment was used as control. The experiment was conducted using tomato plants in pots and plant growth and nutrient plant uptake was determined after 65?days from plant transplanting. Results obtained indicated that compost type and compost rate affected biomass production. However, compost age did not influence the development of plants. Nutrient status of tomato plants was also investigated with reference to the N cycle. Nitrite accumulation in the leaves increased with the increase in compost doses. The accumulation of NO2? was associated with a significant increase in NR activity. HM content in leaves decreased with compost use. HM accumulated preferentially in roots and leaves and the soil to root metals transfer was in this order: Fe (1.08–2.14)> Co (0.53–4.10)>Cu (0.28–2.28) >Mn (0.3–1.34) >Zn (0.87–1.21)>Cr (0.12–1.64). The highest and lowest dynamic bioaccumulation factors (BAFdyn) were observed in roots and stems, respectively. The root system acted as a barrier for Cd and Pb. It was concluded that compost use is beneficial for tomato plants, with particular reference to the compost obtained by using a higher amount of poultry manure (C2) in the mix.  相似文献   

2.
ABSTRACT

This experiment was conducted under greenhouse conditions using a sandy clay loam treated with garbage and mushroom composts, cattle and chicken manures, or municipal sludge at rates of 0, 30, or 60 ton ha?1. The organic materials were applied to the pots and incubated for 15 d. The soil samples were watered at field capacity. In this experiment, wheat (Triticum aestivum L.) was used as a test crop. At the end of the experiment, it was found that treating sandy clay loam with the organic materials increased plant total and grain yields, protein content, 1000-kernel weight, number of grains in spike, and accumulation of nitrogen (N), phosphorus (P), potassium (K), iron (Fe), zinc (Zn), and manganese (Mn) by wheat compared with the control treatment, depending on the organic material applications. Thus, the increases were found to be statistically significant (P ≤ 0.05). Among the types of organic materials, the sewage sludge was the most effective material in increasing N, P, K, Fe, Zn, and Mn content of leaf, grain, and stem samples of the wheat plant. It was followed by mushroom compost and cattle manure. Based on the results, sewage sludge and garbage compost are suggested for use as an amendment for the soil studied. Comparing the beneficial effects of the organic materials applied for improving plant growth and nutrient accumulation, the materials can be arranged in the following descending order: municipal sludge > chicken manure > cattle manure > garbage compost > mushroom compost. It is suggested that recycling of organic materials for agricultural usage as an organic-matter resource is an alternative, organic fertilization option in Turkey.  相似文献   

3.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:56,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

4.
Growth of Impatiens wallerana Hook. ‘Accent Red’ was evaluated in three composted urban waste materials (composted biosolids and yard trash (SYT): 20 percent biosolids/sewage sludge, 44 percent yard trimmings, and 36 percent mixed paper; composted refuse fuel residues with biosolids and yard trash (RYT): 74 percent refuse-derived fuel residuals, 10 percent biosolids/sewage sludge, and 16 percent yard trimmings; and composted municipal solid waste (MSW): 100 percent municipal solid waste). Treatments consisted of 100 percent composted waste and media in which the composted wastes were combined with control medium components at 60 percent, 30 percent, or 0 percent composted waste, by volume. Shoot dry mass of plants grown in SYT increased as the percentage of SYT in the medium increased, while shoot dry mass of plants grown in MSW linearly decreased from 1.24 g to 0.15 g. There were no significant differences in shoot dry mass of plants grown in different percentages of RYT. Initial medium soluble salt concentrations in MSW media were more than double concentrations measured in SYT and RYT media. Soluble salt concentrations in both the 100 percent and 60 percent MSW media exceeded 1.75 dS.m?1, while the soluble salt concentrations in 100 percent SYT and 100 percent RYT were 0.50 dS.m?1 and 0.61 dS.m?1, respectively. The C:N ratios in 100 percent SYT and RYT were 17 and 15, respectively, while 100 percent MSW had a C:N ratio of 29. The relatively higher level of compost maturity as indicated by lower C:N and soluble salt concentrations contributed to superior growth of impatiens plants in 100 percent SYT and RYT compared to 100 percent MSW.  相似文献   

5.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless, their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent when the soil was amended with municipal solid waste than when it was amended with sewage sludge. Received: 28 May 1996  相似文献   

6.
Organic wastes such as sewage sludge and compost increase the input of carbon and nutrients to the soil. However, sewage sludge-applied heavy metals, and organic pollutants adversely affect soil biochemical properties. Therefore, an incubation experiment lasting 90 days was carried out to evaluate the effect of the addition of two sources of organic C: sewage sludge or composted turf and plant residues to a calcareous soil at three rates (15, 45, and 90 t of dry matter ha–1) on pH, EC, dissolved organic C, humic substances C, organic matter mineralization, microbial biomass C, and metabolic quotient. The mobile fraction of heavy metals (Zn, Cd, Cu, Ni, and Pb) extracted by NH4NO3 was also investigated.The addition of sewage sludge decreased soil pH and increased soil salinity to a greater extent than the addition of compost. Both sewage sludge and compost increased significantly the values of the cumulative C mineralized, dissolved organic C, humic and fulvic acid C, microbial biomass C, and metabolic quotient (qCO2), especially with increasing application rate. Compared to compost, the addition of sewage sludge caused higher increases in the values of these parameters. The values of dissolved organic C, fulvic acid C, microbial biomass C, metabolic quotient, and C/N ratio tended to decrease with time. The soil treated with sewage sludge showed a significant increase in the mobile fractions of Zn, Cd, Cu, and Ni and a significant decrease in the mobile fraction of Pb compared to control. The high application rate of compost resulted in the lowest mobility of Cu, Ni, and Pb. The results suggest that biochemical properties of calcareous soil can be enhanced by both organic wastes. But, the high salinity and extractability of heavy metals, due to the addition of sewage sludge, may limit the application of sewage sludge.  相似文献   

7.
Purpose

While organic waste amendments can initially improve soil physicochemical properties, including nutritional benefits to plants and increased microorganism activity, long-term application of excessive amounts of organic wastes can cause accumulation of heavy metals (HMs). Thus, the current study examined the accumulation of HMs in agricultural soil profiles following organic waste application.

Materials and methods

Three common organic sludge, including municipal sewage sludge (MSS), industrial sewage sludge (ISS), and leather sludge (LS), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 25 and 50 t ha?1 year?1. Subsequently, when organic sludge amendments were ceased, the experimental plots were cultivated without any treatments for another 12 years (2001–2012) and the changes in HM concentrations along the soil depth profile were monitored together with soil pH, dissolved organic carbon (DOC), and dehydrogenase activity (DHA).

Results and discussion

Significant increases in Cu, Pb, and Zn concentrations were observed down to a depth of 80 cm in soils treated with ISS and LS, where sludge application also increased the levels of Cd, Cr, Pb, and Zn and their movement down the soil profile. However, with the exception of Cu, no significant changes in HM concentrations were observed following treatment with MSS. At a depth of 80 cm, soils which had received 25 and 50 t ha?1 LS showed, respectively, 4 and 14 times higher Cr levels than the control soil.

Conclusions

Organic sludge induced changes in soil pH and soil DOC concentration which were the key factors influencing HM movement and accumulation following organic sludge treatment.

  相似文献   

8.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

9.
Abstract

Two composts were tested in eleven different Malus domestica orchards: one was a sewage sludge and bark compost with a low heavy metal content, the other was a municipal solid waste compost with a higher concentration of metals. For six years the zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), cadmium (Cd), and chromium (Cr) content were monitored in the soil, both in ‘total’ and EDTA extractable form, and in leaves and fruits. The resulting data demonstrate clearly that the sewage sludge and bark compost did not cause any significant increase of heavy metal levels in soil and plants; this compost can thus be used to fertilize the soil with no danger either to the environment or to crops. In contrast, the municipal solid waste compost led to a notable accumulation of all the metals examined in the soil and, above all in the case of Pb and Cd, also in the vegetation and the fruits.  相似文献   

10.

Purpose

Mercury pollution in agricultural soils associated to the use of fertilizers and its influence on crops is a cause of major concern. The purpose of this work was to investigate the impact of the application of different organic and mineral fertilizers on the Hg concentration in the agricultural soils and its uptake by barley.

Materials and methods

Hg concentration was studied through a field test in an agricultural land located in the province of Palencia (Spain) over a 5-year period. The impact of irrigation and of four different fertilizers (a mineral one and three different organic waste materials, namely municipal solid waste compost, sewage sludge, and dehydrated sewage sludge) was assessed. The amounts of the mineral and organic fertilizers added to the soil were determined according to agricultural fertilization needs. The experimental crop was barley (Hordeum vulgare L.), planted as an annual crop. Mercury analyses were conducted using a direct mercury analyzer and validated according to EPA Method 7473. BCR-141R was used as a certified reference material.

Results and discussion

After 5 years, whereas the application of the mineral fertilizer did not increase the mercury content in the agricultural soils, the application of the organic residues led to Hg contents 1.7–7.6 times higher than that of the control soil. The treatment with solid municipal waste compost (MSWC) led to the largest increase in Hg content in the soil, followed by composted sewage sludge (CSS) and by dehydrated sewage sludge (DSS). No significant differences were observed in the Hg content in the barley grains, although the highest values were associated to the sludge-treated plots.

Conclusions

The application of organic fertilizers such as sewage sludges and municipal solid wastes led to an increase in the mercury concentration in the agricultural soils, noticeable for soils with low initial Hg concentrations (similar to background levels). This increase differed depending on the type of waste and on the intra-organic matter diffusion mechanisms, as well as on the type of irrigation of the agricultural land. Conversely, no significant differences in the Hg content in grains were found among the soils with the different fertilization treatments, although the highest values were observed for those treated with sewage sludge. The resulting Hg levels in both soils and grains were within legal limits, posing no danger to the environment or to human health.
  相似文献   

11.
Abstract. A two year field experiment was carried out in a semiarid Mediterranean area in order to evaluate, the effect on soil erosion of adding different urban organic wastes: a stabilized municipal waste (compost), an unstabilized municipal waste, and an aerobic sewage sludge. All the treatments significantly reduced soil erosion, compared to the control soil. The soil amended with compost was the most effective treatment, reducing soil loss by 94% and runoff by 54%.  相似文献   

12.
Recycling sewage sludge into fertilizer for agricultural purposes may improve soil fertility by influencing the physical, chemical, and biological properties of the land. However, there is concern regarding elevated levels of heavy metals and pathogenic microorganisms, which may result from the use of untreated sewage sludge. Gamma radiation is found to be an efficient tool in the hygienization of municipal sewage sludge. In order to evaluate the agricultural potential of gamma irradiated sewage sludge and to assess the safety of this fertilizer, field experiments were performed in a root crop, onion (Alium cepa), during the 2003–2004 and 2004–2005 winter months. The influence over major nutrients, metallic micronutrients, and heavy metals in soil and crop plant were key factors to be analyzed. Treatments consisted of three source of fertilizers {S1: farmyard manure (FYM); S2: gamma irradiated sewage sludge (GISS); and S3: non-irradiated sewage sludge (NISS)}, each at three separate levels (L1: 5 t ha?1; L2: 10 t ha?1; and L3: 15 t ha?1), which were evaluated and compared. The growth parameters and onion yield were not significantly influenced by the different sources of fertilizer, or the different application levels. Values of pH, organic carbon, organic N, available P and K, metallic micronutrients (Zn, Mn, Fe, Cu) and heavy metals (Ni, Cd, Pb, Co) indicate no negative effects on either soil or plant properties. Concentrations of heavy metals in soil and plant were slightly higher in NISS treatment in compare to GISS; however, the concentrations did remain within the prescribed limit, and no significant increase was consistently noted. The results prove that the gamma irradiated sludge material was of equal quality compared to the conventional FYM.  相似文献   

13.
In the past decades a significant change in composition of urban organic waste products has occurred in many first world countries, due to cleaner technologies as well as outsourcing of heavy industries. However, the societal perception of organic urban waste has become increasingly negative, leading to widespread advocacy of incineration. Therefore we established the ‘CRUCIAL’ long-term field trial in 2003, with the rationale that by approaching the known limits for a number of heavy metals below which no profound disturbance should be observed on key soil ecological functions, it should be possible to discern if some of the many unknown components in the composite urban waste as well as agriculturally based fertilizers have measurable impacts. The following treatments were established: human urine, sewage sludge (normal N-level and accelerated level aiming at three times normal N-level), degassed and subsequently composted organic municipal waste (normal and accelerated level), deep litter, cattle slurry, cattle manure (accelerated level), NPK fertilizer, unfertilized but with clover undersown and an unfertilized control. After 4 years the soil organic matter (SOM) C content, basal CO2 respiration and soil microbial biomass (SMB) C was significantly affected by treatments. All soils having received organic fertilizer had higher SMB C than those with no added fertilizer (unfertilized and unfertilized with clover undersown) and inorganic fertilizer. The treatment effect on qCO2 (CO2/SMB C) was not significant, but the unfertilized treatments showed the highest values. Treatments with accelerated levels of composted household waste and sewage sludge had the highest number of colony forming heterotrophic bacteria. Sole carbon source utilization in EcoPlates indicated a very robust microbial community in the treatments. Cumulative input of heavy metals was less than that required for reaching the heavy metal ecotoxicological limits, even after accelerated loading with sewage sludge corresponding to approximately 55 years of normal application. This could indicate that it is possible use organic urban waste for an extended period on a given site, without compromising soil functioning as long as ecotoxicological guidelines for heavy metal content are observed.  相似文献   

14.
The content and chemical from of Hg and Se were determined for several samples of municipal sewage sludge and sludge ash, garden soil having a history of sludge and residential compost application, and selected fertilizer materials (peat moss, cow manure, residential compost, composted municipal refuse and sewage sludge, Miloganite). Municipal sewage sludge had the highest levels of total Hg (averaging 1240 ppb), while sludge ash had the lowest levels (averaging 5.6 ppb). Total Se levels were lowest in compost (averaging 255 ppb), while being highest in sludge ash (averaging 11550 ppb). The methylmercury percentage was fairly constant for all samples, averaging 6.0% of the total Hg content. Hexavalent Se averaged 24.3 of the total Se content, and was notably higher in sludge and fertilizer samples. Successive annual application of sludge and compost to garden soil resulted in a gradual increase of total Hg and Se in the soil, but had no significant influence on chemical form distribution for both elements.  相似文献   

15.
This study looks at the ability of organic wastes from different sources to efficiently promote chemical attributes and enhance nitrogen (N) concentrations in an Oxisol Ustox with a sandy texture. This experiment was performed in a randomized design using wastes from pulp mill sludge, petrochemical complex, sewage treatment plant, dairy factory sewage treatment plant, and pulp fruit industry, on 10 different days. Results showed that addition of the wastes to the soil amended their chemical attributes. The different characteristics of the organic wastes seem to have influenced the N mineralization rates during the 112 days. There was a close relationship between the N mineralization and organic waste C/N ratio: blank soil (SP) (Nma = 3.17) < Treated pulp mill sludge (PMS) (Nma = 30.49, C/N 63.6:1) < Organic compost from the fruit pulp industry (FPW) (Nma = 67.6, C/N 11.9:1) < Treated urban sewage sludge (USS) (Nma = 76.22, C/N 7.2:1) = Petrochemical complex sludge (PS) (Nma = 84.0, C/N 7.7:1) < Treated dairy industry sewage sludge (DSS) (Nma = 102.17, C/N 8.4:1).  相似文献   

16.
The capability of organic wastes to release available N in soil varies largely, depending on their source and form of production, or rather on their composition and biodegradability. Our purpose was to predict mineralization rates of different materials using their analyses joined with a simulation model, and to evaluate the influence of soil type and application rate of the organic materials on N and C transformations in soil. Four organic materials, sewage sludge (SS), sewage sludge compost (SSC), cattle manure compost (CMC), hen and cattle manure compost (HCMC), were applied to two soils at rates of 2 and/or 4%. The soils were incubated aerobically for 168 days at 30°C, during which CO2 evolution rates and mineral-N concentrations were measured periodically. Hot water extractable C and N of all organic amendments correlated well with short term C and N mineralization, except HCMC that immobilized N although its soluble N content was large. NCSOIL, a computer model that simulates C and N cycling in soil with organic amendments, predicted well C and N mineralization of SS, SSC and CMC when considered as three-pool materials that decomposed at specific rates of 0.4, 0.024 and 10?4 d?1, using hot water soluble C and N as the labile pool. N immobilization by HCMC could be simulated only if the distribution of N between the labile and resistant pools was derived by optimization of NCSOIL, while hot water soluble C was labile. Laboratory methods to determine an intermediate pool or components that contribute to immobilization are required for improving the predictions of C and N mineralization from organic amendments.  相似文献   

17.
污泥农用对土壤和作物重金属累积及作物产量的影响   总被引:20,自引:2,他引:20  
以3 a定位试验为基础,比较3种不同处理的污泥肥料(消化污泥、污泥堆肥及污泥复混肥)农田施用下土壤养分、土壤和作物籽粒中Mn、Cu、Zn、Pb、Cd 5种重金属的积累以及作物产量的变化情况,以阐明污泥农用对土壤及作物的影响。研究表明,3种污泥肥料提高了土壤中氮素和有机质的含量;与空白和普通化肥处理相比,3种污泥肥料增加了土壤中Mn和Cu的含量,而对土壤交换态重金属含量没有显著影响;3种污泥处理均增加了小麦籽粒中Zn的含量;相对普通化肥处理,3种污泥肥料处理对小麦和玉米产量均无显著影响。合理施用污泥肥料可以有效地提高作物产量;污泥肥料施用对土壤重金属有一定累积效应,但短期施用对土壤比较安全。  相似文献   

18.
The objective of this study was to investigate the changes in the chemical partitioning of Cu, Pb, Cr and Zn within a column of soil incubated with an anaerobic sewage sludge (ANSS) for 2.5 months. The soil was irrigated during the incubation period. A sequential extraction method was used to fractionate these metals into exchangeable, weakly adsorbed, organic, Al oxide, Fe–Mn oxide, and residual, respectively. ANSS was applied at a loading rate of 69 Mg ha?1. The soil is a Dystric Cambisol with low pH (<3.8), low CEC [<10 cmol(+) kg?1 below the first 4 cm depth], and low base saturation (<7%). The addition of the ANSS caused a decrease in concentrations of Cu, Pb, and Cr in the A1 horizon, and an increase in the concentrations with depth. Below the A1 horizon, concentrations of Cu increased uniformly (~1 mg cm?1), and the greatest increases were observed in the residual, Fe–Mn oxides, and weakly adsorbed fractions. Maximum increases in Pb occurred at 4–9 cm of depth (1.6 mg cm?1), and mainly affected the weakly adsorbed fraction. Chromium essentially accumulated at the limit between the A2 and the Bw horizons (1.1–1.5 mg cm?1) as residual and organic bound forms, probably through particulate transport. Zinc mainly accumulated in the A1 horizon (2.9 mg cm?1) as exchangeable Zn. At depth, Zn increments were predominantly observed in the residual fraction. The results of this study thus demonstrate the redistribution of contaminants into different chemical pools and soil layers after sludge amendment.  相似文献   

19.
Abstract. The chemical extractability of heavy metals introduced into the soil during 7 years application of sewage sludge, composted municipal solid waste and sheep manure, and their availability to citrus plants were studied. The total content of metals in the soil (0-20 cm)was increased by the use of sludges and compost, but only the Ni content in the saturation extracts of soil was significantly increased. Total Cd, Cr, Cu, Ni, Pb, and Zn were sequentially fractionated into water-soluble plus exchangeable, organically bound, carbonate-associated, and residual fractions. Most of the heavy metals were present in carbonate and residual fractions, although substantial amounts of water-soluble plus exchangeable Cd, and organically bound Cu and Ni were found. No significant increases in the metal contents in leaves and orange fruits were observed, with the exception of Pb in leaves. Several statistically significant correlations between metal content in plants, metal content in soil fractions, and chemical characteristics of soil were also found.  相似文献   

20.
We conducted a field experiment to evaluate alternatives to poultry manure, the normal fertilizer used for growing dust control crops and native vegetation on bauxite residue sand. We compared plant growth, nutrient uptake and residue properties after applications of poultry manure, compost, composted poultry manure and inorganic fertilizer. The compost used was prepared from green waste treated with piggery waste. Plant growth was poor under the compost and composted poultry manure treatments, which produced 0.69 and 1.11 t ha? 1 of above ground biomass, respectively. This compared with 2.43 t ha? 1 from the inorganic fertilizer treatment which had a similar biomass to the poultry manure treatment (3.00 t ha? 1). All treatments, including poultry manure, had low foliar concentrations of some nutrients, with low levels of N, P, K, Mg, Cu and Zn found in most treatments. Of the two treatments which gave effective dust control (inorganic fertilizer and poultry manure) the most economical was inorganic fertilizer which cost A$1227 ha? 1. The high application rate of the poultry manure made it the most expensive fertilizer treatment at a cost of A$1650 ha? 1. There appeared to be no long-term benefit of using organic amendments, as organic fertilizers did not improve residue conditions (organic matter content, pH, electrical conductivity, activity of Na+ ions) compared with the inorganic fertilizer. It was concluded that inorganic fertilizer could provide a suitable, cost-effective alternative to poultry manure for growth of dust control crops, with further research required to address low levels of some nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号