首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biodiversity conservation is one of the important ecosystem services that has been negatively impacted by anthropogenic activities. Natural forests (NF) harbor some of the highest species diversity around the world. However, deforestation and degradation have resulted in reduced forest land cover and loss of diversity. Homegarden agroforestry (AF) systems have been proven to be an intermediary for biodiversity conservation. In this study, we evaluate the effectiveness of home garden AF practices to conserve tree species diversity in Bangladesh and compare them with tree species diversity in NF. A total of nine locations were selected for this synthesis from published literature which comprised of five AF sites and four NFs. Shannon?CWeiner Diversity Index (H) was similar for home-garden AF (3.50) and NF (2.99), with no statistical difference between them. Based on non-metric multi-dimensional scaling (NMDS) ordination analysis, the AF and NF plots showed distinct separation. However, Bray?CCurtis dissimilarity index ranged from 0.95 to 0.70 indicating nearly no overlap in species composition to significant overlap between AF and NF. Based on our results, we conclude that AF can serve as an important ecological tool in conserving tree species diversity, particularly on landscapes where NF fragments represent only a small fraction of the total land area. Creating and maintaining AF habitats in such human dominated landscapes should be part of the biodiversity conservation strategy.  相似文献   

3.
Simons  A.J.  Leakey  R.R.B. 《Agroforestry Systems》2004,61(1-3):167-181
Agroforestry Systems - We execute tree ‘domestication’ as a farmer-driven and market-led process, which matches the intraspecific diversity of locally important trees to the needs of...  相似文献   

4.
Biophysical interactions in tropical agroforestry systems   总被引:2,自引:0,他引:2  
The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interactions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offset the large competitive effect of hedgerows with crops for water and/or nutrients. Whereas improved soil fertility and microclimate positively influence crop yields underneath the canopies of scattered trees in semiarid climates, intense shading caused by large, evergreen trees negatively affects the yields. Trees in boundary plantings compete with crops for above- and belowground resources, with belowground competition of trees often extending beyond their crown areas. The major biophysical interactions in improved planted fallows are improvement of soil nitrogen status and reduction of weeds in the fallow phase, and increased crop yields in the subsequent cropping phase. In such systems, the negative effects of competition and micro-climate modification are avoided in the absence of direct tree–crop interactions. Future research on biophysical interactions should concentrate on (1) exploiting the diversity that exists within and between species of trees, (2) determining interactions between systems at different spatial (farm and landscape) and temporal scales, (3) improving understanding of belowground interactions, (4) assessing the environmental implications of agroforestry, particularly in the humid tropics, and (5) devising management schedules for agroforestry components in order to maximize benefits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Although there are very few specific data on management techniques for agroforestry systems, there are important concepts to consider for the design of effective management. One of these is the sharing of resource pools (e.g., light, water, nutrients) between and among the different crop components. With this knowledge, and with the spatial and temporal coordination of growth responses of the crops, effective management for agroforestry systems can be developed.  相似文献   

6.
Atta-Krah  K.  Kindt  R.  Skilton  J.N.  Amaral  W. 《Agroforestry Systems》2004,61(1-3):183-194
Agroforestry Systems - The issues of biological and genetic diversity management in agroforestry are extremely complex. This paper focuses on genetic diversity management and its implications for...  相似文献   

7.
Polyculture in crop agroecosystems has been examined in numerous studies with the aim of reducing pest populations by increasing diversity among insect populations over those found in traditional monoculture. Resource concentration and enemies hypotheses predict decreased pest populations in more diverse plant communities. Although results have been mixed, insect diversity has been generally increased in polyculture over traditional monoculture. Maintaining natural insect diversity in managed forests to limit possible pest outbreaks has been the goal in forestry systems. Increased arthropod diversity with increased tree diversity has been observed, though fewer studies have been conducted in forestry compared to agriculture. Agroforestry holds promise for increasing insect diversity and reducing pest problems because the combination of trees and crops provides greater niche diversity and complexity in both time and space than does polyculture of annual crops. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Reflections on the past two decades of organized research in tropical agroforestry raise several issues. Research efforts started with an inductive and experiential approach but have subsequently followed a deductive and experimental approach that includes hypothesis testing and the development of predictive capability; agroforestry research is thus being transformed into a rigorous scientific activity. The research agenda, so far, has given high priority to soil fertility and other biophysical interactions, less priority to anthropological and sociological aspects, and little priority to evaluating costs and returns, pests and diseases, and the so-called non-timber forest (tree) products. Moreover, larger-spatial-scale issues, such as carbon sequestration, water quality, and biodiversity conservation, have been neglected because of the emphasis on field- and farm-scale studies. Overall, the high expectations that were raised about the role and potential of agroforestry as a development vehicle have not been fulfilled. In order to overcome this, it is imperative that research be focused on the generation of appropriate, science-based technologies of wide applicability, especially under resource-poor conditions and in smallholder farming systems. Future research agendas should entail a judicious blending of science and technology. Applied research should build upon the findings of basic research to generate technologies for application at the farm, regional and global levels. Such research should place increased focus on previously neglected subjects, for example, the exploitation of indigenous fruit-producing trees, the agronomic components of agroforestry systems, and the global issues mentioned above. Furthermore, an appropriate methodology that embodies economic, social, and environmental costs and benefits needs to be developed to realistically assess the impacts of agroforestry, and an enabling policy environment that will facilitate agroforestry adoption needs to be made available. Agroforestry research of the 21st century should strive to build bridges from the inductive phase of the past, through the deductive phase of the present, to the future phase of harnessing science and generating technologies for the benefit of the land and its present and future users. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The major components of the process of production in the homegardens of a tropical Mexican community are described and analyzed. Specifically, management tasks, means of production, and the amount, quality and temporal distribution of the products are discussed. The ecological, technological and productive advantages generally attributed to this kind of agroforestry cropping system in comparison to monocultures were also found in the homegardens of Balzapote. However, the area presently managed under this system is restricted, and its local and regional impact is thus very limited. Based on the detailed analysis of the functional differences in 8 homegardens and the socioeconomic roles they play in the economic organization of peasant families, the possible expansion of homegardens in the Mexican tropics is discussed.  相似文献   

10.
A review of agroforestry practices in one lowland and one highland community of Xishuangbanna [Yunnan, P.R. China] has been carried out. Multilayer homegardens and taungya for fuelwood in the lowlands, tea shaded by natural forest and shellac production in a swidden farming system in the highlands are described. The extention of these agroforestry systems in Xishuangbanna is analyzed.Farming systems are facing problems related to shifting cultivation and to a rapid development of rubber which induce a negative evolution of these agroforestry systems.New agroforestry patterns based on Chinese research work, with rubber trees or with shade medicinal plants, are in extension in villages and in state farms.
Résumé Un inventaire des systèmes agroforestiers du Xishuangbanna [Yunnan, R.P. Chine] a été réalisé: jardins à plusieurs étages et production de bois feu par système de taungya dans un village de plaine, thé à l'ombre de forêt naturelle et production de gomme-lacque dans un système d'agriculture sur brûlis dans un village de montagne.Les systèmes de production sont confrontés aux problèmes liés à l'agriculture sur brûlis, et au développement de l'hévéa. Il en résulte des évolutions négatives de ces practiques agroforestières.De nouveaux modèles agroforestiers, à base d'hévéa ou de plantes médicinales d'ombre, se développent dans les villages et dans les fermes d'état á la suite des travaux de la recherche chinoise.
  相似文献   

11.
Climate, organisms, topographic relief, and parent material interacting through time are the dominant factors that control processes of soil formation and determine soil properties. In both forest and savanna ecosystems, trees affect soil properties through several pathways. Trees alter inputs to the soil system by increasing capture of wetfall and dryfall and by adding to soil N via N2-fixation. They affect the morphology and chemical conditions of the soil as a result of the characteristics of above- and below-ground litter inputs. The chemical and physical nature of leaf, bark, branch, and roots alter decomposition and nutrient availability via controls on soil water and the soil fauna involved in litter breakdown. Extensive lateral root systems scavenge soil nutrients and redistribute them beneath tree canopies. In general, trees represent both conduits through which nutrients cycle and sites for the accumulation of nutrients within a landscape. From an ecological perspective, the soil patches found beneath tree canopies are important local and regional nutrient reserves that influence community structure and ecosystem function. Understanding species-specific differences in tree-soil interactions has important and immediate interest to farmers and agroforesters concerned with maintaining or increasing site productivity. Lessons from natural plant-soil systems provide a guide for predicting the direction and magnitude of tree influences on soil in agroforestry settings. The challenge for agroforesters is to determine under what conditions positive tree effects will accumulate simultaneously within active farming systems and which require rotation of cropping and forest fallows.  相似文献   

12.
Anthropogenic climate change has significant consequences for the sustainability and productivity of agroforestry ecosystems upon which millions of smallholders in the tropics depend and that provide valuable global services. We here consider the current state of knowledge of the impacts of climate change on tree genetic resources and implications for action in a smallholder setting. Required measures to respond to change include: (1) the facilitated translocation of environmentally-matched germplasm across appropriate geographic scales, (2) the elevation of effective population sizes of tree stands through the promotion of pollinators and other farm management interventions; and (3) the use of a wider range of ??plastic?? species and populations for planting. Key bottlenecks to response that are discussed here include limitations in the international exchange of tree seed and seedlings, and the absence of well-functioning delivery systems to provide smallholders with better-adapted planting material. Greater research on population-level environmental responses in indigenous tree species is important, and more studies of animal pollinators in farm landscapes are required. The development of well-functioning markets for new products that farmers can grow in order to mitigate and adapt to anthropogenic climate change must also consider genetic resource issues, as we describe.  相似文献   

13.
Agroforestry trees are attacked by a wide spectrum of insects at all stages of their growth just like other annual and perennial crops. Pest management in agroforestry has not received much attention so far, but recent emphasis on producing high value tree products in agroforestry and using improved germplasm in traditional systems, and emergence of serious pest problems in some promising agroforestry systems have increased awareness on risks posed by pests. Insects may attack one or more species within a system and across systems in the landscape, so pest management strategies should depend on the nature of the insect and magnitude of its damage. Although greater plant diversity in agroforestry is expected to increase beneficial arthropods, diversity by itself may not reduce pests. Introduction of tree germplasm from a narrow genetic base and intensive use of trees may lead to pest outbreaks. In simultaneous agroforestry systems, a number of factors governing tree—crop—environment interactions, such as diversity of plant species, host range of the pests, microclimate, spatial arrangement and tree management modify pest infestations by affecting populations of both herbivores and natural enemies. Trees also affect pest infestations by acting as barriers to movement of insects, masking the odours emitted by other components of the system and sheltering herbivores and natural enemies. In sequential agroforestry systems, it is mostly the soil-borne and diapausing insects that cause and perpetuate damage to the common hosts in tree—crop rotations over seasons or years. An integrated approach combining host-plant resistance to pests, exploiting alternative tree species, measures that prevent pest build up but favour natural enemies and biological control is suggested for managing pests in agroforestry. Species substitution to avoid pests is feasible only if trees are grown for ecological services such as soil conservation and low value products such as fuelwood, but not for trees yielding specific and high value products. For exploiting biological control as a potent, low cost and environmentally safe tool for pest management in agroforestry, research should focus on understanding the influence of ecological and management factors on the dynamics of insect pest-natural enemy populations. Scientists and policy makers in national and international institutions, and donors are urged to pay more attention to pest problems in agroforestry to harness the potential benefits of agroforestry.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
The importance of agroforestry systems as carbon sinks has recently been recognized due to the need of climate change mitigation. The objective of this study was to compare the carbon content in living biomass, soil (0–10, 10–20, 20–30 cm in depth), dead organic matter between a set of non-agroforestry and agroforestry prototypes in Chiapas, Mexico where the carbon sequestration programme called Scolel’te has been carried out. The prototypes compared were: traditional maize (rotational prototype with pioneer native trees evaluated in the crop period), Taungya (maize with timber trees), improved fallow, traditional fallow (the last three rotational prototypes in the crop-free period), Inga-shade-organic coffee, polyculture-shade organic coffee, polyculture-non-organic coffee, pasture without trees, pasture with live fences, and pasture with scattered trees. Taungya and improved fallow were designed agroforestry prototypes, while the others were reproduced traditional systems. Seventy-nine plots were selected in three agro-climatic zones. Carbon in living biomass, dead biomass, and soil organic matter was measured in each plot. Results showed that carbon in living biomass and dead organic matter were different according to prototype; while soil organic carbon and total carbon were influenced mostly by the agro-climatic zone (P < 0.01). Carbon density in the high tropical agro-climatic zone (1,000 m) was higher compared to the intermediate and low tropical agro-climatic zones (600 and 200 m, respectively, P < 0.01). All the systems contained more carbon than traditional maize and pastures without trees. Silvopastoral systems, improved fallow, Taungya and coffee systems (especially polyculture-shade coffee and organic coffee) have the potential to sequester carbon via growing trees. Agroforestry systems could also contribute to carbon sequestration and reducing emissions when burning is avoided. The potential of organic coffee to maintain carbon in soil and to reduce emissions from deforestation and ecosystem degradation (REDD) is discussed.  相似文献   

15.
A study was conducted to investigate the cultural and financial management techniques of betel leaf based agroforestry system practiced in or near homegardens of Khasia community in Jaintapur Upazila in the district of Sylhet, Bangladesh. The Khasia is an educated community where 100% of Khasia people were literate, a stunning fact for this ethnic community in Bangladesh. The average family size in the study area was 7.68, with a ration of male and females of 141:100. The homegardens of the Khasia are rich in species composition, which 15 timber species, 22 horticultural species, six medicinal species, 13 annual crops including leafy vegetables, seven species of spices and five species of bamboo were identified along with betel leaf. The Khasia is an economically prosperous community with the minimum family incomes of Tk 4000 per month (Tk. 70=1 US Dollar). Betel leaf based agroforestry is very common being a prevalent source of income. About 95.45% of the households are involved in betel leaf husbandry. The mean annual income from one hectare of betel leaf plantation was estimated to be Tk. 80979. This practice was proven to be a profitable business where the benefit cost ratio was calculated to be 4.47. Moreover, the species composition in the betel leaf plantation area (the forest area once utilized by Khasia for shifting cultivation) was found to be very promising to play the significant role in conservation of biological diversity making the practice a sustainable agroforestry system.  相似文献   

16.
Valonia oak agroforestry systems of Greece are Mediterranean systems of high natural and cultural value with distinct economic, environmental, social and historical characteristics. These systems can be silvopastoral or agrosilvopastoral, and have been used since ancient times for grazing, and acorn and wood harvesting. Acorn cup collection for use in tanning, which has been undertaken since at least the fifteenth century, was an important economic activity from the nineteenth to the mid-twentieth century contributing to the local economy and development. This overview describes the historical importance of valonia oak in Greece, and the present extent, structure, ecology, products and services of valonia oak agroforestry. The sustainability of such systems is being promoted through the sale of traditional and new products, eco- and agri-tourism, and engagement with local stakeholders.  相似文献   

17.
García-Barrios  L.  Ong  C.K. 《Agroforestry Systems》2004,61(1-3):221-236

During the 1980s, land- and labor-intensive simultaneous agroforestry systems (SAFS) were promoted in the tropics, based on the optimism on tree-crop niche differentiation and its potential for designing tree-crop mixtures using high tree-densities. In the 1990s it became clearer that although trees would yield crucial products and facilitate simultaneous growing of crops, they would also exert strong competitive effects on crops. In the meanwhile, a number of instruments for measuring the use of growth resources, exploratory and predictive models, and production assessment tools were developed to aid in understanding the opportunities and biophysical limits of SAFS. Following a review of the basic concepts of interspecific competition and facilitation between plants in general, this chapter synthesizes positive and negative effects of trees on crops, and discusses how these effects interact under different environmental resource conditions and how this imposes tradeoffs, biophysical limitations and management requirements in SAFS. The scope and limits of some of the research methods and tools, such as analytical and simulation models, that are available for assessing and predicting to a certain extent the productive outcome of SAFS are also discussed. The review brings out clearly the need for looking beyond yield performance in order to secure long-term management of farms and landscapes, by considering the environmental impacts and functions of SAFS.

  相似文献   

18.
In the past, the conservation of biodiversity has been mostly understood in terms of the management of protected areas and natural forests, ignoring the possible role of farm areas and the ways through which rural communities have promoted biodiversity in their subsistence agricultural production systems. The present study focused on the floristic diversity within traditional agroforestry parkland systems around the Pendjari Biosphere Reserve in Benin and showed the diversity of tree species in the area as well as socio-economic factors which affect the practice of this farming system. We used questionnaires and interviewed a total of 118 households to collect data. Respondents were interviewed on their farms and during the interview; we inventoried the number of tree on the farm and determined the farm size. Twenty-one tree species belonging to 14 botanical families were recorded during the surveys and the average stand density of the woody component of farmlands was 7.97 ± 5.43 stems/ha. A number of both native and exotic tree species occurred in the parkland agroforestry systems with dominance of indigenous tree species. Species richness varied with the size of household where households with small land holding conserve more tree species in their field than households with large land holdings. 64% of households surveyed were making deliberate efforts to plant tree species on their farmlands. The most important reasons which determined household ambitions to conserve woody species on farmland were tree products contribution to food and medicine. Results also showed that respondents who noticed that trees were decreasing in the wild conserve more tree species on their farmlands. This research highlights the role of traditional agroforestry practices to support tree species richness and provides evidence of the farms’ role as biodiversity reservoirs.  相似文献   

19.
Agroforestry Systems - Inland waters such as streams that receive carbon from terrestrial landscapes usually have a net heterotrophic metabolism and emit significant amounts of CO2 to the...  相似文献   

20.
This paper describes recent research findings on resource sharing between trees and crops in the semiarid tropics and attempts to reconcile this information with current knowledge of the interactions between savannah trees and understorey vegetation by examining agroforestry systems from the perspective of succession. In general, productivity of natural vegetation under savannah trees increases as rainfall decreases, while the opposite occurs in agroforestry. One explanation is that in the savannah, the beneficial effects of microclimatic improvements (e.g. lower temperatures and evaporation losses) are greater in more xeric environments. Mature savannah trees have a high proportion of woody above-ground structure compared to foliage, so that the amount of water 'saved' (largely by reduction in soil evaporation) is greater than water 'lost' through transpiration by trees. By contrast, in agroforestry practices such as alley cropping where tree density is high, any beneficial effects of the trees on microclimate are negated by reductions in soil moisture due to increasing interception losses and tree transpiration. While investment in woody structure can improve the water economy beneath agroforestry trees, it inevitably reduces the growth rate of the trees and thus increases the time required for improved understorey productivity. Therefore, agroforesters prefer trees with more direct and immediate benefits to farmers. The greatest opportunity for simultaneous agroforestry practices is therefore to fill niches within the landscape where resources are currently under-utilised by crops. In this way, agroforestry can mimic the large scale patch dynamics and successional progression of a natural ecosystem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号