首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

2.

Context

In tropical landscapes, dominant land-use changes involve conversion of intact forest to an agricultural matrix with embedded fragments of remnant forest. However, most research to date has focused on how these land-use changes affect species within the fragmented ecosystem, rather than the flux of energy and nutrients within these different landscape elements.

Objectives

We examined how forest fragmentation and conversion to orange fields impact the potential for litter decomposition in a Costa Rican landscape, in particular via effects on macroinvertebrates (MIs) and microclimate.

Methods

We measured mass losses of a standard leaf litter in four habitats: orange fields, small forest fragments, large forest fragments and intact forest. Litter bags were constructed of mesh that either excluded or allowed MIs. Decomposition rates were measured in wet and dry seasons, and at different distances from the forest edge.

Results

Forest fragmentation and forest conversion had divergent effects on decomposition rates. Decomposition rates were 7 % slower in forest fragments during the dry season than in intact forest, and this result was mediated by forest fragmentation effects on MIs. Decomposition rates were 9 % higher in orange fields during the wet season, relative to intact forest, and this pattern was explained by effects of the litter microenvironment on leaching rates or smaller invertebrates. Fragment area and distance from forest edge had minor or undetectable effects on decomposition in fragments.

Conclusions

We conclude that land-use changes affect decomposition processes in both forest and agroecosystems, and these effects can vary in mechanism and direction across disturbed landscapes.
  相似文献   

3.

Context

An increase in the incidence of large wildfires worldwide has prompted concerns about the resilience of forest ecosystems, particularly in the western U.S., where recent changes are linked with climate warming and 20th-century land management practices.

Objectives

To study forest resilience to recent wildfires, we examined relationships among fire legacies, landscape features, ecological conditions, and patterns of post-fire conifer regeneration.

Methods

We quantified regeneration across 182 sites in 21 recent large fires in dry mixed-conifer forests of the U.S. northern Rockies. We used logistic and negative binomial regression to predict the probability of establishment and abundance of conifers 5–13 years post-fire.

Results

Seedling densities varied widely across all sites (0–127,500 seedlings ha?1) and were best explained by variability in distance to live seed sources (β = ?0.014, p = 0.002) and pre-fire tree basal area (β = 0.072, p = 0.008). Beyond 95 m from the nearest live seed source, the probability of seedling establishment was low. Across all the fires we studied, 75 % of the burned area with high tree mortality was within this 95-m threshold, suggesting the presence of live seed trees to facilitate natural regeneration.  

Conclusions

Combined with the mix of species present within the burn mosaic, dry mixed-conifer forests will be resilient to large fires across our study region, provided that seedlings survive, fire do not become more frequent, high-severity patches do not get significantly larger, and post-fire climate conditions remain suitable for seedling establishment and survival.
  相似文献   

4.

Context

The biodiversity hotspot for conservation of New Caledonia has facing high levels of forest fragmentation. Remnant forests are critical for biodiversity conservation and can help in understanding how does forest fragmentation affect tree communities.

Objective

Determine the effect of habitat configuration and availability on tree communities.

Methods

We mapped forest in a 60 km2 landscape and sampled 93 tree communities in 52 forest fragments following stratified random sampling. At each sampling point, we inventoried all trees with a diameter at breast height ≥10 cm within a radius of 10 m. We then analysed the response of the composition, the structure and the richness of tree communities to the fragment size and isolation, distance from the edge, as well as the topographical position.

Results

Our results showed that the distance from the forest edge was the variable that explained the greatest observed variance in tree assemblages. We observed a decrease in the abundance and richness of animal-dispersed trees as well as a decrease in the abundance of large trees with increasing proximity to forest edges. Near forest edges we found a shift in species composition with a dominance of stress-tolerant pioneer species.

Conclusions

Edge-effects are likely to be the main processes that affect remnant forest tree communities after about a century of forest fragmentation. It results in retrogressive successions at the edges leading to a dominance of stress-tolerant species. The vegetation surrounding fragments should be protected to promote the long process of forest extension and subsequently reduce edge-effects.
  相似文献   

5.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

6.

Context

Land use and land cover (LULC) change is a major part of environmental change. Understanding its long-term causes is a major issue in landscape ecology.

Objectives

Our aim was to characterise LULC transitions since 1860 and assess the respective and changing effects of biophysical and socioeconomic drivers on forest, arable land and pasture in 1860, 1958 and 2010, and of biophysical, socioeconomic and distance from pre-existing forest on forest recovery for the two time intervals.

Methods

We assessed LULC transitions by superimposing 1860, 1958 and 2010 LULCs using a regular grid of 1 × 1 km points, in a French Mediterranean landscape (195,413 ha). We tested the effects of drivers using logistic regressions, and quantified pure and joint effects by deviance partitioning.

Results

Over the whole period, the three main LULCs were spatially structured according to land accessibility and soil productivity. LULC was driven more by socioeconomic than biophysical drivers in 1860, but the pattern was reversed in 2010. A widespread forest recovery mainly occurred on steeper slopes, far from houses and close to pre-existing forest, due to traditional practice abandonment. Forest recovery was better explained by biophysical than by socioeconomic drivers and was more dependent on distance from pre-existing forest between 1958 and 2010.

Conclusions

Our results showed a shift in drivers of LULC and forest recovery over the last 150 years. Contrary to temperate regions, the set-aside of agricultural practices on difficult land has strengthened the link between biophysical drivers and LULC distribution over the last 150 years.
  相似文献   

7.

Context

Forest fragmentation alters the composition, structure and function of ecosystems and affects ecological processes that are fundamental for the provision of ecosystem services where functional diversity is sensitive to its effects. Analyzing the functional responses of the plant community to fragmentation can provide new approaches to its conservation and management.

Objectives

We analyzed whether the functional diversity of woody individuals associated with aboveground biomass (AGB) in a high Andean forest in Colombia is affected by fragmentation.

Methods

Based on three fragmentation categories identified using landscape metrics, we selected ten forest fragments. Multitrait and monotrait functional diversity indexes (foliar and wood) weighted by aboveground biomass were calculated in plots of 0.1 ha in each fragment. Analysis of variance was performed, and simple linear regressions were quantified to identify the relationships between functional diversity and fragmentation.

Results

The category of large fragments had a higher average AGB than did the medium and small fragments. Fragmentation had effects on the variance of some foliar and stem traits but not on functional dominance. For the multitraits indexes, the edge contrast was negatively related with functional dispersion.

Conclusions

The categories analyzed have similar responses in terms of functionality associated with AGB. We highlight the importance of small fragments in the maintenance of plant functional diversity and as reservoirs of AGB. We underline that small fragments are important to consider in the development of conservation and connectivity strategies.
  相似文献   

8.

Context

Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown.

Objectives

Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances.

Methods

We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination.

Results

iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime.

Conclusions

Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.
  相似文献   

9.

Context

The anthropocene is characterised by global landscape modification, and the structure of remnant habitats can explain different patterns of species richness. The most pervasive processes of degradation include habitat loss and fragmentation. However, a recovery of modified landscape is occurring in some areas.

Objectives

The main goal is to know how lichen and bryophyte epiphytic richness growing on Mediterranean forests is influenced not only by fragments characteristics but also by the structure of the landscape. We introduce a temporal dimension in order to evaluate if the historical landscape structure is relevant for current epiphytic communities.

Methods

40 well-preserved forest fragments were selected in a landscape with a large habitat loss over decades, but with a recovery of forest surface in the last 55 years. The most relevant fragment and landscape-scale attributes were considered. Some of the variables were measured in three different years to incorporate a temporal framework.

Results

The results showed that variables at fragment scale had a higher influence, whereas variables at the landscape scale were irrelevant. Among all the historical variables analyzed, only the shift in forest fragment size had influence on species richness.

Conclusions

Mediterranean forests had suffered fragmentation along centuries. Their epiphytic communities also suffer the hard conditions of Mediterranean climate. Our results indicate that Mediterranean epiphytic communities may be in a threshold since it they will never be similar to those communities existing previous fragmentation process even a recovery habitat occur or, they may require more time to response to this habitat recovery.
  相似文献   

10.

Context

Primates are an important component of biodiversity in tropical regions. However, many studies on the effects of habitat change on primates ignore the relative influence of landscape composition and configuration.

Objectives

This study addresses the question: how important are landscape-scale forest area and composition relative to patch-scale (1–1080 ha) and site-scale (transect of 1 km) habitat variables for the occupancy and abundance of four primate species in the Colombian Llanos.

Methods

Using a randomly stratified survey design, 81 fragments were surveyed for primate occupancy and abundance. We used zero-inflated models to test the relative influence of landscape-scale, patch-scale and site-scale variables on occupancy and abundance for each species. A 95% confidence set of models was constructed using the cumulative Akaike weight for each model and the relative importance of each set of variables calculated for each primate species.

Results

Occupancy was determined by a combination of site-scale, patch-scale and landscape-scale variables but this varied substantially among the primate species.

Conclusion

Our study highlights the importance of managing primates at a range of scales that considers the relative importance of site-, patch- and landscape-scale variables.
  相似文献   

11.

Context

Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to influence future forest conditions. Climate change compounds this uncertainty.

Objectives

We explored how continued forest recovery dynamics affect forest biomass and species composition and how climate change may alter this trajectory.

Methods

Using a spatially explicit landscape simulation model incorporating an ecophysiological model, we simulated forest processes in New England from 2010 to 2110. We compared forest biomass and composition from simulations that used a continuation of the current climate to those from four separate global circulation models forced by a high emission scenario (RCP 8.5).

Results

Simulated forest change in New England was driven by continued recovery dynamics; without the influence of climate change forests accumulated 34 % more biomass and succeed to more shade tolerant species; Climate change resulted in 82 % more biomass but just nominal shifts in community composition. Most tree species increased AGB under climate change.

Conclusions

Continued recovery dynamics will have larger impacts than climate change on forest composition in New England. The large increases in biomass simulated under all climate scenarios suggest that climate regulation provided by the eastern forest carbon sink has potential to continue for at least a century.
  相似文献   

12.

Context

Landscape patterns created by natural disturbance such as windstorms can affect forest regeneration, carbon cycling, and other ecological processes.

Objectives

We develop a method for remotely measuring tornado damage severity and describe landscape-scale patterns of tornado damage. We examine the extent and distribution of damage severity and gaps created by tornadoes, and examine how topographic variation can influence tornado damage severity.

Methods

Focusing on two April 2011 tornadoes that struck the Chattahoochee National Forest (CNF) in Georgia and the Great Smoky Mountains (GSM) in Tennessee, we used supervised classification of aerial photographs to map damage severity. We report the extent and distribution of damage severity from each track and characterize patterns of damage using FragStats. Using topographic overlays, we test hypotheses regarding how physiographic features such as valleys and ridges affect tornado damage severity.

Results

Tornado damage severity estimates were significantly correlated with ground-truth measurements. The 64-km CNF track damaged 1712 ha (>25 % severity), while the 26-km GSM track damaged 1407 ha. Tornado damage severity was extremely variable and frequency of gap sizes drastically decreased with size, with many small gaps and few very large gaps, consistent with other types of wind damage. Damage severity declined as tornadoes ascended ridges and increased as they descended ridges. This effect was more consistent on shallow slopes relative to steeper slopes.

Conclusions

This study outlines an objective methodology for remotely characterizing tornado damage severity. The results from this study fill an important gap in ecological understanding of the spatial components of the forest tornado disturbance regime.
  相似文献   

13.

Context

Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.

Objectives

We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.

Methods

We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).

Results

Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.

Conclusions

M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.
  相似文献   

14.

Context

Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climate-induced changes through promoting carbon sequestration, forest resilience, and facilitated change.

Objectives

We modeled direct and indirect effects of climate change on avian abundance through changes in forest landscapes and assessed impacts on bird abundances of forest management strategies designed to mitigate climate change effects.

Methods

We coupled a Bayesian hierarchical model with a spatially explicit landscape simulation model (LANDIS PRO) to predict avian relative abundance. We considered multiple climate scenarios and forest management scenarios focused on carbon sequestration, forest resilience, and facilitated change over 100 years.

Results

Management had a greater impact on avian abundance (almost 50% change under some scenarios) than climate (<3% change) and only early successional and coniferous forest showed significant change in percent cover across time. The northern bobwhite was the only species that changed in abundance due to climate-induced changes in vegetation. Northern bobwhite, prairie warbler, and blue-winged warbler generally increased in response to warming temperatures but prairie warbler exhibited a non-linear response and began to decline as summer maximum temperatures exceeded 36 °C at the end of the century.

Conclusion

Linking empirical models with process-based landscape change models can be an effective way to predict climate change and management impacts on wildlife, but time frames greater than 100 years may be required to see climate related effects. We suggest that future research carefully consider species-specific effects and interactions between management and climate.
  相似文献   

15.

Context

Ecological theory suggests that large habitat fragments should harbour more species than small fragments. However, this may depend on the surrounding matrix. Matrices in fragmented landscapes may either amplify or reduce area effects, which could influence predicted extinctions based on species-area relationships (SARs).

Objective

To determine the influence of matrix type on SARs.

Methods

We surveyed birds within 59 coastal forest fragments in two matrix types, anthropogenic (South Africa) and natural (Mozambique). We classified species as forest specialists or habitat generalists and fitted species-area models to compare how SAR slopes differed among matrix types. We also calculated nestedness and evenness to determine if these varied among matrix type and used logistic regressions to identify species-specific responses to matrix type.

Results

For habitat generalists, SARs were weak within both matrices, while for forest specialists it was strong in the anthropogenic but weak in the natural matrix. In the former, the SAR was similar to those recorded for real islands within archipelagos. Forest specialist assemblages were nested by area within anthropogenic, but not natural matrices. Matrix type did not influence evenness. Area only affected the occurrence of one species when the matrix was natural, compared to 11 species when it was anthropogenic.

Conclusions

Forest specialist bird species conformed to island biogeographic predictions of species loss in forest fragments embedded in anthropogenic, but not natural matrices. Extinctions from small forest fragments might be prevented by conserving natural- or restoring anthropogenic matrices, as well as by increasing forest area.
  相似文献   

16.

Context

Wildfire activity in boreal forests is projected to increase dramatically in response to anthropogenic climate change. By altering the spatial arrangement of fuels, land-cover configuration may interact with climate change to influence fire-regime dynamics at landscape and regional scales.

Objectives

We evaluate how land cover interacts with weather conditions to influence boreal-forest burning from 2012 to 2014 in Alaska.

Methods

Using geospatial fire and land-cover data, we quantify relationships between area burned and land cover, and test whether observed patterns of burning differ from random under varying weather conditions and fire sizes.

Results

Mean summer moisture index was correlated with annual area burned (ρ = ?0.78, p < 0.01), the total number of fires (ρ = ?0.68, p = 0.01), and the number of large fires (>500 km2; ρ = ?0.58, p = 0.04). Area burned was related positively to percent cover of coniferous forest and woody wetlands, and negatively to percent cover of shrub scrub, dwarf scrub, and open water and barren areas. Fires preferentially burned coniferous forest, which represented 50.1 % of the area burned in warmer/drier summers and 40.3 % of area burned in cooler/wetter summers, compared to the 34.5 % (±4.2 %) expected by random selection of land-cover classes. Overall vegetation tended to burn more similarly to random in warmer/drier than cooler/wetter years.

Conclusions

Land cover exerted greater influences on boreal fire regimes when weather conditions were less favorable for forest burning. Reliable projections of boreal fire-regime change thus require consideration of the interactions between climate and land cover, as well as feedbacks from land-cover change.
  相似文献   

17.

Context

Despite the key role of biological control in agricultural landscapes, we still poorly understand how landscape structure modulates pest control at different spatial scales.

Objectives

Here we take an experimental approach to explore whether bird and bat exclusion affects pest control in sun coffee plantations, and whether this service is consistent at different spatial scales.

Methods

We experimentally excluded flying vertebrates from coffee plants in 32 sites in the Brazilian Atlantic Forest, encompassing a gradient of forest cover at landscape (2 km radius) and local (300 m) spatial scales, and quantified coffee leaf loss, as an indicator of herbivory, and fruit set.

Results

Leaf loss decreased with higher landscape forest cover, but this relation was significantly different between treatment and control plants depending on local forest cover. On the other hand, fruit set responded to the interaction between treatment and local forest cover but was not affected by landscape forest cover. More specifically, fruit set increased significantly with local forest cover in exclusion treatments and showed a non-significant decrease in open controls.

Conclusions

These results suggest that services provided by flying vertebrates are modulated by processes occurring at different spatial scales. We posit that in areas with high local forest cover flying vertebrates may establish negative interactions with predaceous arthropods (i.e. intraguild predation), but this would not be the case in areas with low local forest cover. We highlight the importance of employing a multi-scale analysis in systems where multiple species, which perceive the landscape differently, are providing ecosystem services.
  相似文献   

18.

Context

The study of habitat fragmentation is complex because multiple, potentially synergistic, ecological processes may be acting simultaneously. Further, edge effects themselves may be complex in that additivity from multiple edges can give rise to heterogeneous nearest–edge gradients.

Objectives

We used heat diffusion as a proxy for additive edge effects in two study landscapes in order to test whether two key observations recently attributed to synergy between edge and area effects could be more simply explained by additivity; namely, steeper edge gradients in larger fragments and variation in slopes of species–area relationships as a function of distances to fragment edges.

Methods

We sampled forest structure in northwestern Madagascar at various distances from the edge in fragments and continuous forest and used an inverse modelling approach to parameterize the model. In addition, we applied the model to data from a published study of beetle communities in fragmented forests in New Zealand.

Results

With increasing proximity to edges, woody stem densities decreased and, as predicted, smaller fragments had lower stem densities and less steep edge gradients than larger ones. The model successfully predicted shifts in species–area relationships as a function of nearest–edge distances for beetle species, although observed richness for forest specialists in the smallest fragments was lower than predicted.

Conclusions

Two key observations attributed to synergy between edge and area effects were explained by edge additivity. The model is particularly useful in that it can help to disentangle the complex sets of processes acting in fragmented landscapes.
  相似文献   

19.

Context

Forecasting the expansion of forest into Alaska tundra is critical to predicting regional ecosystem services, including climate feedbacks such as carbon storage. Controls over seedling establishment govern forest development and migration potential. Ectomycorrhizal fungi (EMF), obligate symbionts of all Alaskan tree species, are particularly important to seedling establishment, yet their significance to landscape vegetation change is largely unknown.

Objective

We used ALFRESCO, a landscape model of wildfire and vegetation dynamics, to explore whether EMF inoculum potential influences patterns of tundra afforestation and associated flammability.

Methods

Using two downscaled CMIP3 general circulation models (ECHAM5 and CCCMA) and a mid-range emissions scenario (A1B) at a 1 km2 resolution, we compared simulated tundra afforestation rates and flammability from four parameterizations of EMF effects on seedling establishment and growth from 2000 to 2100.

Results

Modeling predicted an 8.8–18.2 % increase in forest cover from 2000 to 2100. Simulations that explicitly represented landscape variability in EMF inoculum potential showed a reduced percent change afforestation of up to a 2.8 % due to low inoculum potential limiting seedling growth. This reduction limited fuel availability and thus, cumulative area burned. Regardless of inclusion of EMF effects in simulations, landscape flammability was lower for simulations driven by the wetter and cooler CCCMA model than the warmer and drier ECHAM5 model, while tundra afforestation was greater.

Conclusions

Results suggest abiotic factors are the primary driver of tree migration. Simulations including EMF effects, a biotic factor, yielded more conservative estimates of land cover change across Alaska that better-matched empirical estimates from the previous century.
  相似文献   

20.

Context

Spatial scale and pattern play important roles in forest aboveground biomass (AGB) estimation in remote sensing. Changes in the accuracy of satellite images-estimated forest AGBs against spatial scales and pixel distribution patterns has not been evaluated, because it requires ground-truth AGBs of fine resolution over a large extent, and such data are difficult to obtain using traditional ground surveying methods.

Objectives

We intend to quantify the accuracy of AGB estimation from satellite images on changing spatial scales and varying pixel distribution patterns, in a typical mixed coniferous forest in Sierra Nevada mountains, California.

Methods

A forest AGB map of a 143 km2 area was created using small-footprint light detection and ranging. Landsat Thematic Mapper images were chosen as typical examples of satellite images, and resampled to successively coarser resolutions. At each spatial scale, pixels forming random, uniform, and clustered spatial patterns were then sampled. The accuracies of the AGB estimation based on Landsat images associated with varying spatial scales and patterns were finally quantified.

Results

The changes in the accuracy of AGB estimation from Landsat images are not monotonic, but increase up to 60–90 m in spatial scale, and then decrease. Random and uniform spatial patterns of pixel distributions yield better accuracy for AGB estimation than clustered spatial patterns. The corrected NDVI (NDVIc) was the best predictor of AGB estimation.

Conclusions

A spatial scale of 60–90 m is recommended for forest AGB estimation at the Sierra Nevada mountains using Landsat images and those with similar spectral resolutions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号