首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
果实表面颜色计算机视觉分级技术研究   总被引:27,自引:8,他引:27  
以计算机视觉自动检测果实表面着色度并进行分级为目的,建立了室内计算机视觉系统获取苹果果实的彩色图像,并将RGB值转换成HLS值;在分析苹果颜色特性的基础上,确定了用合适色相值下累计着色面积百分比进行颜色分级的方法。分级试验结果表明,用建立的准则和方法,计算机视觉分级与人工分级的一致度在88%以上。  相似文献   

2.
基于机器视觉的苹果最大横切面直径分级方法   总被引:3,自引:5,他引:3  
针对中国苹果产后分选率和分选精度均较低而影响其商品价值等现状,在GB/T10651-2008《鲜苹果》颁布的背景下,设计了一套基于机器视觉技术的苹果分选系统。针对红富士苹果,采用了一种利用RGB颜色模型R-B通道进行阈值分割和均值滤波后,通过行扫描提取出轮廓的方法。提出了2种对苹果进行大小分级的理论模型:一种以苹果轮廓线上两点之间的最大距离作为分级标准;另一种以苹果最大横切面直径作为分级标准,其中苹果最大横切面直径通过曲线拟合得出。利用VC6.0软件编程实现了上述2种分级模型的算法。通过40个苹果6次在线分级试验表明,模型一分级正确率为93.3%,模型二分级正确率为87.1%,双通道分级效率最高可达12个/s,达到了苹果在线分选商品化应用的基本要求,为近球形果蔬参照行业分级标准进行大小自动化分选提供参考。  相似文献   

3.
基于机器视觉图像特征参数的马铃薯质量和形状分级方法   总被引:3,自引:6,他引:3  
马铃薯自动分级过程中,存在既要保证分级精度又对分级速度有一定要求的难点问题。该文探讨了利用机器视觉技术快速获取马铃薯图像特征参数,结合多元线性回归方法,建立马铃薯质量和形状分级预测模型,实现基于无损检测的马铃薯自动分级。搭建了同时获取马铃薯三面投影图像的机器视觉系统,通过图像数据处理获得马铃薯俯视图像轮廓面积、两侧面图像轮廓面积、俯视及侧面图像外接矩形长度及宽度数据等图像特征参数,通过多元数据回归分析,建立了马铃薯质量和形状分级预测模型。选择100个试验样本运用该方法进行质量和形状分级模型构建和预测,采用电子称获取样本实际质量,采用目测法对马铃薯进行形状分选。对比试验结果表明,质量分级相关度系数R为0.991,形状分级分辨率为86.7%。表明该方法对马铃薯质量和形状分级进行预测具有可行性,可运用于马铃薯自动分选系统中。  相似文献   

4.
基于图像处理和蚁群优化的形状特征选择与杂草识别   总被引:1,自引:7,他引:1  
利用叶片形状特征区分杂草和作物是杂草识别的一个重要方法。为了提高杂草识别的精度和效率,通过形态学运算和基于距离变换的阈值分割方法分离交叠叶片,从单个叶片中提取包括几何特征和矩特征的17个形状特征,用蚁群优化(ACO)算法和支持向量机(SVM)分类器进行特征选择和分类识别,选取有利于分类的较优特征并实现特征的优化组合。棉田杂草试验结果表明,该方法能实现分类特征的有效缩减,经优化组合得到的最优特征子集用于杂草识别的准确率达95%以上,识别率高,稳定性好,对识别杂草时如何兼顾准确率和实时性具有参考意义。  相似文献   

5.
作为水产养殖集成信息化管理的主要信息源,水产动物视觉属性信息的测量不仅是判定水产动物生长状况,调控水质环境的主要信息依据,也是对水产动物进行喂养、用药、捕获、选别和分级等操作的前提基础。近年来,计算机视觉技术作为一项快速、客观、无损的检测方法,已被逐渐用于水产动物视觉属性的测量中,许多研究学者开展了大量的研究工作。该文更新和总结了国内外近20多年来有代表性的相关研究和解决方案,在描述计算机视觉检测系统的概念和组成结构的基础上,围绕尺寸测量、形状分析、颜色识别和质量估计等方面详细分析了计算机视觉技术在水产动物(以鱼类为主)视觉属性测量方面的国内外研究现状,着重阐述总结了研究人员在水产动物视觉检测的图像采集、轮廓提取、特征标定与计算等方面的具体改进措施,并对基于计算机视觉测量的水产动物疾病诊断,识别分类等综合应用现状也进行了分析探讨,以评估计算机视觉技术在水产动物视觉质量检测领域的总体应用情况和现存的主要问题,同时给出了今后的研究趋势与发展方向。  相似文献   

6.
为了准确、自动地提取蝗虫信息进行蝗灾测报,提出了一种基于机器视觉的草地蝗虫识别方法,用于超低空蝗灾预警系统所自动采集的视频中草地蝗虫头数信息的提取。该方法先根据跃起草地蝗虫的背景构成,把原始图像分为天空子图像和草地子图像;然后,采用帧间差分法检测两子图像中的运动区域;最后,运用蝗虫的形态特征因子对检测的运动区域进行再分类,识别跃起蝗虫。把自动识别的跃起蝗虫头数,带入建立的跃起蝗虫头数与和地面蝗虫头数之间的数学模型中,从而得到地面蝗虫的数量,进行地面上草地蝗虫的间接计数。试验结果表明:跃起草地蝗虫的识别率为80%~100%,由建立跃起蝗虫和地面蝗虫的之间模型计算的地面草地蝗虫的精度大于80%。因此,基于机器视觉的草地蝗虫识别方法能满足蝗虫精准测报的要求。  相似文献   

7.
鸡蛋的尺寸形状是鸡蛋包装和销售以及种蛋挑选中需要考察的重要指标。目前鸡蛋的商品化处理需要高通量在线检测,然而检测速度和效率在高通量检测中要求较高。为了能够实现鸡蛋尺寸形状的高通量在线检测分级,该文在30000枚/h的传送装置上动态采集群体鸡蛋图像,采取有效的图像处理方法消除高速传输对鸡蛋图像的影响,结合应用凸包算法,快速准确提取出群体鸡蛋图像上的特征参数(长短轴表征尺寸大小、蛋形指数表征形状扁圆程度),最后按照尺寸大小与扁圆程度进行分级,其正确率分别为90.5%和89.3%,表明该方法对鸡蛋尺寸形状的高通量在线检测分级可行。  相似文献   

8.
基于计算机视觉的牛脸轮廓提取算法及实现   总被引:1,自引:1,他引:1  
计算机视觉技术已越来越多地应用于检测牛个体行为以给出养殖管理决策,牛脸轮廓的提取及形状分析能够进一步提高牛身份鉴别,咀嚼分析及健康状况评估的自动化程度。为实现基于计算机视觉的无接触、高精度、适用性强的肉牛养殖场环境下的牛脸轮廓提取,提出用自适应级联检测器定位牛脸位置,用统计迭代模型提取牛脸轮廓的方法。该方法采集牛脸正面图像,用级联式检测器定位出牛脸的位置,并分别采用监督式梯度下降算法(supervised descent method,SDM),局部二值算法(local binary features,LBF)和主动外观模型算法(fast active appearance model,FAAM)3种算法被用于提取牛脸轮廓。对20头肉牛共拍摄800幅牛脸正面图,随机选取训练数据720幅和测试数据80幅。结果表明,主动外观模型算法准确率最高,其轮廓提取误差为0.0184像素,适于应用在轮廓提取精度要求较高的场合,而局部二值算法的运行效率最高,在分辨率为744像素(水平)×852像素(垂直)的牛脸图像中轮廓提取时间为0.35 s,更适于应用在实时性要求较高的场合。该方法可实现养殖场中肉牛的无接触精确的面部轮廓提取,具有适用性强、成本低的特点。  相似文献   

9.
基于机器视觉的鲜食玉米品质检测分类器设计与试验   总被引:1,自引:4,他引:1  
设计一种基于机器视觉的鲜食玉米品质检测分类器。利用计算机视觉技术,通过小波分析方法对不同角度拍摄的鲜食玉米图像进行纹理特征分析;在获取玉米图像纹理特征的基础上,采用最大熵函数对纹理图像的分离度进行度量,并结合重量判据设计鲜食玉米品质检测分类器,实现对不同品种、尺寸以及破损程度的鲜食玉米进行分类,有效剔除病虫害污染的玉米产品。该设备可有效减少因工人主观经验水平的参次不齐等主观因素导致产品质量检测分类不均的现象。经实验验证,该品质检测分类器能够有效完成不同重量、尺寸的鲜食玉米的产品品质检测与分类,有效分类率可达到99%以上。  相似文献   

10.
为了给采棉机器人提供运动参数,设计了一套双目视觉测距装置以定位棉株。对获取的左右棉株图像进行经背景分割等预处理。求取其在8个尺度下的高斯图,通过尺度不变特征转换SIFT(scale-invariant feature transform)算法在相邻高斯差分图中提取出SIFT关键点;计算每个高斯图中关键点邻域内4×4个种子点的梯度模值,得到128维特征向量。分割右图关键点构成的128维空间,得到二叉树;利用最优节点优先BBF(best bin first)算法在二叉树中寻找到172个与左图对应的粗匹配点。由随机采样一致性RANSAC(random sample consensus)算法求出基础矩阵F,恢复极线约束,剔除误匹配,得到分布在11朵棉花上的151对精匹配。结合通过标定和F得到的相机内外参数,最终重建出棉花点云的三维坐标。结果表明,Z轴重建结果比较接近人工测量,平均误差为0.039 3 m,能够反映棉花间的相对位置。  相似文献   

11.
基于机器视觉的水果尺寸检测误差分析   总被引:2,自引:4,他引:2       下载免费PDF全文
介绍了当前应用机器视觉进行水果尺寸检测的现状。根据水果成像时水果、摄像机透镜、水果图像三者之间的相互关系,运用几何光学理论分析了尺寸检测中的各种误差及其原因。水果成像时,由于水果表面各点的高度变化,水果图像上各点所代表的实际长度不尽一致,形成标定误差;水果与摄像机透镜光心之间的距离不可能无穷远,成像后,水果图像的边缘点到形心的距离并不能真正代表水果的半径,形成半径误差;水果中心与摄像机光心偏离后,得到的图像存在形状误差。给出了标定误差的计算公式和半径的估算公式。  相似文献   

12.
为提高油茶果采摘机器人机器视觉的识别率,该文提出了基于偏好人工免疫网络识别的油茶果多特征融合识别方法。在对油茶果图像进行处理的基础上,提取待识别目标区域的颜色特征、形态特征、纹理特征进行聚类,并提取典型油茶果多特征作为偏好抗体,使多特征参数在偏好免疫算法中进行有效融合。仿真试验结果表明,多特征融合的识别方法对油茶果果实的识别率在晴天时达到了90.15%,阴天时达到了93.90%。而时间复杂度基本不变,取得了较好的识别效果,该研究可为下一步油茶果采摘机器人智能采摘提供参考。  相似文献   

13.
基于机器视觉的果肉多类型异物识别方法   总被引:1,自引:2,他引:1  
该文基于机器视觉技术对果冻、罐头灌装前的多品种、多规格、湿态反光果肉进行多类型异物自动检测。根据果肉与异物的颜色和亮度差异大小,提出了对高饱和度彩色果肉采用基于HSI三分量独立性的彩色图像分割算法,对低饱和度彩色果肉采用以形态学边缘检测算法为核心的异物识别图像处理路线。然后采用图像分区,各区域独立计数判断有无异物的策略。对上述路线和策略,分别给出具体流程和算法,最后编程实现,并通过试验验证。试验结果表明,该方法能够有效地检测出多品种湿态块状果肉上的多类型异物,误检率小于5%,能满足实时生产检测准确性要求。  相似文献   

14.
全方位高速瓜果图像采集系统的研究   总被引:3,自引:2,他引:3  
快速可靠的图像采集系统是实现对瓜果进行准确分拣的基础。介绍了一种全方位高速瓜果图像采集系统。该系统实现了果实多个表面图像的同步采集,采用多线程程序结构提高图像采集速度,采用单场提取模式提高图像质量。利用开发的智能瓜果精选分级试验样机对图像采集系统的性能进行了试验,试验结果证明获得的图像质量和采集速度可以满足实时瓜果分级系统的需要。  相似文献   

15.
基于计算机视觉的稻谷霉变程度检测   总被引:2,自引:1,他引:2  
为了实现无损检测稻谷储藏中的霉变,该研究以引起稻谷霉变的5种常见真菌(米曲霉、黑曲霉、构巢曲霉、桔青霉和杂色曲霉)为对象,首先进行真菌培养,制成悬浮液,然后将悬浮液接种到稻谷样品中,对稻谷样品模拟储藏,确定不同霉变程度的稻谷类型,划分为对照组(无霉变)、轻微霉变组和严重霉变组。利用计算机视觉系统对三组稻谷样品进行图像采集和图像处理,提取灰度、颜色和纹理特征,共获取68个图像特征。采用支持向量机(support vector machines,SVM)和偏最小二乘法判别分析(partial least squares discriminant analysis,PLS-DA)构建模型,分别用于无霉变稻谷与霉变稻谷的区分和稻谷霉变类型区分。为了降低模型复杂度和数据冗余,利用连续投影算法(successive projections algorithm,SPA)来消除原始数据变量间的共线性,优选特征值。结果表明:利用所有参数构建的SVM模型能够很好的区分对照组与霉变组,其中建模集和验证集总体区分准确率分别为99.7%和98.4%;SVM模型对于稻谷严重霉变类型的区分效果要优于轻微霉变稻谷,其中对稻谷轻微霉变类型建模集和验证集总体区分的准确率分别为99.3%和92.0%,对稻谷严重霉变类型区分的总体准确率分别为100%和94%,且整体上SVM模型的效果要优于PLS-DA模型。而基于SPA优选特征构建的模型区分结果表明,SVM模型区分效果优于PLS-DA模型,其中,在建模集和验证集中,对无霉变和霉变稻谷总体区分准确率分别为99.8%和99.5%,对稻谷轻微霉变种类区分总体准确率分别为99.8%和90.5%,对稻谷严重霉变种类区分总体准确率分别为100%和95.0%。因此,基于计算机视觉对稻谷霉变检测是可行的,而且SPA优选特征能够较好反映稻谷霉变特征,基于优选特征和SVM模型能够较好地稻谷霉变进行识别和区分,结果较好,可以为实际应用提供技术支持和参考。  相似文献   

16.
为了满足穴盘苗自动化分选的实际需求,该文设计了基于线结构光视觉的穴盘苗外形参数测量系统,实时获取穴盘苗图像信息,实现对其叶片面积和高度的在线测量。为充分突显目标与背景色彩差异,针对穴盘苗叶片和背景基质图像特征,利用最大类间方差动态阈值对2G-R-B 色差图像进行分割;以穴孔为单位进行区域标记和特征提取,分别计算幼苗叶片图像面积,排除明亮蛭石颗粒造成的椒盐噪声和劣苗叶片区域;根据 Cb、Cr 色彩分量特征提取在健康幼苗叶片区域的红色激光条像素坐标,拟合其分布中心线;基于线结构光视觉三维定位原理,根据幼苗叶片区域激光条中心线图像坐标,实现对穴盘苗高度的测量。试验结果表明,系统对直立姿态的穴盘苗高度测量精度为5 mm,在叶片面积测量评估方面可以满足穴盘苗筛选精度要求。  相似文献   

17.
基于机器视觉的马铃薯晚疫病快速识别   总被引:1,自引:6,他引:1  
晚疫病是马铃薯的一种严重病害,可造成减产甚至绝收。因此马铃薯晚疫病的识别与控制对提高其产量有非常重要的意义。该文基于机器视觉技术对马铃薯叶部晚疫病进行检测,根据马铃薯叶片上晚疫病斑的颜色、纹理和形状特征参数的不同,提取叶片表面的特征参数,并建立数学模型对病害程度做出评价。在RGB、HSV颜色空间中,根据马铃薯叶片在患病早期叶片颜色发生变化且与健康叶片不同,利用颜色特征,建立马铃薯晚疫病的无病和患病模型,该模型对马铃薯患病早期的识别率为67.5%。利用灰度共生矩阵,采用纹理统计参数进行病害等级评价,用熵值和能量值描述晚疫病的严重程度,纹理特征对患病程度的识别率比较稳定,对患病中期与后期的识别率分别为72.5%与80%。利用形状特征的相对特征,根据病斑面积比进行晚疫病诊断,该方法对马铃薯叶片晚疫病患病后期的诊断取得较好效果,识别率为90%,但由于叶片患病早期的病斑面积小且分散,识别难度大,识别率仅为50%。针对颜色、纹理及形状特征在识别马铃薯叶片晚疫病时的优势与局限性,提出颜色纹理形状特征结合的识别方法,对患病中期与后期的识别率分别为90%和92.5%。通常马铃薯晚疫病的理化值检测法耗时数天,但利用机器视觉识别马铃薯晚疫病患病情况非常快速,根据颜色特征进行病害识别的时间约为4 s,纹理特征识别的时间为7 s,形状特征特征识别的时间为3 s,综合颜色纹理形状特征的识别由于计算量较大,识别时间为9 s。该研究可为基于机器视觉的马铃薯晚疫病的快速检测提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号