首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
为探明夏玉米适宜种植方式的光合生理机制,采用裂区试验设计研究了种植密度(9.3万,8.1万,6.9万,5.7万株/hm~2)、空间布局(等行距1穴1株,等行距1穴3株和宽窄行1穴3株)以及它们的交互作用对夏玉米郑单958开花后不同生育时期(开花期、抽丝期、灌浆前期、灌浆后期和完熟期)净光合速率及其相关性状的影响。结果表明:宽窄行1穴3株能显著降低夏玉米开花期和完熟期穗位叶净光合速率,而8.1万株/hm~2密度下的净光合速率不受空间布局的影响;等行距1穴1株空间布局下,种植密度不会显著影响穗位叶净光合速率。种植密度、空间布局以及它们交互作用对类胡萝卜素含量影响显著。等行距1穴3株空间布局下,9.3万株/hm~2种植密度显著降低前3个观测时期类胡萝卜素含量,而6.9万株/hm~2在宽窄行1穴3株以及5.7万株/hm~2在等行距1穴1株空间布局下显著降低完熟期类胡萝卜素含量。种植密度、空间布局及其交互作用均对PSⅡ最大光化学效率无显著影响。综上可知,8.1万株/hm~2种植密度不受空间布局的显著影响,而等行距1穴1株空间布局不受种植密度的显著影响,均能保证夏玉米郑单958植株的净光合作用及其相关指标维持在较高水平。结果也为从光合物质基础和光合水分生理基础方面(色素含量、荧光特性、净光合速率和蒸腾速率)解释种植方式-光合产物源-产量库之间的关系提供了理论数据。  相似文献   

2.
玉米雌穗分化与籽粒发育及败育的关系   总被引:6,自引:2,他引:6  
以郑单958 (ZD958)和登海661 (DH661)为试材,比较研究了4.5、7.5、10.5万株hm-2三个种植密度下,雌穗分化与籽粒发育及败育的关系。结果表明,密度对玉米雌穗原基开始分化的时间无影响(不同密度下,穗原基均在播后28~29 d左右开始分化),对吐丝期分化的小花总数影响很小。但是高密度推迟了雌穗的分化进程,增加了败育花和未受精花的数目,导致正常成熟小花数目的降低。与低密度相比,高密度下DH661正常小花数减少了100.0个,ZD958减少了76.4个。高密度加大了雌雄穗吐丝开花间隔,降低了吐丝植株的比例(DH661吐丝植株占93.64%;ZD958的占81.80%),推迟了吐丝时间,使单株吐丝量减少,散粉持续时间缩短,导致败育增加。正常受精的小花在灌浆期也会发生籽粒败育,尤其是在花后10 d左右败育严重。相关分析表明,玉米最终的穗粒数与开花期以及花后10 d、20 d的冠层底部透光率相关性显著,花败育率与开花前冠层底部透光率显著负相关。  相似文献   

3.
种植密度和行距配置对超高产夏玉米群体光合特性的影响   总被引:69,自引:1,他引:69  
在67 500株 hm-2、90 000株hm-2和112 500株hm-2等3个种植密度条件下,研究了密度和行距配置对超高产夏玉米品种登海701产量和群体光合特性的影响。结果表明,随密度增加,籽粒产量、叶面积指数(LAI)、光合有效辐射(PAR)上层截获率、群体光合(CAP)和群体呼吸(CR)、干物质积累量均提高;而叶绿素含量、穗位叶层和下层PAR截获率则降低。在67 500株 hm-2下,宽窄行与等行距处理相比无显著优势。但在90 000株 hm-2和112 500株 hm-2密度下,80 cm+40 cm行距处理的产量、叶面积指数(LAI)、叶绿素含量、穗位叶层的PAR截获率、花后群体光合速率(CAP)平均值均显著高于其他行距处理(等行距、70 cm+50 cm和90 cm+30 cm);而群体呼吸速率与光合速率的比值(CR/TCAP)则显著低于其他行距处理。说明在较高密度条件下,80 cm+40 cm的宽窄行配置有助于扩大光合面积、增加穗位叶层的光合有效辐射、提高群体光合速率、减少群体呼吸消耗,从而提高籽粒产量。  相似文献   

4.
采用裂区试验设计,研究不同种植密度对不同玉米品种产量及农艺性状的影响。结果表明,不同密度间产量差异极显著(P0.01)、不同品种间产量差异达极显著水平(P0.01),茎粗、穗长、穗粗、单穗重、穗行数、行粒数随密度的增加而有所减少,株高基本保持恒定,穗位高有所抬高,叶片数、出籽率变化不大,穗粒数、千粒重随密度增加小幅度减少。参试品种均在密度82500株/hm~2时产量最高,且与密度67500株/hm~2产量差异显著,建议大田种植时密度控制在75000~82500株/hm~2较为适宜。因此,选择适宜的品种并提高种植密度能增加玉米产量。  相似文献   

5.
施氮对夏玉米不同部位籽粒灌浆的影响   总被引:12,自引:0,他引:12  
籽粒败育是影响玉米产量的一个限制因素,高密[1]、弱光[2]、氮缺乏[3]等等都使败育粒数大量增加.败育与籽粒所处的位势有关,常发生于穗的顶部.顶部小花分化发育晚,花丝抽出迟,授粉受精晚,中下部小花的早受精子房对顶部小花有库位抑制作用,是顶部受精小花败育的一个原因[4,5].本试验在不同的种植密度、施氮水平下,采用人工同步授粉的方法,排除授粉受精早晚对顶部、中下部小花发育的影响,旨在探讨氮肥对不同部位籽粒灌浆和形成的影响机制,以便为生产中进行合理调控提供理论依据.  相似文献   

6.
不同宽窄行及播种密度对玉米弘大8号产量的影响   总被引:6,自引:2,他引:4  
通过对紧凑型玉米弘大8号进行6种不同宽窄行和5种密度的组合试验。探讨紧凑型玉米的最佳宽窄行行距和密度。结果表明: 在不同的宽窄行行距下弘大8号的最佳种植密度不同,最佳种植密度分布79500-91500株/hm2之间;同一密度不同的宽窄行处理,弘大8号的产量不同,宽行80 cm窄行40cm的产量最高。在种植密度较大的条件下,实行宽窄行种植可增产。弘大8号的最佳宽窄行行距和密度组合是:宽行80 cm窄行40cm,密度79500株/hm2,产量为9950 kg/hm2。  相似文献   

7.
不同行距配置方式对夏玉米冠层结构和群体抗性的影响   总被引:11,自引:0,他引:11  
为探究行距配置方式对冠层微气象因子及群体抗逆性的影响,明确夏玉米适宜的行距配置方式,在方城和辉县设置大田试验,以3个不同株高类型的玉米杂交种为材料(中秆品种郑单958、高秆品种先玉335和矮秆品种512-4),设置2个种植密度(60 000株 hm-2和75 000株 hm-2),研究了5种行距配置方式(50 cm、60 cm、70 cm、80 cm等行距和80 cm+40 cm宽窄行)下冠层结构和群体抗逆性的变化。结果表明,不同株高类型杂交种在相同密度下,随行距扩大,株型变得松散,穗部叶片叶向值减小,并偏离种植行,向种植行垂直方向发展,冠层温湿度降低,群体抗逆性增强,但冠层光照截获率降低,产量也随之减少。对比发现,不同品种和密度下,60 cm等行距能够较好地协调冠层微气象因子与玉米产量的关系,叶片分布适宜,冠层温湿度和光能分布合理,显著提高了中下部的光能截获率,病虫害和倒伏的发生率较低,获得最高产量的频率最高,且适宜机械化田间作业,建议作为适宜黄淮海地区推广的种植方式。  相似文献   

8.
为了改善华北冬小麦-夏玉米一年两熟地区机播夏玉米出苗质量,提高周年产量。通过在冬小麦季设置"三窄一宽"(14+14+14+20 cm)和"四窄一宽"(10+10+10+10+22 cm)2种行距配置,夏玉米播在前茬小麦的宽行,研究了行距配置对冬小麦和夏玉米群体质量、生物量和产量的影响。结果表明,与传统冬小麦等行距种植(15.6 cm)相比,行距配置对冬小麦群体质量和产量影响不显著;宽行机播夏玉米的出苗率明显提高,六叶展幼苗的株高、单株叶面积、单株鲜质量和干质量均表现较好,整齐度明显提高;2种行距配置处理夏玉米的穗粒数较对照分别提高了6.4%,6.7%,产量增加10.2%,13.0%,周年产量分别增加5.76%,5.29%。因此,适当改变行距不会导致冬小麦产量降低,反而有利于机播夏玉米出苗质量的提高,提高夏玉米及周年产量。  相似文献   

9.
密度与行距对玉米‘协玉3号’穗部性状及产量的影响   总被引:2,自引:1,他引:1  
为研究种植密度与行距对玉米产量、穗部性状以及通过穗部性状对产量的影响,寻求最佳种植行距与密度,为实现玉米超高产栽培创建提供技术依据。以玉米品种‘协玉3号’为材料,设置3个行距[50 cm等行距、60 cm等行距与40 cm+60 cm宽窄行]、3个种植密度[60000、67500、75000株/hm2],随机区组设计,3次重复,共27个小区,每小区行长6 m,行宽3 m,面积18 m2。50 cm等行距与宽窄行为6行区,60 cm等行距为5行区。结果表明,行距对‘协玉3号’的产量影响达到了极显著水平,而且不同行距配置中穗重、穗行数、穗粗以及穗粒重差异显著,不同密度间穗重、穗行数、百粒重与穗粒重差异显著,多个作用大小不一的穗部性状间的交互作用共同影响决定玉米产量。‘协玉3号’在密度为75000株/hm2和60 cm等行距模式下产量最高,可达16646.70 kg/hm2。因此,在山西中部水浇地条件下采用紧凑型玉米品种‘协玉3号’,适当扩大种植行距、缩小株距、增加种植密度是提高玉米产量的重要途径。  相似文献   

10.
氮密互作对夏玉米物质生产及氮素利用的影响   总被引:3,自引:0,他引:3  
以夏玉米杂交种郑单958为材料,对不同种植密度和不同施氮水平下夏玉米的物质生产和氮素利用状况进行了研究。结果表明,在中(67 500株/hm2)、高(82 500株/hm2)密度下,氮肥对玉米单株物质生产能力的调控作用更为明显,并主要是通过影响穗粒数来实现的。适量施氮,可促进顶部子粒发育,减少败育,使秃尖缩短、瘪粒数减少,增加穗粒数,增加产量;促进植物体吸收的氮素高效地向籽粒中分配,提高氮肥的利用效率;使玉米叶片维持较高的光合性能,为籽粒形成提供充足的光合碳量,并促进营养体碳氮向子粒运转。  相似文献   

11.
2017年和2018年在内蒙古通辽市科尔沁区农业高新科技示范园区,以农华101为供试材料,采用条带耕作错位种植(苗带耕作, 15 cm+45 cm小双行错位播种, TGCW)和等行常规种植(旋耕, 60 cm等行距, CK)两种模式, 6.75万株hm~(–2)、8.25万株hm~(–2)、9.75万株hm~(–2) 3个种植密度,研究条带耕作错位种植模式对西辽河平原灌区春玉米冠根协调特征及产量形成的调控效应。结果表明,相比于等行距常规种植,条带耕作错位种植的产量显著提高,其中8.25万株hm~(–2)增幅最明显, 2017年和2018年分别提高13.1%和13.8%,该模式吐丝后干物质积累量及积累率具有明显优势,较强的物质积累明显延缓了生育后期叶片衰老,同时穗位上和穗位层透光率显著提高,生育后期叶面积指数、净光合速率和群体光合势均显著高于CK。该模式生育后期各土层植株根干重显著高于CK,高密度下更为明显,且20~60 cm根系占比高,吐丝期单位根重获得的籽粒产量和成熟期根冠比均具有明显优势。该模式的这些优点是促成西辽河平原灌区春玉米增产的主要原因之一。  相似文献   

12.
不同种植模式对高粱晋糯3号产量和养分吸收的影响   总被引:1,自引:0,他引:1  
为了明确高粱新品种晋糯3号的最佳种植模式,研究了不同行距及密度对晋糯3号产量和养分吸收的影响。试验共设3个行距:30、50和60cm,每个行距处理设4个密度:4.5万、7.5万、10.5万和13.5万株/hm 2。结果表明,行距50cm时,晋糯3号单株叶面积、叶面积指数(LAI)、单穗粒数及产量最高,其次为行距60cm,行距30cm处理最低;相同行距时,密度为13.5万株/hm 2时产量较高,但与密度10.5万株/hm 2的产量没有显著差异。密度为4.5万株/hm 2时晋糯3号单穗粒数是密度为10.5万和13.5万株/hm 2时的1.8~2.0倍,产量为同一行距最高产量的72%~88%,这表明晋糯3号具有较强的群体调节能力。行距50cm结合密度4.5万株/hm 2促进了开花后植物对氮的吸收,开花后植株较强的氮素吸收能力是低密度产量提高的主要因素之一。行距50和60cm密度为10.5万和13.5万株/hm 2时产量较高且没有显著差异,但行距50cm有利于氮磷钾养分的吸收,为此晋糯3号的最佳种植模式为行距50cm结合密度10.5万~13.5万株/hm 2。  相似文献   

13.
为了探索通过改变种植方式减少玉米增密后对玉米植株产生的不利影响。以‘郑单958'为实验材料,本试验设置了等行距种植,宽窄行种植和双行交错稀植种植3种种植方式,设置3个处理:8.33万株/hm2,12.1万株/hm2和15.1万株/hm2,研究高产夏玉米合理的种植模式。本试验通过增加玉米种植密度,提高了根系干物质积累,增加了棒三叶总面积,提高玉米冠层顶部的日光截获率,将绝大部分的光截获并促使净光合速率(Pn)提前达到最大,在中午强光时进行午休,保护强光下的叶片光合系统免受破坏,进而显著地提高了玉米产量。双行交错种植(SHJC)比单行种植(DH)增产3402 kg/hm2,增产39.83%;比宽窄行种植(KZH)增产2774.7 kg/hm2,增产30.26%。双行交错种植在保证玉米群体数量的前提下,减少了单株的竞争,保障了个体发育潜力的发挥。双行交错种植方式显著改善了玉米群体的冠层光分布、提高了光合特性,提高了玉米产量;在本实验条件下,双行交错种植方式下15.1万株/hm2的玉米产量表现最佳。这为黄淮海地区玉米高产提供了科学合理的高产栽培模式。  相似文献   

14.
以糯玉米皖糯5号为试验材料,采用随机区组设计,在江淮地区研究密度对糯玉米产量、穗部性状和农艺性状等的影响,为江淮地区鲜食糯玉米合理密植提供理论依据。结果表明玉米产量随着密度增加呈先增后降变化趋势。2014年度以60 000株/hm 2时产量最高,但60 000和75 000株/hm 2处理玉米产量无显著差异;2015年度以75 000株/hm 2处理玉米产量最高,且显著高于30 000和120 000株/hm 2处理的玉米产量。产量–密度关系符合等比型产量–密度关系的基本特征,2014年玉米产量y(kg/hm 2)与密度x(株/hm 2)方程为y=0.40591xe (-0.0000135x),最高产量密度范围为54 185~98 290株/hm 2;2015年玉米产量y(kg/hm 2)与密度x(株/hm 2)方程为y=0.43136xe (-0.0000137x),最高产量密度范围为52 494~98 238株/hm 2。随着种植密度增加,总体上玉米的穗位高、秃尖长、空秆率增加;穗粗、穗长、穗行数、鲜百粒重下降。江淮地区糯玉米的种植密度以52 494~54 185株/hm 2为宜。  相似文献   

15.
The effects of three okra planting densities (28 000; 56 000 and 111 000 plants ha1) intercropped within or between maize rows were investigated in two field trials during the 1990 and 1991 wet seasons at Nsukka. The plant height and the leaf area index (LAI) increased as the planting density increased in sole or intercropped okra while the number of branches per plant decreased with increasing okra planting density. The height of maize plants also increased as okra planting density increased but the LAI decreased. Intercropping reduced the yield and yield components (number and weight of pods per plant) of okra and maize (number of cobs, cob length and 100-grain weight). Increasing okra planting density reduced the sole and the intercropped okra and also the maize intercrop yield by reducing the number of pods and grains as well as the pod and grain size, respectively. Assessment of the productivity ofthe mixtures showed that the highest yield advantage (35%) of growing okra and maize together was obtained at 28000 okra plants ha1 while the highest monetary return was realized at the highest okra planting density of 111000 plants ha1 intercropped between maize rows. The patterns of row arrangement did not have effect on the growth, yield and yield components of the mixtures.  相似文献   

16.
为研究种植密度对不同夏玉米品种农艺性状、产量与耐密性的影响,在高密度(75000、90000株/hm2)条件下,对14个不同基因型夏玉米的农艺性状、产量构成因子以及耐密性系数等进行研究。结果表明,增密对14个不同基因型夏玉米品种生育期没有影响,株高、穗位高、茎粗、节间长度、茎粗系数、地上部干物质等农艺性状的差异达显著或极显著水平,穗位高系数、经济系数差异不显著,其中,株高平均增高1.23 cm,穗位高平均增高1.92 cm,第3节节间长度减小0.42 cm,‘NK718’、‘农大372’的地上部干物质质量增加,其余品种地上部干物质质量减小,减少幅度4.72%~23.99%,经济系数增加4.71%。75000 株/hm2条件下的产量、穗部性状与90000株/hm2密度条件相比,差异达极显著水平,在90000株/hm2密度条件下产量增加2.39%、穗粒数减少5.68%、百粒重降低1.17%。14个夏玉米品种相比,‘泽玉8911’、‘新单61’及‘豫单9953’耐密性系数值较大,适宜密植。  相似文献   

17.
为了探究‘丰油10号’在黄淮地区适宜的播种密度与行距配置。在河南省油菜主产区进行大田试验,比较不同种植密度及行距配置方式下,‘丰油10号’的物候期、叶片叶色值(specialty products agricultural division, SPAD)及开花期叶面积指数(leaf area index, LAI)、经济性状、产量和品质情况。结果表明:‘丰油10号’的生育期随着密度和行距的增大,逐渐缩短;叶片的SPAD值在蕾薹期和开花期随密度增大逐渐降低,随行距缩小而减小;植株LAI在开花期随着密度的增大先增后减,同一密度下,40 cm行距下较高;株高、一次有效分枝数、主花序的长度和角果数随密度的增加逐渐较小,分枝部位则升高,随行距的减小单株有效角果数下降,千粒重不受密度和行距配置的影响;籽粒产量和含油量随着种植密度的增加先增后减,籽粒产量在种植密度为42万株/hm2,40 cm行距下最高,为2734.6 kg/hm2,当行距缩小到20 cm,籽粒平均减产4.65%;籽粒芥酸和硫苷含量不随密度和行距改变发生变化。在其它栽培措施保持不变的情况下,建议‘丰油10号’在黄淮流域的种植密度控制在34.5万~49.5万株/hm2,行距设置为40 cm。  相似文献   

18.
种植密度对不同株型玉米冠层光能截获和产量的影响   总被引:13,自引:0,他引:13  
为了明确密植栽培中不同株型玉米的冠层光能截获、物质生产与产量的关系,以不同株型玉米陕单609 (紧凑型)、秦龙14 (中间型)和陕单8806 (平展型)为试验材料,设置4个种植密度(4.5×104、6.0×104、7.5×104和9.0×104株hm–2),于2016—2017年开展大田试验,研究密度对形态特性、冠层光分布、灌浆参数以及干物质积累等的影响。结果表明,陕单609、秦龙14和陕单8806两年平均产量依次为12,176、9624和8533 kg hm–2,分别在9.0×104、7.5×104和6.0×104株hm–2达到高产,产量较低密度分别提高了26.9%、20.4%和19.7%;随着种植密度的增加,叶面积降低,LAI和叶向值增加,在高密度下陕单609中间层由于较大的叶片和叶向值能截获更多的光能,秦龙14次之;灌浆速率达到最大时的天数(Dmax)、粒重(Wmax)、籽粒最大灌浆速率(Gmax)、平均灌浆速率(Gave)、籽粒活跃灌浆期(P)均随密度的增加而降低,高密度下陕单609的Dmax分别较秦龙14和陕单8806早1.4 d和3.0 d, Wmax和P分别高于秦龙14 (0.3g和3.3 d)和陕单8806 (1.1 g和5.4 d);吐丝后干物质积累量、干物质转运量及其对籽粒的贡献率随密度的增加呈先升高后降低的趋势。在高密度下,陕单609花后干物质积累量、花后干物质转运量和干物质转移对籽粒的贡献高于秦龙14 (5.1%、36.0%、33.5%)和陕单8806 (26.6%、46.7%、59.1%)。穗位层光能截获与产量(r=0.631)显著正相关(P0.05),与花后干物质积累量(r=0.661)和平均灌浆速率(r=0.859)极显著相关(P0.01)。可见,与秦龙14和陕单8806相比,紧凑型品种陕单609密植下调控穗上部叶片直立,改善冠层中下部光分布,维持较高的光合绿叶面积,延缓冠层叶片衰老,增加花后营养器官光合产物的积累以及籽粒灌浆速率,实现了增产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号