共查询到18条相似文献,搜索用时 62 毫秒
1.
青藏高原与黄土高原存在一个重叠区,同时具有两个高原的特点,重叠区草地相对其他地区更加特别,也更加脆弱。文献中对重叠区草地植被覆盖变化及其影响因素的研究较少。本研究利用归一化的植被指数(NDVI)为指标研究了重叠区植被覆盖二十年的变化及其与坡度、海拔和气候的关系。结果发现,重叠区草地2010—2019年的NDVI较2000—2009年增加了4.45%,而NDVI的变化随着坡度的增加而先增加后减少,随着海拔的增加而减少。同时发现,重叠区草地NDVI与气温和降水没有显著的关系。说明坡度和海拔等能影响人类活动的因素是草地NDVI变化的主要因素,而气候因素包括降水和气温均不是影响重叠区草地NDVI变化的主要因素。 相似文献
2.
草地是伊犁河谷生态系统的主要组成,为探明其植被覆盖的变化特征,选用2000-2016年MODIS NDVI时间序列数据,应用Mann-Kendall检验、Theil-Sen Median趋势分析及R/S分析,对伊犁河谷近17年草地NDVI变化趋势进行分析。结果表明:2000-2016年伊犁河谷草地NDVI总体呈显著下降趋势,空间上88.07%草地NDVI出现下降,其中49.62%达到显著水平;各草地类型中,山地草甸NDVI平均值最高,面积最广,NDVI平均降低速率最高,其95.76%面积的NDVI出现下降,且73.10%达到显著水平;伊犁河谷97.77%草地NDVI变化趋势呈现正持续性,未来一定时期内绝大部分草地的NDVI仍将继续下降;与气温相比,伊犁河谷降水的年际变化与草地NDVI年变化的相关性更高。 相似文献
3.
基于地理探测器的内蒙古植被NDVI时空变化与驱动力分析 总被引:2,自引:0,他引:2
研究植被归一化植被指数(Normalized Difference Vegetation Index,NDVI)时空变化及驱动力有助于区域生态环境保护和自然资源管理。本研究基于2000—2015年SPOT NDVI遥感数据和同时期18种自然因子与社会经济因子,分析了内蒙古植被NDVI时空变化特征,并利用地理探测器探讨其空间分异特征与驱动力。研究表明:空间尺度上,内蒙古NDVI分布呈现东北高西南低,变化格局为东部增加,中西部减少;时间尺度上,年际NDVI呈缓慢增加趋势(0.32%·a-1),并呈现高植被覆盖度(8.6%)和低植被覆盖度(2.8%)均增加的“两极化”特征。年降水量的解释力最高(0.75),与土壤类型、植被类型和年均温共同主导植被NDVI时空格局;因子交互作用为增强关系,自然因子与社会经济因子交互影响力显著增强;研究时段气候因子解释力减弱,农林牧业因子略有增强。本研究探讨了不同土地利用类型的因子解释力差异及各因子促进植被生长的最适宜范围,有助于植被生长的驱动力机制研究。 相似文献
4.
环境变化引起的植被变化对生态系统过程产生了重大影响。然而,目前对植被生长及其对多影响因素响应的研究仍不够深入。本文采用Theil-Sen中位数趋势分析、Mann-Kendall检验、变异系数、岭回归分析和结构方程模型等方法,探究了青藏高原草地归一化差值植被指数(Normalized difference vegetation index,NDVI)时空变化特征及其对驱动因子的响应。结果表明:青藏高原2001—2020年草地NDVI从东南向西北呈下降趋势,年际变化呈上升趋势,坡度较小区域的草地分布较集中,阴坡草地生长情况较好。另外,区域内草地受水分利用效率(Water use efficiency,WUE)升高和温度升高而生长情况变好,且草地WUE是影响草地NDVI变化的主导因子。本研究提高了我们对多变量如何共同影响草地生长的认知,也强调了WUE对草地生长的重要性。 相似文献
5.
摘要:本研究在像元二分法模型的基础上,利用改进归一化植被指数的植被覆盖度定量模型,采用MODIS卫星8天合成地表反射率数据产品(MOD09A1),结合3S技术(GIS、RS、GPS)空间分析功能,以甘南州高寒草地为对象,分5个等级分别计算得到了甘南2000、2004和2008年的草地植被覆盖度,分析了甘南2000-2008年植被覆盖度变化的大致演变过程和趋势。结果表明,从2000-2008年,甘南植被覆盖度质量总体呈下降趋势,一级盖度植被退化比较严重,草地植被的演变情况主要由优等植被覆盖(一、二级)向低等植被覆盖(四、五级)演变。研究结果揭示了甘南州草地退化状况的动态趋势及严重程度,为相关政府和研究部门的草地管理决策提供了有效参考依据。 相似文献
6.
2000-2014年浑善达克沙地植被覆盖变化研究 总被引:6,自引:0,他引:6
基于2000-2014年间植被生长季(4-10月)的MODIS NDVI数据反演浑善达克沙地地区植被覆盖变化,结合2000-2013年该地区周边11个气象站点的气温和降水数据,分别从年际变化和月变化角度分析该地区植被覆盖变化对气候变化的响应。研究表明,浑善达克沙地植被NDVI,不论是植被生长季平均值,还是其各月份值都呈上升趋势。研究区植被覆盖度的显著增加是气候和人为因素综合作用的结果, 一定程度上反映了生态恢复重建措施的有效性,但其植被NDVI年际变化趋势与降水量的关系更密切,其相关系数达到0.75,是驱动植被覆盖年际波动的最直接因素。在空间分布上,研究区的南部、中部和北部边缘区域的植被覆盖增加趋势较明显,而中部和西部部分区域未发生明显的趋势性变化。从月变化来看,4月草地植被变化受气温变化影响较明显;5-8月与前一月降水变化关系密切,说明植被生长对降水变化具有一定的滞后性。从沙地类型植被覆盖年际变化趋势看,所有类型都呈增加态势,增加态势最大的类型是移动沙地,最小的是固定沙地。 相似文献
7.
基于NDVI的植被覆盖度的变化分析——以甘肃省张掖市甘州区为例 总被引:9,自引:2,他引:9
为了分析张掖市甘州区自1987-2006年19年间的植被覆盖的变化,以归一化植被指数(NDVI)和植被覆盖度遥感定量模型为基础,以1987年、2006年2期的TM影像和张掖市1∶10万地形图为数据基础,提取两期的植被覆盖等级图,定量的分析该地区植被覆盖度的变化情况。结果表明:近19年来,该区的植被盖度总体略呈下降趋势,荒漠化草地等植被覆盖状况较差的地区植被退化较为严重,绿洲地区的植被覆盖较为稳定,部分地区植被盖度呈上升趋势。 相似文献
8.
耕地是最基本的自然资源,是维护人类生存的根基。文中采用重庆市土地利用变更调查数据(1997—2007),运用单一土地利用类型相对变化率和土地利用单一动态度的方法,对重庆市近年来耕地变化趋势及特征进行剖析,在此基础上,应用主成分分析方法对耕地变化的驱动力进行识别。结果表明,近年来重庆市耕地数量均呈递减趋势,人地矛盾突出;区域差异显著;经济增长和人口压力、城镇化水平及政策因素是耕地变化最主要的驱动因子。 相似文献
9.
利用青海省2个重要生态区域“三江源地区”和“环青海湖地区”1987-2004年具有代表性的草地生态观测数据和1961-2004年气象资料,并结合卫星遥感及社会调查数据,分析了2个区域草地生态环境的变化态势。主要表现为草地“黑土滩”面积不断扩大,牧草地上生物量、高度与覆盖度下降及毒杂草大量滋生,还体现在草地优势种群演化、草群结构变化、草地生产力下降等生态功能的变化上,使得草地可利用面积减少。通过研究表明,在自然因素和人为因素共同驱动力的作用下天然草地生态环境出现了不良态势,最终导致天然草地退化和载畜能力下降。并揭示了草地生态不良变化的原因、机理及生态过程,气候暖干化,加之20世纪90年代以来极端天气、气候事件的增多,是促使草地生境恶化的重要自然因素;在人为因素中,由于草畜季节不平衡、草地不均匀的放牧压力、人口增长以及生物因素等,进一步加剧天然草地生态功能的退化。 相似文献
10.
在气候变化和人类活动的综合影响下,青海省生态环境发生了明显变化。在此背景下,以GIMMS NDVI 3g.v1为数据源,采用Sen+Mann-Kendal方法研究青海省1982-2015年植被覆盖区域NDVI时空变化,将趋势分析和R/S(rescaled range analysis)分析叠加,研究植被生长季NDVI变化的持续性特征,并揭示植被对气候变化及人类活动的响应规律。结果表明:1)近34年青海省植被NDVI整体呈从西北到东南的增加趋势;且变异系数显示,波动性较大地区集中在柴达木盆地周边和青南牧区西北部等植被NDVI较低的区域,波动性较小地区集中在祁连山东部、东部农业区和青南牧区东南部等植被NDVI较高的区域。2)近34年青海省植被NDVI整体呈增加趋势,增长率为0.38%·10a~(-1);且NDVI变化具有明显的阶段性,存在1994年和2000年两个突变点。3)近34年青海省植被改善区域(75.4%)远大于退化区域(24.6%),其中显著改善面积占植被覆盖区域面积的40.9%,退化区随时间变化在空间上表现出明显的转移现象。4)Hurst指数表明,青海省植被变化反持续性较强,趋势分析与Hurst指数叠加得出,由退化转为改善的区域占植被覆盖区面积的13.7%,由改善转为退化的区域占植被覆盖区面积的44.3%,另41.5%的区域无法确定未来变化趋势。5)青海省植被生长季NDVI受气候变化和人类活动的双重影响,且不同植被类型对气候变化的响应存在较大差异。 相似文献
11.
青藏高原草地生物量遥感动态监测 总被引:3,自引:1,他引:3
利用青海省2006年8月地面样点实测的生物量,结合相应月份的MODIS植被指数数据,提取与样点对应的EVI和NDVI值,建立生物量与两种植被指数之间的关系模型,并分析模型的精度。结果表明,1)EVI与草地地上生物量的相关性强于NDVI。2)在不同盖度下,植被指数与生物量的相关性随着盖度的增大而增强。3)利用最优模型反演不同草地类型的逐月生物量,并分析研究区2002-2008年不同草地类型生物量的年季动态变化,发现草地生产力水平越高,草地生物量的年季变化越剧烈,说明该种类型的草地受气候变化的影响越大;生产力水平越低的草地类型,则对气候变化的敏感度较低。 相似文献
12.
青藏高原草地退化原因述评 总被引:23,自引:11,他引:23
导致青藏高原草地退化的因子很多,主要有气候、野生动物和人类活动等。在气候因素中以气温和降水的影响为主,短期内气候的变化不会成为草地退化的主导因素,从长期来看,气候变化与草地退化之间的相互作用可引起草地生态系统的退化;野生动物因素中主要以植食性小哺乳动物的影响为主,其危害程度取决于其种群数量的高低,同时大型野生草食动物对草地退化的影响也不容忽视;人类活动因素中主要以家畜过度放牧为主,在一定程度上,家畜放牧强度的高低直接决定草地的退化程度;草地退化是多种因素综合作用的结果。不同地区导致草地退化的主要因素不尽相同,导致青藏高原草地退化最主要的因子是过度放牧和植食性小哺乳动物种群爆发。针对退化的原因,提出了青藏高原退化草地恢复与管理过程中应注意的事项。 相似文献
13.
基于NDVI的藏北地区草地退化时空分布特征分析 总被引:1,自引:0,他引:1
本文以藏北地区为研究区域,基于归一化植被指数(NDVI)反演草地植被盖度,以植被盖度作为判断草地退化的标准,综合计算藏北地区2000-2010年逐年草地退化指数(grassland degradation index),定量揭示藏北地区草地退化的时空分布规律.结果表明,截至2010年,藏北地区草地退化现状仍然较为严重,退化草地的面积占全区面积的58.2%.其中,重度退化和极重度退化草地面积的比例分别为19.0%和6.5%,区域草地退化指数为1.97,接近中等退化水平.分区结果显示,藏北地区中部,东部,北部草地退化情况较为严重,均处于中等退化等级,西部地区的退化情况最轻,处于轻度退化等级.分析2000-2010年藏北地区全区及各个分区的草地退化趋势表明,只有北部地区有减缓趋势;2000-2010年间与1981-1985年间对比结果显示,重度退化及极重度退化草地面积比例上升幅度较大.2000-2010年间藏北地区平均草地退化指数为1.84,草地退化等级在轻度退化到中度退化之间波动. 相似文献
14.
20世纪中后期以来,在全球气候变化和人类活动的影响下,青藏高原湿地生态系统变的极其敏感和脆弱。运用遥感与地理信息系统技术,以Landsat TM/ETM+/OLI遥感影像为主要数据源,解译了青藏高原东部甘南和川西北地区1991、2000、2010和2016年4个时期的沼泽湿地;利用转移矩阵和湿地动态度,分析了沼泽湿地的空间变化、转移方向和变化速率;采用景观指数,分析了沼泽湿地景观格局变化;结合气象数据和相关统计资料并利用灰色关联度法,分析了沼泽湿地变化的驱动因素。结果表明: 1)研究区沼泽湿地主要分布在东北部,1991-2016年4个时期的面积分别为6739.89、6231.39、5849.59和5649.35 km2,处于持续减少的状态,26年间面积共减少了1090.54 km2。2)26年来,研究区沼泽湿地的动态度从-7.54%减小至-3.42%,面积变化速率持续减慢,高寒草地是沼泽湿地转出和转入的主要类型。3)沼泽湿地的斑块数量先增加后减少,斑块密度持续增大,反映了沼泽湿地的破碎程度增高;最大斑块指数先降低后小幅升高,斑块形状指数先升高后小幅下降,反映了沼泽湿地的优势度降低,景观形状趋于复杂化;分离度指数先增大后小幅减小,聚集度持续降低,反映了沼泽湿地从单独紧凑的状态趋向离散化发展。4)人为因素是影响青藏高原东部沼泽湿地面积变化的首要原因,其次受到气候因素的影响,各因子影响力大小依次是牧业生产总值>国民生产总值(GDP)>人口数量>温度>蒸发量。沼泽湿地面积与各因子呈明显的负相关关系,面积随牧业生产总值、GDP、人口数量、温度和蒸发量的增加而减小。 相似文献
15.
16.
全面深入地了解青藏高原蒸散发与植被退化的关系对陆地生态系统的稳定有十分重要的意义。本文选取MODIS16A2数据分析青藏高原及其14 个子流域蒸散发的时空格局,同时选用MODIS NDVI及GIMMS NDVI3g数据采用像元二分模型计算青藏高原植被覆盖度,进而识别青藏高原植被退化梯度和植被变化区,以此探究2001—2020 年青藏高原不同退化梯度和不同植被变化区蒸散发的变化趋势。结果表明:2001—2020 年青藏高原蒸散发呈波动上升趋势,空间上呈中部低,东南高的态势,14 个子流域中羌塘高原区的蒸散发最高,黄河流域的蒸散发最低,同时大部分地区蒸散发未来将呈现下降趋势。青藏高原各植被类型中灌木的蒸散发最高,其次是森林和草地。2001—2020 年青藏高原植被退化不断减弱,各退化区蒸散发的均值排序为:未退化区>轻度退化区>极重度退化区>中度退化区>重度退化区。青藏高原植被恢复区集中在青海湖和柴达木盆地周边区域且植被恢复区面积高于植被恶化区,各植被变化区的年均蒸散发呈波动上升趋势,总体呈植被恢复区>植被不变区>植被恶化区。识别青藏高原植被退化梯度及植被蒸散发的时空特征能为当地生态安全格局构建和高寒植被退化的恢复治理提供参考。 相似文献
17.
青藏高原两种草甸地表通量季节变化特征 总被引:1,自引:1,他引:1
2003年1月-2004年7月运用涡度相关法技术研究青藏高原金露梅(Potentilla fruticosa)灌丛草甸(SWM)和藏嵩草(Kobresia humilis)沼泽化草甸(SRM)的地表通量。结果表明:二者地表湍流通量都具有明显的季节变化和日变化,其中感热通量以4月最大,1月最小,而潜热通量则以5月最大;感热通量随着季节的变动而显著变化,在相同月份中沼泽化草甸白天最大值大于灌丛草甸,日变化振幅比灌丛草甸强;白天潜热通量达到最大值的时间和波动强度因季节不同而各异,在非生长季节白天最大值在13-15h,日波动较弱,生长季节最大值在12h,日波动较强;高寒草甸地表湍流通量与温度间存在着线性关系;不同季节感热通量:沼泽化草甸>灌丛草甸,而潜热通量与感热通量各异,在1月沼泽化草甸>灌丛草甸,在4和10月,沼泽化草甸<灌丛草甸,在7月二者基本一致。 相似文献