首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Soil Use and Management》2018,34(2):167-176
Alternative management practices such as no‐tillage compared to conventional tillage are expected to recover or increase soil quality and productivity, even though all of these aspects are rarely studied together. Long‐term field experiments (LTE s) enable analysis of alternative management practices over time. This study investigated a total of 251 European LTE s in which alternative management practices such as crop rotation, catch crops, cover crops/green manure, no‐tillage, non‐inversion tillage and organic fertilization were applied. Response ratios of indicators for soil quality, climate change and productivity between alternative and reference management practices were derived from a total of 260 publications. Both positive and negative effects of alternative management practices on the different indicators were shown and, as expected, no alternative management practice could comply with all objectives simultaneously. Productivity was hampered by non‐inversion tillage, FYM amendments and incorporation of crop residues. SOC contents were increased significantly following organic fertilizers and non‐inversion tillage. GHG emissions were increased by slurry application and incorporation of crop residues. Our study showed that alternative management practices beneficial to one group of indicators (e.g. organic fertilizers for biological soil quality indicators) are not necessarily beneficial to other indicators (e.g. increase of crop yields). We conclude that LTE s are valuable for finding ways forward in protecting European soils as well as finding evidence‐based alternative management practices for the future; however, experiments should focus more on biological soil quality indicators as well as GHG emissions to enable better evaluation of trade‐offs and mutual benefits of management practices.  相似文献   

2.
Abstract

Crop management has the potential to either enhance or degrade soil quality, which in turn impacts on crop production and the environment. Few studies have investigated how crop management affects soil quality over different landscape positions. The objective of the present study was to investigate how 12 years of annual cropping system (ACS) and conservation reserve program (CRP) practices impacted soil quality indicators at summit, backslope and footslope landscape positions of a claypan soil in north-central Missouri. Claypan soils are particularly poorly drained because of a restrictive high-clay subsoil layer and are vulnerable to high water erosion. Three replicates of four management systems were established in 1991 in a randomized complete block design, with landscape position as a split-block treatment. The management systems were investigated: (1) annual cropping system 1 (ACS1) was a mulch tillage (typically ≥ 30% of soil covered with residue after tillage operations) corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation system, (2) annual cropping system 2 (ACS2) was a no-till corn–soybean rotation system, (3) annual cropping system 3 (ACS3) was a no-till corn–soybean–wheat (Triticum aestivum L.) rotation system, with a cover crop following wheat, (4) CRP was a continuous cool-season grass and legume system. In 2002, soil cores (at depths of 0–7.5, 7.5–15 and 15–30 cm) were collected by landscape position and analyzed for physical, chemical and biological soil quality properties. No interactions were observed between landscape and crop management. Relative to management effects, soil organic carbon (SOC) significantly increased with 12 years of CRP management, but not with the other management systems. At the 0–7.5-cm soil depth in the CRP system, SOC increased over this period by 33% and soil total nitrogen storage increased by 34%. Soil aggregate stability was approximately 40% higher in the no-till management systems (ACS2 and ACS3) than in the tilled system (ACS1). Soil aggregation under CRP management was more than double that of the three grain-cropping systems. Soil bulk density at the shallow sampling depth was greater in ACS3 than in ACS1 and ACS2. In contrast to studies on other soil types, these results indicate only minor changes to claypan soil quality after 12 years of no-till management. The landscape had minor effects on the soil properties. Of note, SOC was significantly lower in the 7.5–15-cm soil depth at the footslope compared with the other landscape positions. We attribute this to wetter and more humid conditions at this position and extended periods of high microbial activity and SOC mineralization. We conclude that claypan soils degraded by historical cropping practices will benefit most from the adoption of CRP or CRP-like management.  相似文献   

3.
Soils in the hot, arid topical regions are low in organic matter and fertility and are structurally poor. Consequently, these soils suffer on account of poor physical, chemical, and biological soil quality traits, leading to miserably low crop yields. Long-term use of conjunctive nutrient management and conservation tillage practices may have a profound effect on improving the quality of these soils. Therefore, the objective of this study was to identify the key soil quality indicators, indices, and the best soil- and nutrient-management practices that can improve soil quality on long-term basis for enhanced productivity under a pearl millet–based system. The studies were conducted for the Hissar Centre of All-India Coordinated Research Project at the Central Research Institute for Dryland Agriculture, Hyderabad. Conjunctive nutrient-use treatments and conservation tillage significantly influenced the majority of the soil quality parameters in both the experiments. In experiment 1, the key soil quality indicators that significantly contributed to soil quality in a rainfed pearl millet–mung bean system were available nitrogen (N, 35%), available zinc (Zn; 35%), available copper (Cu; 10%), pH (10%), available potassium (K; 5%), and dehydrogenase assay (5%). The three best conjunctive nutrient-use treatments in terms of soil quality indices (SQI) were T3, 25 kg N (compost) (1.52) > T6, 15 kg N (compost) + 10 kg N (inorganic) + biofertilizer (1.49) > T5, 15 kg N (compost) + 10 kg N (green leaf manure) (1.47). In experiment 2, under a rainfed pearl millet system, the key indicators and their percentage contributions were electrical conductivity (15%), available N (19%), exchangeable magnesium (Mg; 18%), available manganese (Mn; 13%), dehydrogenase assay (19%), microbial biomass carbon (C; 5%), and bulk density (11%). The three best tillage + nutrient treatments identified from the viewpoint of soil quality were T1, conventional tillage (CT) + two intercultures (IC) + 100% N (organic source/compost) (1.74) > T3, CT + two IC + 100% N (inorganic source) (1.74) > T4, low tillage + two IC + 100% N (organic source/compost) (1.70). The findings of the present study as well as the state-of-the-art methodology adopted could be of much interest and use to the future researchers including students, land managers, state agricultural officers, growers/farmers, and all other associated stakeholders. The prediction function developed between long-term pearl millet crop yields (y) and soil quality indices (x) in this study could be of much use in predicting the crop yields with a given change in soil quality index under similar situations.  相似文献   

4.
Manipulating soil microbial communities using soil and crop management practices is a basic strategy in developing sustainable agricultural systems. Sustainable farming is based, in part, on the efficient management of soil microorganisms to improve soil quality. However, the identification of biological indicators of soil quality that can be used to predict weed suppression in soils has received little attention. We investigated differences in soil microbial activity among various crop and soil management systems to assess: (i) the microbiological characteristics of these soils; (ii) determine whether any relationships existed that might be used in the development of weed suppression. Soil enzyme activity, water-stable aggregates, and the proportions of weed-suppressive bacteria were compared among seven cropping systems and one native-prairie ecosystem in mid-Missouri, USA. Assays of soil enzymes (fluorescein diacetate hydrolase, dehydrogenase, phosphatase) revealed that organic and integrated cropping systems, and the native-prairie ecosystem had the highest levels of soil activity. Weed rhizospheres from these same ecosystems also had greater proportions of bacterial isolates characterized as “growth suppressive” to green foxtail (Setaria viridis [L.] Beauv.) and field bindweed (Convolvulus arvensis L.): 15 and 10%, respectively. The proportion of water-stable soil aggregates was the greatest in soils with the highest organic matter and was found to be related to higher enzyme and weed-suppressive activity. Selected biological indicators of soil quality were associated with potential weed-suppressive activity in soil when that soil was managed for high organic matter content under reduced tillage systems. This research study provides further evidence that soil quality and sustainable agricultural practices may be linked to integrated weed management systems for the biological suppression of weeds.  相似文献   

5.
No‐till, crop diversity and integrated crop–livestock systems are proposed managements to increase agriculture sustainability in the rice paddies of the Southern Brazilian lowlands and avoid degradation in the region. Because soil is considered a key medium in which management modifications can be measured, our study aimed to evaluate soil‐quality impacts by measuring carbon and nitrogen stocks and microbial activity 18 months after the adoption of different paddy‐farming systems in an Albaqualf soil of Southern Brazil. The treatments consisted of five paddy‐farming systems with a range of vegetation diversity (both in time and in space) and grazing seasons. In addition, a reference area (i.e. native forest) was sampled for comparison. We verified that soil quality was affected over the short term through the adoption of no‐till, crop diversity and integrated grazing practices. However, during the study period, only the system with low anthropic and/or mechanical intervention and high plant diversity differed from the traditional paddy land‐use approach in Brazil in terms of soil‐quality effects. This system achieved a carbon management index of 49 (approximately half that of the native forest) and had the highest enzymatic activity (similar to native forest). These outcomes were primarily due to an increase in the particulate organic matter fraction of the soil carbon stock (4·6 Mg ha−1 more than in rice monocropping). To evaluate changes in soil quality over the long term, additional studies are required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of agricultural–pastoral and tillage practices on soil microbial populations and activities have not been systematically investigated. The effect of no-tillage (NT), no-tillage agricultural–pastoral integrated systems (NT-I) and conventional tillage (CT) at soil depths of 0–10, 10–20 and 20–30 cm on the microbial populations (bacteria and fungi), biomass-C, potential nitrification, urease and protease activities, total organic matter and total N contents were investigated. The crops used were soybean (in NT, NT-I and CT systems), corn (in NT and NT-I systems) and Tanner grass (Brachiaria sp.) (in NT-I system); a forest system was used as a control. Urease and protease activities, biomass-C and the content of organic matter and total N were higher (p < 0.05) in the forest soil than the other soils. Potential nitrification was significantly higher in the NT-I system in comparison with the other systems. Bacteria numbers were similar in all systems. Fungi counts were similar in the CT and forest, but both were higher than in NT. All of these variables were dependent on the organic matter content and decreased (p < 0.05) from the upper soil layer to the deeper soil layers. These results indicate that the no-tillage agricultural–pasture-integrated systems may be useful for soil conservation.  相似文献   

7.
This paper defines tillage, indicating that as it is mostly a physical concern of the soil, it has not been studied as much as chemically related soil properties. Tillage in shifting cultivation is also reviewed. Different tillage systems in a number of east African Countries namely Tanzania, Malawi, Botswana, Kenya, Zambia and Uganda are reviewed. The types of tillage in their respective soils are discussed in each Country. Uganda's tillage practices for the main food crop (banana) are discussed, pointing out the crop's rooting system in relation to the heavy, relatively fertile soils, where the bananas are mostly grown. The paper distinguishes between tillage to avoid soil compaction and tillage to reduce soil crusting or hardening and concludes that more research should be carried out on tillage practices relating to heavy soils as it affects the different types of crops, as most of the previous tillage research had been carried out on relatively light soils. Soil crusting or hardening which may involve an understanding of the physical, chemical and biological properties of the soil, should also receive more attention.  相似文献   

8.
Land use choices differentially affect soil physical and biological properties. Tillage choices in particular affect soil erosion, the retention of soil organic matter, and the biological activity that organic matter supports. The present study evaluated the consequences of different cropping and tillage systems (undisturbed forest, coffee plantation, conventional, and no‐tillage row cropping) for soil microbial indicators and sulfur mineralization after 24 years of cropping on an Oxisol (Typic Haplorthox) in an experimental area at Londrina, Brazil. Soil samples were taken at 0–5, 5–10, and 10–20 cm depths and evaluated for microbial biomass P and S, S mineralization, and phosphatase and arylsulfatase activities. Land use affected microbial biomass P and S, and enzyme activity at all depths studied. The cultivated sites had lower values of microbial activity than the undisturbed forested site. Although the coffee site was not tilled and had high organic carbon content, there was low microbial activity, probably due to higher soil acidity and Al content. The estimates of pool stock for microbial P and annual P flux through the soil microbial biomass suggest that these pools are large enough to significantly affect plant nutrient availability. The greater microbial biomass and activity under forested and no‐tillage sites may be attributed, at least partially, to higher organic matter content. The soil microbial variables examined proved to be strong indicators of soil sustainability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

10.
West African soil resources have high potentials for enhancing agricultural productivity, if well-managed and restored. In this context, the importance of tillage systems have not been fully appreciated as an integral part of good farming systems in order to tally with the peculiarities of the soil, crops and the environment. Most improved tillage systems are not widely used, although the relatively small-scale uncontrolled application of mechanical tillage has had untold adverse effects on properties and productivity of soils in the humid and subhumid regions.

In contrast, mechanical soil tillage involving deep plow-till and soil inversion has proven beneficial on compact soils of arid and semi-arid regions. The plow-based systems not only reduce soil bulk density and soil strength but also improve the efficiency of water and nutrient use.

The exposure of structurally unstable Alfisols and Ultisols predominant in the humid and sub-humid regions by mechanical tillage can cause more adverse effects than beneficial effects on soil properties and crop yields, especially on a long-term basis. On the other hand, the no-till system with crop residue mulch can maintain favorable soil properties. The conservation tillage system, however, requires more research to make it applicable to diverse soil types, crops and ecoregions.

Apart from the long-term effects of tillage on the level of soil organic matter and the attendant release of nutrients, the effects of tillage systems on the chemical properties of soil are often contradictory and are confounded by many other factors so that clear-cut cause and effect relationships are not obvious. The interactions between fertilizer application, liming, soil organic matter content and tillage systems, especially on acid soils, are such examples. More detailed studies on nutrient dynamics under different tillage systems are necessary. The interactions between the relatively new technologies of alley cropping and agroforestry which allow a more continuous use of the land should be investigated vis-à-vis tillage systems.

Long-term, well-designed, adequately equipped experiments (which are scanty in West Africa) should be encouraged to elucidate and confirm results of many short-term experiments.  相似文献   


11.
In 1998, the Organic Arable Farming Experiment Gladbacherhof (OAFEG) was started in order to explore the impact of different organic arable production systems (mixed farming, stockless farming with rotational ley, stockless cash crop farming) and of different tillage intensities (conventional plough as a full inversion tillage, two-layer plough, inversion tillage at reduced depth, non-inversion tillage) on sustainability parameters. In this article, we present results on the development of soil organic matter (SOM) levels. Starting with organic mixed farming with approximately 0.7 livestock units (LU) per ha cattle before set-up of the experiment, only the mixed farming system in the experiment was able to maintain SOM levels. The stockless system with ley maintained soil organic carbon (SOC), but lost soil total nitrogen (STN), and the stockless cash crop system had a significant SOM loss in the magnitude of 7.7 t SOM ha?1, or roughly 8.4% of the initial SOM mass. Reducing tillage intensity had no impact on SOM masses, but only on organic matter stratification in soils. We conclude that specialization of organic farms towards stockless arable crop production requires special attention on SOM reproduction to avoid detrimental effects. Further, reduced tillage intensity does not necessarily have a positive effect on SOM.  相似文献   

12.
Increased awareness of the role of soil structure in defining the physical fertility or quality of soil has led to the need for a simple assessment relevant to the environmental and economic sustainability of soil productivity. A test is required that is usable by farmer, consultant and researcher alike. Here an assessment of soil structure quality (Sq) is described which is based on a visual key linked to criteria chosen to be as objective as possible. The influences of operator, tillage and crop type on Sq value were tested. The test takes 5–15 min per location and enough replicates were obtained for statistical comparison of data sets. The assessments of individual operators were influenced to an extent by differences between fields, making the use of multiple operators desirable. Differences in soil management were revealed by the test and related to differences in soil physical properties (bulk density, penetration resistance and porosity) and crop growth. Indicative thresholds of soil management are suggested. The assessment should be viewed as complementary to conventional laboratory assessments of soil structure. Visual soil structure assessment can indicate to the soil scientist where to sample and what soil measurements are likely to be worthwhile.  相似文献   

13.
No-tillage systems are able to reduce the negative effects of agricultural intensification on soil properties. However, knowledge of long-term impacts of no-tillage systems on soil properties is insufficient. It is essential to know which soil quality indicators are the most sensitive to management practices in each particular environment. Therefore, the objective of this work is to determine which soil quality properties are more sensitive to the impact of two tillage systems in a vertic Argiaquoll soil from Buenos Aires, Argentina. This work started in 2006 and included crop rotation and tillage systems, including both tillage and no-tillage. Physical and chemical properties were measured in three consecutive years (2013–2015) at two depths (0–10 cm and 10–20 cm). The tillage system modified soil physical and chemical properties, mainly in the surface layer. No-tillage showed significantly higher bulk density (2013–2015 p < 0.05), gravimetric moisture (2013; 2014 p < 0.05), organic carbon (2013–2015 p < 0.05), and aggregates stability in the face of a heavy rain (2013; 2015 p < 0.05), than soil under tillage. Soil saturation (or total porosity) was significantly greater under tillage. The tillage system did not affect hydraulic conductivity, total nitrogen and extractable phosphorus from the surface, nor physical and chemical properties from the second depth. No-tillage alleviates, but is not enough to mitigate, the loss of soil organic carbon and aggregate stability caused by continuous cropping in this vertic Argiaquall. Bulk density, organic carbon, aggregates stability and saturation are indicators for future studies performed in environments with similar soil and climate conditions.  相似文献   

14.
This study investigates 11 agricultural management practices (AMPs) and their effects on seven visual soil quality indicators and soil aggregate stability. The survey carried out across eight pedoclimatic zones in Europe and China was based on visual soil assessments (New Zealand VSA method) performed on soils subject to different soil management practices and nearby similar soils, under similar farming features, without the distinctive soil management practice (control). Fisher's exact test was used to test if the management treatment was independent of the score of each visual soil quality indicator and to test if the management treatment produced a higher frequency of the score ‘good’. The results showed a statistically significant (α < .05) higher frequency of the score ‘good’ for ‘soil structure and consistency’ and/or ‘soil porosity’ for six AMPs. For no-till AMP, the null hypothesis can also be rejected for ‘susceptibility to erosion’ and ‘soil stability’ and for ‘mulching + permanent soil cover’ AMP, for the ‘presence of tillage pan’ and ‘soil colour’. The hypothesis that the management treatment was independent of the score of each indicator was rejected for ‘soil structure and consistency’ of three AMPs, for ‘soil porosity’ of three AMPs, for ‘soil colour’ of one AMP and for the ‘presence of tillage pan’ of one AMP. This study demonstrates that farming systems sharing a common influential soil management practice at different locations and with different soil types significantly affect the score of some visual soil quality indicators.  相似文献   

15.
Conservation tillage in New Zealand has allowed mixed crop and livestock farmers to adjust their management systems and, potentially, gain significant financial benefits over conventional management practices. Cost savings in machinery and labor were examined and changes in management to prolong livestock grazing are described. As the benefits could only be correctly estimated in an integrated whole farm management system, a typical New Zealand mixed crop and livestock representative farm was used as the background for the analysis. The benefits which arise through adjustments to the farm management system when conservation tillage techniques are effected are shown to be sufficient to affect the management of most New Zealand mixed crop and livestock farms.  相似文献   

16.
Soil water repellency (SWR) is an intrinsic and dynamic soil property that can influence soil hydrology and crop production. Although several land use systems have been shown to induce water repellency in soil, the specific effects of no‐till cropping on SWR are poorly understood. This article reviews the impacts of no‐till on SWR and identifies research needs. No‐till cropping generally induces 1.5 to 40 times more SWR than conventional tillage, depending on soil type. This may result from near‐surface accumulation of hydrophobic organic C compounds derived from crop residues, microbial activity and reduced soil disturbance. While large SWR may have adverse impacts on soil hydrology and crop production, the level of SWR under no‐till relative to conventional tillage may contribute to aggregate stabilization and intra‐aggregate C sequestration. More research is needed to discern the extent and relevance of no‐till induced SWR. This includes: (1) further assessment of SWR under different tillage systems across a wide range of soil textures and climates, (2) comparison of the various methods for measuring SWR over a range of water contents, (3) inclusion of SWR in routine soil analysis and its use as a parameter to evaluate management impacts, (4) assessment of the temporal and spatial changes in SWR under field conditions, (5) further assessment of the impacts of the small differences in SWR between no‐till and conventionally tilled soils on crop production, soil hydrology and soil C sequestration, and (6) development of models to predict SWR for different tillage systems and soils.  相似文献   

17.
Central Brazil is the region with the most dynamic agriculture expansion worldwide, where tropical forests and Cerrado (Brazilian savanna) are converted to pastures and crop fields. Following deforestation, agricultural practices, such as fertilization, tillage and crop rotations, alter soil parameters and affect microbial abundances and the C and N cycles. The objective of this study was to compare changes in soil fertility, stocks of soil C and N, microbial biomass, and abundance of bacteria, fungi and archaea in Cerrado soils following land use change to crops (soybean/corn/cotton) and pasture (the perennial forage grass Brachiaria brizantha A. Rich.). Agriculture increased soil fertility and conserved soil C and N since their absolute concentration values were highest in agriculture soils and the C and N stocks adjusted by soil density were similar to the native vegetation soils. At the same time, agriculture changed the microbial abundances (decrease of microbial biomass C and N, increase of archaea, and reduction of bacteria and fungi at the crop sites), and N dynamics (increase of soil ammonium and nitrate concentrations). Even if these changes can be beneficial for food and agricultural commodities production, all these soil alterations should be further investigated due to their possible unknown effects on biosphere–hydrosphere–atmosphere exchange processes such as greenhouse gases emissions and nitrate leaching.  相似文献   

18.
In vineyards in Spain, tillage and semiarid Mediterranean climatic conditions accelerate organic matter loss from the soil. Cover crops are a conservation management practice that can provoke changes in soil quality which requires evaluation. Stratification ratios of soil properties such as soil organic C and labile C fractions have been proposed for the assessment of soil quality under different soil management systems. Our objective was to study the effect of different cover crop management on various soil parameters and their stratification ratios. We evaluated three different soil managements in a Typic Haploxerept from NE Spain: conventional tillage (CT); 5‐y continuous cover crop of resident vegetation (RV); and 4‐y continuous cover crop of Festuca longifolia Thuill., followed by 1‐y Bromus catharticus L. after resowing (BV). We monitored soil organic C, particulate organic C, water soluble C, potentially mineralizable N, microbial biomass C, β‐glucosidase and urease enzymatic activities, and water stable aggregates at 0–2.5, 2.5–5, 5–15, 15–25, and 25–45 cm soil depths. We calculated soil depth stratification ratios of those soil properties. Resident cover crop increased microbiological properties, labile C fractions, and aggregation with respect to conventional tillage at 0–2.5 and 2.5–5 cm soil depths. However, for Bromus cover crop the same soil properties were lower than for the resident cover crop at 0–2.5 cm depth. Stratification ratios of β‐glucosidase and urease enzymatic activities, and particulate organic C showed a higher sensitivity than other soil properties; therefore, they would be the best indicators for soil quality assessment in semiarid Mediterranean vineyards.  相似文献   

19.
Intensive tillage for annual crop production may be affecting soil health and quality. However, tillage intensity effects on biological activities of volcanic-derived soils have not been systematically investigated. We evaluated the effects of three different tillage practices on some biological activities of an Ultisol from southern Chile during the third year of a wheat–lupin–wheat crop sequence. Treatments were: no tillage with stubble burning (NTB), no tillage without stubble burning (NT) and conventional tillage with disk-harrowing and stubble burning (CT). Biological activities were evaluated in winter and summer at 0–200 mm and at three soil depths (0–50, 50–100 and 100–200 mm) in winter. Total organic C and N were significantly higher under no-tillage systems than CT. In general, NT increased C and N of microbial biomass in comparison with CT, especially in winter. Microbial biomass C was closely associated with microbial biomass N (r = 0.986, P < 0.05); acid phosphomonoesterase (r = 0.999, P < 0.05); β-glucosidase (r = 0.978, P < 0.05), and others. Changes in biological activities occurred mainly in the upper soil layer (0–50 mm depth) in spite of the short duration of the experiment. Biological activities could be used as practical biological indicators to apply the more appropriate management systems for increasing soil sustainability or productivity.  相似文献   

20.
Integrated crop–livestock management systems (ICLS) have been increasingly recommended in Brazilian agroecosystems. However, knowledge of their effect on soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks is still limited. The study was undertaken to evaluate the effects of ICLS under two tillage and fertilization regimes on SOC and TN concentrations and stocks in the 0–30 cm soil layer, in comparison with continuous crops or pasture. The following soil management systems were studied: continuous pasture; continuous crop; 4 years’ crop followed by 4 years’ pasture and vice-versa. The adjacent native Cerrado area was used as a control. Under the rotation and continuous crop systems there were two levels of soil tillage (conventional and no-tillage) and fertility (maintenance and corrective fertility). The stock calculations were done using the equivalent soil mass approach. The land use systems had a significant effect on the concentrations of SOC and TN in the soil, but no effect was observed for the soil tillage and fertilizer regimes. For these two latter, some significant discrepancies appeared in the distribution of SOC and TN concentrations in the 0–30 cm layer. Carbon storage was 60.87 Mg ha−1 under Cerrado, and ranged from 52.21 Mg ha−1 under the ICLS rotation to 59.89 Mg ha−1 with continuous cropping. The decrease in SOC stocks was approximately 8.5 and 7.5 Mg ha−1, or 14 and 12%, for continuous pasture and ICLS respectively. No-tillage for 10 years after the conversion of conventional tillage to no-tillage under the continuous crop system, and 13 years of conventional tillage in continuous cropping did not result in significant changes in SOC stocks. The SOC and TN stocks in surface layers, using the equivalent soil mass approach rather than the equivalent depth, stress the differences induced by the calculation method. As soil compaction is the principal feature of variability of stocks determinations, the thickness should be avoid in these types of studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号