首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the effect of linarin (LIN) on the migration and invasion abilities of human breast cancer MDA-MB-231 cells and its underlying mechanism. METHODS: MCF-7, MDA-MB-231 and MCF-10A cells were cultured in vitro and treated with LIN at 5, 10, 20, 40, 80 and 160 μmol/L for 24 h, and the cell proliferation was measured by CCK-8 assay and colony formation assay. The protein levels of Snail, E-cadherin, matrix metalloproteinase-9 (MMP-9), IκBα, p-IKKα/β and p-p65 were determined by Western blot. RESULTS: LIN remarkably reduced the viability of MDA-MB-231 cells in a dose-dependent manner (P<0.05), and the IC50 was 55.89 μmol/L for 24 h. LIN decreased the colony formation rate of MDA-MB-231 cells at the concentration of 20 μmol/L (P<0.05). After exposed to LIN at 5 μmol/L and 10 μmol/L for 24 h, the migration and invasion abilities of the MDA-MB-231 cells were significantly reduced (P<0.05), the protein expression levels of E-cadherin and IκBα were up-regulated (P<0.05), the protein expression levels of Snail and MMP-9 were down-regulated (P<0.05), and the phosphorylation levels of IKKα/β and p65 were decreased (P<0.05) in comparison with the control group. Meanwhile, IKK-16 (IKKα/β inhibitor) and PDTC (NF-κB inhibitor) also down-regulated the protein expression levels of Snail and MMP-9 (P<0.05), and up-regulated the protein expression level of E-cadherin (P<0.05). CONCLUSION: LIN down-regulates the protein expression levels of Snail and MMP-9, and up-regulates the protein expression level of E-cadherin most likely through inhibiting IKK/NF-κB signaling pathway, and ultimately lead to decreases in the migration and invasion abilities of MDA-MB-231 cells.  相似文献   

2.
AIM: To reverse multidrug resistance (MDR) of A549/DDP cells with short hairpin RNA (shRNA) expression vectors. METHODS: Two multidrug resistance-associated protein 1( MRP1 ) gene-specific shRNA expression plasmids pSilencer 2.1-U6 neo-MRP1 were constructed and introduced into A549/DDP cells. MRP1 mRNA was assayed by real-time fluorescent quantitative PCR. The MRP1 function was determined by rhodamine 123(Rho123) retention and the protein expression of MRP1 was detected by immunofluorescent staining. The viability of A549/DDP cells was evaluated by MTT method. RESULTS: MRP1 shRNA expression plasmids were successfully constructed. The expression of MRP1 at mRNA and protein levels was significantly decreased after sh-MRP1-2.1-1 and sh-MRP1-2.1-2 were transfected into A549/DDP cells. The intracellular accumulation of Rho123 significantly increased from(16.93±0.58)% to (89.02±0.59)% and (82.56±1.37)%. IC50 of cisplatin were decreased from (101.45±0.64) μmol/L to (38.06±0.05) μmol/L and (53.72±0.36) μmol/L. IC50 of 5-fluorouracil were decreased from (263.20±2.00) μmol/L to (98.82±1.16) μmol/L and (141.81±0.49) μmol/L. CONCLUSION: The shRNA expression plasmid pSilencer 2.1-U6 neo-MRP1 can stably and permanently inhibit MRP1 gene. The sensitivity of A549/DDP cells to drug is reversed.  相似文献   

3.
AIM: To investigate the effect of high mobility group box-1 protein (HMGB1) on the expression of nuclear factor-κB (NF-κB) in BV-2 cells stimulated with amyloid β-protein (Aβ)25-35. METHODS: Cultured BV-2 cells in logarithmic growth phase were divided into 4 groups:normal cell group (without any treatment), model group (treated with Aβ25-35 at 40 μmol/L), RNA interference (RNAi) group (conducted with HMGB1-siRNA followed by Aβ25-35 stimulation) and solvent control group (treated with 0.1% DMSO). After treatment with Aβ25-35 for 24 h, the protein levels of HMGB1 and NF-κB in BV-2 cells were determined by Western blot. RESULTS: Aβ25-35 at 40 μmol/L was used to stimulate BV-2 cells. The GFP fluorescence-tagged HMGB1-siRNA (30 nmol/L) was used to transfect BV-2 cells and its transfection efficiency was about 80%~90%. The results of Western blot showed that the protein level of HMGB1 was significantly decreased after the interference of siRNA fragment (P<0.05). The protein levels of HMGB1 and nucleic NF-κB p65 were dramatically increased in BV-2 cells stimulated with Aβ25-35 (P<0.05). After RNA interference with HMGB1, the expression of HMGB1 and nucleic NF-κB p65 were significantly decreased in BV-2 cells stimulated with Aβ25-35 (P<0.05). CONCLUSION: RNA interference with HMGB1 reduces the expression of nucleic NF-κB in BV-2 cells stimulated with Aβ25-35.  相似文献   

4.
AIM: To explore the role of ginsenoside Rg1 in the growth of degenerative human lumbar nucleus pulposus cells (HNPCs). METHODS: Cultured HNPCs were subjected to oxygen-glucose deprivation (OGD) to mimic the micro-environment of degenerative HNPCs. The morphological changes of the cells in control group and OGD group were observed under optical microscope. The cells were treated with ginsenoside Rg1 at concentrations of 25, 50 and 100 μmol/L. The expression of collagen Ⅱ and aggrecan at mRNA and protein levels was determined by real-time PCR and Western blot analysis. The cell viability was measured by CCK-8 assay. The mRNA level of Ki67 was detected by real-time PCR. The apoptosis was analyzed by flow cytometry. The activity of caspase-3 was measured by a caspase-3 kit. The expression of Wnt/β-catenin pathway-related proteins was determined by Western blot. Furthermore, the expression of Wnt/β-catenin pathway-related proteins, the cell viability and apoptosis, and the expression of extracellular matrix synthesis proteins were assessed after the cells were co-treated with LiCl and 100 μmol/L ginsenoside Rg1. RESULTS: Normal HNPCs attached on the cell culture plate faster, and were almost round with rich cytoplasm. However, the cell adherence was slower, and the cells were long fusiform with decreased cytoplasm after OGD treatment, indicating that the model of degenerative HNPCs was successfully established. Compared with normal HNPCs, the expression of collagen Ⅱ and aggrecan at mRNA and protein levels was decreased in OGD group (P<0.05), which was then increased after the cells were treated with ginsenoside Rg1 at 25, 50 and 100 μmol/L (P<0.05). Compared with normal HNPCs, the cell viability and Ki67 expression were decreased in OGD group (P<0.05), which were increased after treatment with ginsenoside Rg1 (P<0.05). Meanwhile, the apoptotic rate and caspase-3 activity were significantly increased in OGD-treated cells (P<0.05), which were decreased after treatment with ginsenoside Rg1 (P<0.05). In addition, the activation of Wnt/β-catenin pathway was also inhibited by ginsenoside Rg1 treatment at dose of 100 μmol/L (P<0.05). LiCl, a Wnt/β-catenin pathway agonist, obviously decreased the protective effects of ginenoside Rg1 on OGD-induced cells (P<0.05), indicating that the Wnt/β-catenin pathway was involved in the protective effects of ginenoside Rg1 on degenerative HNPCs. CONCLUSION: Ginsenoside Rg1 promotes growth and extracellular matrix synthesis of degenerative HNPCs through inhibiting Wnt/β-catenin pathway. This study will provide a new idea for prevention and treatment of degenerative HNPCs.  相似文献   

5.
AIM:To investigate whether hydrogen sulfide (H2S) protects the hearts against inflammatory responses induced by acute myocardial ischemia in isolated rat hearts. METHODS:Rat acute myocardial ischemia injury was induced by ligation of the left anterior descending coronary artery for 4 h, and the normal perfusate was replaced with NaHS (5 μmol/L, 10 μmol/L and 20 μmol/L) perfusate accordingly in NaHS groups 2 h after ischemia. The changes of cardiac function in the myocardial ischemic injury rats were observed. The mRNA expression of TNF-α, IL-1β, IL-6, IL-10 and ICAM-1 was detected by real-time PCR. The protein level of nuclear factor-κB (NF-κB) in the myocardial tissues was detected by Western blotting. RESULTS:The cardiac function in ischemia group was lower than that in sham group (P<0.01). Compared with ischemia group, perfusion of NaHS resulted in the improvement of the cardiac function (P<0.05 or P<0.01). Compared with sham group, the mRNA expression of TNF-α, IL-1β, IL-6 and ICAM-1 in the cardiac tissues was significantly increased, and the mRNA expression of IL-10 in the cardiac tissues was significantly decreased in ischemia group (P<0.01). Compared with ischemia group, the perfusion of NaHS significantly decreased the mRNA expression of TNF-α, IL-1β, IL-6 and ICAM-1 (P<0.05 or P<0.01). The perfusion of NaHS at concentrations of 10 μmol/L and 20 μmol/L significantly increased the mRNA expression of IL-10 (P<0.01). The protein level of NF-κB in ischemia group was markedly higher than that in sham group (P<0.01). Compared with ischemia group, the perfusion of NaHS at concentrations of 10 μmol/L and 20 μmol/L significantly decreased the expression of NF-κB (P<0.05 or P<0.01). CONCLUSION:H2S protects the hearts against acute ischemia injury through inhibition of NF-κB activation and subsequent down-regulation of NF-κB-dependent inflammatory gene expression.  相似文献   

6.
CHEN Ning-nan  WAN Qiang 《园艺学报》2017,33(12):2283-2286
AIM: To investigate the effect of berberine (Ber) on Helicobacter pylori (Hp)-induced human gastric epithelial cells (GES-1) injury and the underlying mechanism. METHODS: Berberine (5, 10 and 20 μmol/L) and PD98059 (20 μmol/L), a selective inhibitor of extracellular regulated protein kinases (ERK)1/2 signaling pathway, were added to Hp-infected GES-1 cells. The cell activity and apoptosis, the levels of interleukin (IL)-1β and IL-8, lactic dehydrogenase (LDH) activity and the protein levels of Bax, Bcl-2 and p-ERK1/2 in the GES-1 cells were determined by MTT assay, flow cytometry, ELISA, colorimetry and Western blot, respectively. RESULTS: Compared with control group, Hp significantly inhibited the cell activity, increased the apoptotic rate, LDH activity, IL-1β and IL-8 levels, the Bax and p-ERK1/2 protein levels but decreased the Bcl-2 protein level in GES-1 cells (P<0.05). However, these effects of Hp were reversed by berberine at medium-dose and high-dose, as compared with the Hp-infected GES-1 cells (P<0.05). Moreover, the protective effects of berberine were significantly enhanced by the co-incubation of berberine with PD98059, as compared with the berberine at higher dose (P<0.05). CONCLUSION: Berberine may attenuate Hp-induced human gastric epithelial GES-1 cells injury by anti-inflammation, promoting cell growth and anti-apoptosis via the inhibition of ERK1/2 signaling pathway.  相似文献   

7.
AIM: To investigate the effect of cobalt chloride (CoCl2) on the apoptosis of neural stem cells (NSCs) and the expression of microRNA-26a (miR-26a) in vitro, and to explore the mechanisms of NSC apoptosis induced by CoCl2. METHODS: NSCs were exposed to CoCl2 at different doses (200~600 μmol/L) for 24 h. The cell viability and apoptosis were measured by CCK-8 assay and TUNEL method. The expression of miR-26a-3p, miR-26a-5p, GSK-3β, caspase-3, Bcl-2 and Bax was examined by real-time PCR. The protein levels of Bcl-2 and Bax were detected by Western blotting. RESULTS: The cell viability was inhibited and the apoptosis of NSCs was increased significantly by CoCl2 in a dose-dependent manner (P<0.05). CoCl2 at concentration of 400 μmol/L for 24 h was used to induce apoptosis and the expression of miR-26a was down-regulated compared with control (P<0.05). Exposure to CoCl2 at concentration of 400 μmol/L up-regulated the expression of GSK-3β, caspase-3 and Bax, down-regulated the expression of Bcl-2 and Bcl-2/Bax (P<0.05). CONCLUSION: CoCl2 at concentration of 400 μmol/L induces the apoptosis of NSCs obviously. CoCl2 may induce the NSC apoptosis by mitochondrial apoptotic pathway. Declining miR-26a may be related to NSC apoptosis.  相似文献   

8.
AIM: To investigate the effect of naringin (NRG) on cisplatin (DDP) resistance in human lung cancer A549/DDP cells and its possible mechanism. METHODS: A549/DDP cells were cultured in vitro and treated with NRG and/or DDP at different concentrations for 24 h, and then the cell viability were measured by CCK-8 assay. The combination index (CI) of NRG and DDP were analyzed by Chou-Talalay method. The apoptosis rate was analyzed by flow cytometry. Western blot was performed to detect the protein levels of P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), p-Akt, CXC chemokine receptor 4 (CXCR4), cleaved caspase-3, Bcl-2 and Bax.RESULTS: The protein levels of P-gp, MRP1, p-Akt and CXCR4 in the A549/DDP cells were higher than those in the A549 cells (P<0.05). The cell viability was remarkably reduced in a dose-dependent manner when A549/DDP cells were exposed to NRG and/or DDP (P<0.05), and the IC50 values of NRG and DDP were 36.92 μmol/L and 129.77 μmol/L, respectively. When the inhibition rate exceeded 15%, NRG in combination with DDP produced a synergistic effect (CI<1). Combination treatment with NRG and DDP significantly induced apoptosis (P<0.05), up-regulated the protein levels of cleaved caspase-3 and Bax, and down-regulated the protein level of Bcl-2 (P<0.05). Meanwhile, NRG remarkably down-regulated the protein levels of P-gp, MRP1, p-Akt and CXCR4 in a dose-dependent manner (P<0.05). CONCLUSION: NRG may enhance the sensibility of A549/DDP cells to DDP most likely via up-regulating the protein level of Bax and down-regulating the protein levels of Bcl-2, P-gp, MRP1, p-Akt and CXCR4.  相似文献   

9.
AIM: To investigate the effects of all-trans-retinoic acid (ATRA) on the proliferation and differentiation of transforming growth factor β1(TGF-β1)-stimulated human embryonic lung fibroblasts (HFL-I).METHODS: The HFL-I cells were cultured in vitro and were pretreated with ATRA for 3 days at the concentrations of 0.1 μmol/L, 1 μmol/L and 10 μmol/L. The proliferation of HFL-1 cells was detected by MTT method. The mRNA expression of α-smooth muscle actin(α-SMA) in HFL-I cells stimulated with TGF-β1 for 0 h, 6 h, 12 h, 24 h, 48 h and 72 h was detected by RT-PCR and the protein expression of α-SMA at the time points of 1,3 and 5 days was detected by Western blotting. The mRNA expression of α-SMA in HFL-I cells pretreated with different concentrations of ATRA for 24 h was detected the by RT-PCR and the protein expression at time point of 3rd day was detected by Western blotting. RESULTS: Different concentration of ATRA inhibited the proliferation of HFL-I in a dose-dependent manner (P<0.05). Both mRNA and protein expression of α-SMA in HFL-I cells pretreated with TGF-β1 was up-regulated (P<0.05). ATRA down-regulated the mRNA and protein expression of α-SMA induced by TGF-β1 in a dose-dependent manner (P<0.05). CONCLUSION: ATRA inhibits the proliferation and TGF-β1-stimulated differentiation in HFL-I cells by down-regulating the mRNA and protein expression of α-SMA.  相似文献   

10.
AIM: To explore the role of nucleotide-binding oligomerization domain-like receptor protein 1 (NLRP1) inflammasome in atorvastatin-induced reduction of interleukin-1β (IL-1β) and interleukin-18 (IL-18) releases from the THP-1 macrophages. METHODS: Lipopolysaccharide (LPS, 10 μg/L) was used to trigger the secretion of IL-1β and IL-18 in the THP-1 macrophages. The cells were incubated with different concentrations of atorvastatin (1, 10 and 20 μmol/L) for 24 h, or treated with 10 μmol/L atorvastatin for different time (12 h, 24 h and 48 h). NLRP1 siRNA was transfected into the THP-1 cells. The mRNA expression of NLRP1 inflammasome was detected by RT-PCR. The protein expression of NLRP1 inflammasome was determined by Western blot. The secretion of proinflammatory cytokines IL-1β and IL-18 was quantified by ELISA. RESULTS: Atorvastatin inhibited the mRNA and protein expression of NLRP1 inflammasome in the THP-1 macrophages in a dose- and time-dependent manner. Transfection of NLRP1 siRNA significantly decreased the protein expression of NLRP1 and promoted the suppressive effect of atorvastatin on IL-1β and IL-18 secretion in the THP-1 macrophages. CONCLUSION: Atorvastatin inhibits the production of IL-1β and IL-18 in the macrophages through decreasing NLRP1 inflammasome expression, possibly contributing to the anti-inflammatory effect of atorvastatin on atherosclerosis.  相似文献   

11.
AIM: To investigate the protective effect of quercetin on angiotensin Ⅱ (AngⅡ)-induced cardiomyocyte hypertrophy and its possible mechanism. METHODS: Cardiomyocyte hypertrophy was induced by AngⅡ (100 nmol/L) in primary neonatal cardiomyocytes and H9c2 cells. The cells were treated with different concentration of quercetin (10 μmol/L, 20 μmol/L and 40 μmol/L) for 48 h and then the cardiomyocyte surface areas were measured by immunofluorescence. Proteasome activity was detected by fluorescent peptide substrate. The phosphorylated levels of GSK-3α/β and Akt in H9c2 cells were determined by Western blot. RESULTS: Compared with control group, the cardiomyocyte surface areas were both increased in primary cultured neonatal cardiomyocytes and H9c2 cells, while the surface areas were significantly decreased by quercetin, especially at concentration of 20 μmol/L compared with Ang Ⅱ group (P<0.05). Compared with control group, the chymotrypsin-like, trypsin-like and caspase-like activities of proteasome were all increased in H9c2 cells (P<0.05). The trypsin-like and caspase-like activities of proteasome were inhibited by 20 μmol/L and 40 μmol/L quercetin, while chymotrypsin-like activity was inhibited only at 20 μmol/L of quercetin compared with Ang Ⅱ group (P<0.05). In addition, phosphorylated levels of GSK-3α-Ser21, GSK-3β-Ser9 and Akt-Ser473 in Ang Ⅱ group were all increased compared with control group, which were obviously inhibited by in 20 μmol/L and 40 μmol/L quercetin (P<0.05). CONCLUSION: Quercetin decreases cardiomyocyte hypertrophy through proteasome inhibition, which may be related to the inhibition of Akt and therefore increasing activation of GSK-3α/β in H9c2 cells.  相似文献   

12.
AIM: To investigate the effects of atorvastatin on the expression of pregnancy-associated plasma protein A(PAPP-A)induced by TNF-α and IL-1β in endothelial cells. METHODS: The rat aortic endothelial cells were isolated from thoracic aortas and cultured by the tissue explant method. The cells in passage 3-4 were used in the experiment and were randomly divided into 4 groups: blank control group: the cells were treated without any intervention; atorvastatin concentration groups: the cells were incubated with atorvastatin at the concentrations of 0.1, 1 and 10 μmol/L for 24 h; atorvastatin time groups: the cells were incubated with atorvastatin at the concentration of 10 μmol/L for 6 h,12 h and 24 h; atorvastatin+inflammatory factors groups: the cells were pre-incubated with 60 μg/L TNF-α or 20 μg/L IL-1β for 1 h, then different concentrations of atorvastatin (0.1, 1.0, 10 μmol/L) were added for 6 h,12 h and 24 h. MTT reduction assay was used to observe the cell proliferation. The mRNA expression of PAPP-A was detected by RT-PCR. The protein level of PAPP-A in the supernatants of cultured cells was measured by ELISA. RESULTS: Compared with blank control group, no significant change of cell proliferation was observed after the intervention of atorvastatin and TNF-α/IL-1β for 3 h, 6 h, 12 h, 24 h and 48 h, indicating that the drugs had no toxic effects on the cells. No significant difference of PAPP-A expression between atorvastatin groups and blank control groups was found. Compared with TNF-α groups and IL-1β groups, PAPP-A expressions in atorvastatin intervention groups significantly decreased. The protein level of PAPP-A was gradually decreased with the raised concentration of atorvastatin and the prolonged time in a concentration- and time-dependent manner. CONCLUSION: Atorvastatin doesn't influence the PAPP-A expression, but inhibits the expression of PAPP-A activated by inflammatory factors in a concentration- and time-dependent manner in primary cultured rat aortic endothelial cells.  相似文献   

13.
AIM: To investigate the mechanism of juglone on epithelial-mesenchymal transition in prostate cancer cells. METHODS: Human prostate cancer LNCaP cells were divided into control group (without juglone), 12.5 μmol/L juglone group and 25 μmol/L juglone group. LNCaP cells in the latter 2 groups were treated with juglone for 24 h. The invasion ability of the LNCaP cells was detected by Transwell assay. The protein expression of E-cadherin, vimentin, Snail and β-catenin was determined by Western blot. The LNCaP cells were treated with LiCl and juglone in combination for 24 h, and the protein expression of Snail and E-cadherin was detected by Western blot.RESULTS: The results of Trans-well invasion assay showed that the invasion ability in juglone groups was significantly decreased (P<0.01). The protein expression of E-cadherin in the LNCaP cells treated with juglone was increased, and the expression levels of vimentin and β-catenin were reduced (P<0.01). Treatment with LiCl significantly attenuated the inhibitory effect of juglone on Snail expression and subsequent down-regulation of E-cadherin expression. CONCLUSION: Juglone inhibits the epithelial-mesenchymal transition by inhibiting the Wnt/β-catenin/Snail signaling pathway in the LNCaP cells.  相似文献   

14.
AIM: To investigate the role of Toll-like receptor 4 (TLR4) and transient receptor potential channel 6 (TRPC6) signaling pathway in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) P65 expression and nuclear translocation in airway epithelial cells (16HBE) for supplementing the mechanism for airway inflammation. METHODS: After stimulating the 16HBE cells with LPS at 1 mg/L for 0, 0.5, 2, 6, 12 and 24 h, the expression of NF-κB P65 at mRNA and protein levels in the 16HBE cells were determined by RT-PCR and Western blot respectively, and the nuclear translocation of NF-κB P65 was detected by immunocytochemical staining method. The effects of TLR4 inhibitor CLI-095 at 5 μmol/L and TRPC6 agonist Hyp9 at 10 μmol/L on LPS (1 mg/L)-induced NF-κB P65 expression and nuclear translocation in the 16HBE cells were determined by RT-PCR, Western blot and immunocytochemical staining. RESULTS: LPS increased the mRNA and protein expression of NF-κB P65 and nuclear translocation in the 16HBE cells(P<0.05). TLR4 inhibitor CLI-095 reduced the mRNA and protein expression of NF-κB P65 and nuclear translocation induced by LPS, while Hyp9 enhanced the mRNA and protein expression of NF-κB P65 and nuclear translocation induced by LPS in the 16HBE cells(P<0.05). CONCLUSION: LPS induces the expression and nuclear translocation of NF-κB P65 in the 16HBE cells via TLR4-TRPC6 signaling pathway.  相似文献   

15.
AIM: To investigate the effects of procyanidins (PC) on oxidative damage of osteocytes caused by tricalcium phosphate (TCP) wear particles, and to explore the underling mechanism. METHODS: Mouse long bone osteocyte MLO-Y4 cells were treated with TCP wear particles (0.1 g/L) for 48 h to establish the model of osteocyte injuries. The MLO-Y4 cells were divided into 4 groups:control group, TCP group, PC (10 μmol/L) group and PC (50 μmol/L) group. Calcein-AM staining and MTT assay were used to observe the viability of MLO-Y4 cells. The levels of dentin matrix protein 1 (DMP-1), sclerostin (SOST) and interleukin-1β (IL-1β) in the culture media were examined by ELISA. The apoptosis of MLO-Y4 cells was analyzed by flow cytometry with Annexin V/PI double staining. The malondialdehyde (MDA) content and superoxide dismutase (SOD) activity of MLO-Y4 cells, and lactate dehydrogenase (LDH) release in the culture media were measured by chemical colorimetry. The protein levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cleaved caspase-1 and IL-1β in the MLO-Y4 cells were determined by Western blot. RESULTS: Compared with control group, MLO-Y4 cell injuries, apoptosis rate and MDA level were obviously increased in TCP group, while SOD activity was significantly decreased (P<0.05) The protein levels of NLRP3, ASC, cleaved caspase-1 and IL-1β were remarkably up-regulated (P<0.05) in the MLO-Y4 cells, and the level of IL-1β and LDH release were increased in the culture media (P<0.05). Compared with TCP group, the injuries of MLO-Y4 cells, apoptosis rate and MDA level were decreased obviously (P<0.05) in PC groups, whereas SOD activity was increased (P<0.05). The protein levels of NLRP3, ASC, cleaved caspase-1 and IL-1β were down-regulated remarkably in the MLO-Y4 cells (P<0.05), and the level of IL-1β and LDH release were significantly decreased in the culture media (P<0.05). CONCLUSION: PC obviously inhibit oxidative damage of osteocytes caused by TCP wear particles, which may be related to alleviating NLRP3 inflammasome activation and pyroptosis.  相似文献   

16.
AIM:To investigate the effects of nodosin on apoptosis of human hepatocellular carcinoma HepG2 cells. METHODS:HepG2 cells were treated with nodosin at different concentrations (1.25 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L and 20 μmol/L) for 24 h. The morphological changes of the HepG2 cells were observed by Hoechst 33258 staining and electron microscopy. The apoptotic rates were analyzed by flow cytometry. The mRNA expression of apoptotic protease-activating factor-1 (Apaf-1) was detected by RT-qPCR. The protein levels of pro-caspase-3, caspase-3 and cleaved caspase-3 were determined by Western blot. RESULTS:HepG2 cells showed obvious cell shrinkage and nucleus drift when treated with nodosin as the concentration was increased. Many apoptotic bodies were observed in 5 μmol/L, 10 μmol/L and 20 μmol/L nodosin groups. The mRNA expression of Apaf-1 was increased in 5 μmol/L, 10 μmol/L and 20 μmol/L nodosin groups as compared with control group (P<0.05). The protein levels of pro-caspase-3, caspase-3 and cleaved caspase-3 were increased with the increasing dose of nodosin (P<0.05). CONCLUSION:Nodosin induces the apoptosis of HepG2 cells. This effect was related to increasing Apaf-1 mRNA expression and subsequently promoting the activation of caspase-3.  相似文献   

17.
AIM: To explore the effects of kaempferol on the proliferation, invasion and migration abilities of HBx-HepG2 cells and to examine the underlying molecular mechanisms. METHODS: The expression levels of related genes at mRNA and protein levels were determined by RT-qPCR and Western blot. The cell apoptotic rate was analyzed by flow cytometry. The cell proliferation, growth, invasion and migration abilities were measured by MTT assay, colony formation assay, Transwell invasion assay and wound healing assay, respectively. RESULTS: Kaemferol inhibited HBx-HepG2 cell proliferation in a concentration-and time-dependent manner. Kaempferol at 100 μmol/L significantly inhibited the colony formation, invasion and migration abilities of the HBx-HepG2 cells. Kaemferol at 100 μmol/L also increased cell apoptotic rate, increased the protein levels of cleaved caspase-3, cleaved caspase-9 and Bax, and decreased the expression level of Bcl-2. In addition, kaemferol at 100 μmol/L suppressed the mRNA and protein expression levels of β-catenin, c-Myc and cyclin D1 in the HBx-HepG2 cells. Kaemferol at 100 μmol/L also suppressed the protein level of p-GSK-3β and the β-catenin protein levels in both cytoplasm and nucleus. LiCl treatment reversed the inhibitory effect of kaempferol on the growth, invasion and migration of the HBx-HepG2 cells. CONCLUSION: Kaempferol inhibits cell proliferation, invasion and migration via activating Wnt/β-catenin signaling in HBx-HepG2 cells.  相似文献   

18.
AIM: To investigate the role of ATP-sensitive potassium (KATP) channels in the inhibitory effect of hydrogen sulfide (H2S) on high glucose(HG)-induced inflammation mediated by necroptosis in H9c2 cardiac cells.METHODS: The expression levels of receptor-interacting protein 3 (RIP3; an indicator of necroptosis) and cyclooxyge-nase-2 (COX-2) were determined by Western blot. The levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by ELISA.RESULTS: After H9c2 cardiac cells were treated with 35 mmol/L glucose (HG) for 24 h, the expression of RIP3 was significantly increased. Pre-treatment of the cells with 100 μmol/L diazoxide (DZ; a KATP channel opener) or 400 μmol/L NaHS (a donor of H2S) for 30 min considerably blocked the up-regulation of RIP3 induced by HG. Moreover, pre-treatment of the cells with 100 μmol/L 5-hydroxydecanoic acid (5-HD; a KATP channel blocker) attenuated the inhibitory effect of NaHS on HG-induced up-regulation of RIP3. On the other hand, co-treatment of the cells with 100 μmol/L necrostatin-1 (a specific inhibitor of necroptosis) or pre-treatment of the cells with 100 μmol/L DZ or 400 μmol/L NaHS attenuated HG-induced inflammatory responses, evidenced by decreases in the expression of COX-2 and secretion levels of IL-1β and TNF-α. However, pre-treatment of the cells with 100 μmol/L 5-HD significantly attenuated the above anti-inflammatory effects of NaHS.CONCLUSION: KATP channels play an important role in the inhibitory effect of H2S on HG-induced inflammation mediated by necroptosis in H9c2 cardiac cells.  相似文献   

19.
AIM: To investigate the effect of urotensinⅡ (UⅡ) on the proliferation of cultured rat pulmonary arterial smooth muscle cells (PASMCs), and to explore whether mitogen-activated protein kinase (MAPK) signaling pathways and early growth response factor-1 (Egr-1) involved in the regulation of the PASMCs proliferation stimulated by UⅡ. METHODS: The rat PASMCs were isolated and cultured in vitrowith explant culture technique. The proliferation of cultured PASMCs stimulated by different doses of UⅡwas detected by BrdU incorporation. The mRNA expression of extracellular signal-regulated kinase 1/2 (ERK1/2), stress-activated protein kinase (SAPK), p38 MAPK and Egr-1 in cultured PASMCs treated with UⅡ, UⅡ-specific antagonist urantide, and ERK1/2 inhibitor PD98059 was detected by real-time PCR. The protein levels of phosphorylated ERK1/2 (p-ERK1/2), p-SAPK, p-p38 and Egr-1 in cultured PASMCs were determined by Western blotting. RESULTS: UⅡ at concentrations of 1 μmol/L, 0.1 μmol/L and 0.01 μmol/L increased the proliferation of cultured PASMCs in a dose-dependent manner (P<0.01 or P<0.05), with the maximal effect at a concentration of 1 μmol/L. However, urantide inhibited the promotion effect of UⅡ on PASMC proliferation (P<0.05). UⅡ up-regulated the mRNA expression of ERK1/2, SAPK and Egr-1 (P<0.01 or P<0.05), but not the p38 MAPK. However, the up-regulatory effect of UⅡ on ERK1/2 and Egr-1 expression was inhibited by PD98059 and/or urantide (P<0.01 or P<0.05). UⅡ also increased the protein levels of p-ERK1/2, p-SAPK and Egr-1 (P<0.01 or P<0.05), but the promotion effect was also inhibited by PD98059 and/or urantide (P<0.01 or P<0.05).CONCLUSION: UⅡ increases the proliferation of PASMCs, and U Ⅱand Egr-1 participates in UⅡ-mediated proliferation of cultured PASMCs through activation of ERK1/2 signal pathway.  相似文献   

20.
ZHANG Tuan-jie  REN Min 《园艺学报》2018,34(11):2096-2100
AIM: To evaluate the expression of Wnt/β-catenin signaling pathway-related proteins in breast cancer and the significance. METHODS: The patients with breast cancer (n=150) in our hospital from January 2015 to January 2017 were selected as study object. The tumor tissue samples of these patients were obtained from paraffin section of breast cancer by surgical resection with complete clinicopathological data. The corresponding paracancerous tissue sam-ples were taken from the non-tumor tissue samples from the above breast cancer patients, which were 0.5~1 cm away from the tumor tissue. The methods of real-time PCR and Western blot were performed to examine the expression of Wnt-1 and β-catenin at mRNA and protein levels. Human breat cancer MCF-7 cells were divided into 3 groups:control group (MCF-7 cells without treatment), agonist group[MCF-7 cells+Wnt3a (1 mg/L)] and antagonit group[MCF-7 cells+DKK1 (16 μmol/L)]. The expression of Wnt-1 and β-catenin at mRNA and protein levels was detected by real-time PCR and Western blot. RESULTS: Compared with the paracancerous tissues, the expression levels of Wnt-1 and β-catenin were higher in tumor tissues at mRNA and proteins levels (P<0.05). Notably, the positive expression rates of Wnt-1 and β-catenin were significantly higher in tumor tissues than that in the paracancerous tissues. Furthermore, Wnt-1 expression was associated with tumor metastasis (χ2=5.352, P=0.021), tumor stage (χ2=9.412, P=0.002) and tumor size (χ2=9.412, P=0.002). In addition, β-catenin expression was also associated with tumor metastasis (χ2=9.851, P=0.002) and tumor stage (χ2=5.661, P=0.017). Compared with control group, the expression of Wnt-1 and β-catenin at mRNA and protein levels in agonist group was increased (P<0.05),while that in antagonist group was decreased (P<0.05). CONCLUSION: The expression levels of Wnt-1 and β-catenin related with Wnt/β-catenin signaling pathway are increased in the breast cancer, which are closely related to the malignant state of the tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号