首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the effects of platelet-derived growth factor receptor α (PDGFRα) on melanocyte apoptosis induced by hydrogen peroxide (H2O2). METHODS: Melanocyte PIGI was used as the research object. After exposed to H2O2 at different concentrations, the cell viability was detected by MTT assay. The PIGI cells were transfec-ted with empty vector pCMV6 or PDGFRα over-expression vector pCMV6-PDGFRα. The transfection efficiency was determined by RT-qPCR and Western blot. The effect of H2O2 on the viability of the PIGI cells after over-expression of PDGFRα was measured by MTT assay. The cell apoptosis was analyzed by flow cytometry. The protein levels of p38, p-p38 and cleaved caspase-3 in the cells were detected by Western blot. DCDHF-DA was used to estemate the generation of reactive oxygen species (ROS) in the cells. RESULTS: The viability of PIGI cells decreased after exposed to H2O2 (P<0.05), and the half maximal inhibitory concentration of H2O2 was 0.7 mmol/L. Transfection with PDGFRα over-expression vector successfully induced high expression of PDGFRα at mRNA and protein levels in the PIGI cells, and increased the viability of the cells with H2O2 treatment (P<0.05). Over-expression of PDGFRα decreased the apoptotic rate of PIGI cells treated with H2O2 (P<0.05), and the level of ROS in the cells (P<0.05). The protein levels of cleaved caspase-3 and p-p38 were also decreased (P<0.05). CONCLUSION: PDGFRα inhibits the apoptosis of melanocytes induced by H2O2, partially reverses the growth inhibition of melanocytes by H2O2, and decreases the ROS level. The mechanism may be related to regulating the protein levels of p-p38 and cleaved caspase-3 in the cells.  相似文献   

2.
AIM: To investigate the effect of ecdysterone (EDS) on H9c2 cardiomyocytes after oxidative stress. METHODS: H9c2 cells were cultured in vitro and divided into control group, high dose (2 μmol/L) of EDS group, middle dose (1.5 μmol/L) of EDS group, low dose (1 μmol/L) of EDS group, and H2O2 group. H9c2 cardiomyocytes in H2O2 group and high, middle and low doses of EDS groups were exposed to H2O2 for 6 h to establish the model of oxidative stress. The viability of the H9c2 cells was detected by CCK-8 assay. The apoptosis of H9c2 cells was analyzed by flow cytometry. The levels of lactate dehydogenase (LDH) and creatine kinase-MB (CK-MB) in the culture medium, and the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the H9c2 cells were measured by colorimetry. The generation of reactive oxygen species (ROS) and the mitochondrial membrane potential were evaluated by flow cytometry and confocal laser scanning microscopy. The protein levels of Bax, Bcl-2 and cleaved caspase-3 in the H9c2 cells were determined by Western blot. RESULTS: Ecdysterone at the selected concentrations had no effect on the viability of H9c2 cells. Compared with control group, the levels of LDH, CK-MB, ROS and MDA, and the apoptotic rates of the H9c2 cells were significantly increased after treated with H2O2, but were decreased by EDS treatment in a dose-dependent manner. The levels of SOD and mitochondrial membrane potential of the H9c2 cells in H2O2 group were reduced significantly compared with control group, but high, middle and low doses of EDS treatments up-regulated the levels of SOD and mitochondrial membrane potential in H2O2-treated H9c2 cells. The protein levels of Bax and cleaved caspase-3 in the H9c2 cells in H2O2 group showed significant elevation in comparison with control group, and the protein expression of Bcl-2 declined in H2O2 group compared with control group, but high, middle and low doses of ecdysterone treatments down-regulated the protein levels of Bax, cleaved caspase-3 and up-regulated the expression of Bcl-2 in H2O2-treated H9c2 cells. CONCLUSION: Ecdysterone attenuates the effect of H2O2-induced oxidative stress on H9c2 cardiomyocytes. The mechanism may be involved in scavenging oxidative stress products, increasing antioxidant enzyme activity and improving mitochondrial function.  相似文献   

3.
AIM: To study the protective effect of brain-derived neurotrophic factor (BDNF) on vascular endothelial cells with H2O2-induced oxidative injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were cultured in vitro, and the oxidation injury model of HUVECs was established by treatment with H2O2. The oxidatively injured HUVECs were cultured with different concentrations (1, 10 and 100 μg/L) of BDNF. At the same time, the control group (no injury), PBS treatment after H2O2 injury group and TrkB inhibitor group (with 100 μg/L BDNF and 1: 1 000 TrkB inhibitor) were also set up. The viability of the HUVECs was detected by MTT assay. The levels of LDH, MDA, SOD and GSH were measured. The releases of NO, ET-1 and ICAM-1 were analyzed by ELISA. The changes of ROS production and cell apoptosis were evaluated by flow cytometry. The protein levels of TrkB, p-TrkB, cleaved caspase-3, Bcl-2 and Bax were determined by Western blot. RESULTS: Compared with uninjured control group, in H2O2 oxidative injury plus PBS treatment group, the viability of the cells was decreased significantly, the LDH and MDA levels were increased significantly and the activities of SOD and GSH were decreased significantly. The NO secretion was decreased, and the ET-1 and ICAM-1 concentrations were increased significantly. The ROS content and apoptotic rate were increased significantly. The protein levels of cleaved caspase-3 and Bax were increased but Bcl-2 protein expression was decreased significantly. Compared with PBS treatment group, in H2O2-injured HUVECs treated with different concentrations of BDNF, the cell viability was gradually increased, the LDH and MDA levels were decreased and the activities of SOD and GSH were increased gradually. The secretion of NO was increased but ET-1 and ICAM-1 were decreased gradually. The ROS content and apoptotic rate were decreased significantly. The TrkB and p-TrkB levels were significantly increased significantly, the protein expression of cleaved-caspase 3 and Bax was decreased gradually and the Bcl-2 protein expression increased gradually. The role of BDNF was inhibited by TrkB inhibitor. CONCLUSION: BDNF protects HUVECs from oxidative injury by binding with TrkB to activate the BDNF-TrkB signaling pathways.  相似文献   

4.
AIM: To observe the effect of docosahexaenoic acid(DHA) on H2O2-induced apoptosis in human retinal pigment epithelium cells and its molecular mechanism. METHODS: Human retinal pigment epithelium cell line ARPE-19 was cultured in vitro, and 12.5 mmol/L H2O2 was used to mimic the oxidative stress condition. The cells were treated with 30~100μmol/L DHA for 4~24 h. The expression of heme oxygenase-1(HO-1) at mRNA and protein levels was detected by real-time PCR and Western blot, respectively. The enzymic activity of HO-1 was measured by colorimetry. Production of reactive oxygen species(ROS) was determined by fluorescent probe. Activation of NF-E2-related factor 2(Nrf2) was examined by immunofluorescence method. Apoptosis of ARPE-19 cells was analyzed by flow cytometry. RESULTS: The mRNA and protein expression and the enzymic activity of HO-1 were significantly increased in the ARPE-19 cells after DHA treatment. Meanwhile, nuclear translocation of Nrf2 was also observed. Apoptosis appeared and ROS was produced upon H2O2 incubation. In contrast, DHA at 100μmol/L significantly abrogated H2O2-induced apoptosis and ROS production. Furthermore, silencing of HO-1 by specific siRNA, or treatment with ZnPP, an inhibitor of HO-1, partly counteracted the protective effect against H2O2-induced apoptosis and ROS production. CONCLUSION: DHA protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression after Nrf2 activation.  相似文献   

5.
AIM:To evaluate the effect of inhibiting ubiquitin-specific protease 14(USPl4) activity on oxidative stress induced by H2O2 of H9c2 cells.METHODS:The H9c2 cells were incubated with H2O2 at 25 μmol/L for 2 h to establish the oxidative stress injury model.The cells were divided into control group,H2O2 group,IU1 group (25 μmol/L or 50 μmol/L) and IU1+H2O2 group.The H9c2 cells activity was measured by MTS assay.The level of intracellular reactive oxygen species (ROS) and cell survival rate were analyzed by flow cytometry assay.The changes of the mitogen-activated protein kinase (MAPK) family related proteins were detected by Western blot.RESULTS:Compared with control group,the cell activity and the viability rate in H2O2 group were decreased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were increased (P<0.05).Compared with H2O2 group,the cell activity and the viability rate of the H9c2 cells in IU1+H2O2 group were increased (P<0.05),while the intracellular ROS,the protein levels of Bax/Bcl-2,P53,p-ERK1/2,p-JNK and p-P38 were decreased (P<0.05).CONCLUSION:Inhibition of USPl4 activity reduces the oxidative stress injury of the H9c2 cells.The mechanism may be related to inhibition of the MAPK signaling and down-regulation of apoptosis related proteins.  相似文献   

6.
AIM: To observe the effect of senegenin (Sen) on hippocampal neuron injuries induced by H2O2.METHODS: Hippocampal neurons were isolated from neonatal SD rats. The primarily cultured neurons were divided into control group, H2O2 group, Sen group and Sen+H2O2 group. The cell viability, the content of malondialdehyde(MDA) and the activity of superoxide dismutase(SOD) in the neurons were detected after treated with Sen. The morphological changes of nucleus of the neurons were observed by Hoechst 33258 staining. The mRNA expression of bcl-2 and bax was quantified by real-time PCR. The protein levels of Bcl-2 and bax were measured by Western blotting. The activity of caspase-3 was also assayed.RESULTS: Compared with H2O2 group, the levels of antioxidative enzyme were increased in Sen+H2O2 group (P<0.05). In addition, mRNA expression of bcl-2 increased and that of bax decreased (P<0.05) in Sen+H2O2 group. Moreover, Sen increased the protein level of Bcl-2, and reduced the protein level of Bax and the activity of caspase-3 in the neurons exposed to H2O2 (P<0.05).CONCLUSION: The protective effect of Sen on hippocampal neurons with H2O2 -induced injury may be involved in the mechanisms of  相似文献   

7.
AIM: To study the effect of 6-gingerol on the apoptosis of rat nucleus pulposus cells and its possible mechanism. METHODS: Rat nucleus pulposus cells were isolated and cultured. The effects of 6-gingerol and hydrogen peroxide (H2O2) at different concentrations on the viability of nucleus pulposus cells were measured by CCK-8 assay. After 6-gingerol treatment, the protein level of p-Akt was determined by Western blot. The cells were divided into 4 groups:control group, H2O2 group, 6-gingerol group (6-gingerol + H2O2) and LY294002 group (6-gingerol + H2O2 + LY294002). The apoptotic rate and the levels of reactive oxygen species (ROS) were analyzed by flow cytometry. TUNEL fluorescence staining was used to observe the number of apoptotic cells. The morphological changes of mitochondria were observed under transmission electron microscope, and Western blot was used to determine the protein levels of caspase-3, Bcl-2, Bax, p-Akt, Akt and p53. The mRNA expression of aggrecan and type II collagen was measured by RT-qPCR. RESULTS: The results of CCK-8 assay showed that the optimal concentration of 6-gingerol for promoting the viability of rat nucleus pulposus cells was 24 mg/L, and the exposure condition of H2O2 at 80 μmol/L for 6 h was appropriate for establi-shing the cell damage model. 6-Gingerol increased the protein level of p-Akt in a time-dependent manner. The apoptotic rate, ROS level and TUNEL positive cells in H2O2 group were significantly increased compared with control group. The mitochondrial edema was obvious in H2O2 group compared with control group. The protein levels of pro-apoptotic molecules caspase-3, Bax and p53 were significantly increased, while anti-apoptotic protein Bcl-2, and mRNA expression of aggrecan and type II collagen were significantly decreased compared with control group (P<0.05). 6-Gingerol exerted a protective effect against H2O2-induced apoptosis and promoted the expression of anti-apoptotic proteins. However, this effect was weakened after treatment with PI3K/Akt signaling pathway inhibitor LY294002. CONCLUSION: H2O2 induces damage and dysfunction of rat nucleus pulposus cells, and 6-gingerol may inhibit H2O2-induced apoptosis of nucleus pulposus cells by activation of PI3K/Akt signaling pathway.  相似文献   

8.
AIM: To investigate the effects of astragalosides on autophagy and apoptosis of rat cardiomyocytes induced by hydrogenperoxide (H2O2).METHODS: The injury model of H9c2 cells induced by H2O2 was established, and the cells in astragalosides group and rapamycin group were treated with 20 mg/L astragalosides and 0.1 mg/L rapamycin, respectively. The apoptotic rate was detected by flow cytometry. The autophagy was observed by acridine orange staining. Western blot was used to detect the protein levels of p-mTOR, P70S6K, LC3 and caspase-3. RESULTS: Compared with H2O2 group and rapamycin group, the viability of H9c2 cells in astragalosides group was significantly increased (P<0.05). The shape of the H9c2 cells in astragalosides group was complete, the nuclei were stained with yellow-green fluorescence, and the chromatin was distributed evenly. The protein levels of p-mTOR and P70S6K in the H9c2 cells of astragalosides group were significantly increased (P<0.05), whereas the protein levels of LC3, cleaved caspase-3 and caspase-3 in the H9c2 cells of astragalosides group were decreased significantly (P<0.05). CONCLUSION: Astragalosides enhance the viability, inhibit the apoptosis, increase the protein levels of p-mTOR and P70S6K, and decrease the protein levels of LC3, cleaved caspase-3 and caspase-3 in the H2O2-induced rat myocardial H9c2 cells. The mechanism is related to the mTOR signaling pathway.  相似文献   

9.
AIM: To investigate the influence of hydrogen sulfide (H2S) on intestinal epithelial cell mitochondrial morphology and function and the expression of caspase-3, cleaved caspase-3, cytochrome C (Cyt C), Bcl-2 and Bax in rats with intestinal ischemia-reperfusion (I/R) injury. METHODS: Wistar rats (n=24) were randomly divided into 3 groups (8 in each group): sham group, I/R group and I/R+sodium hydrosulfide (NaHS) group. The animal model of intestinal I/R injury was established. The rats in I/R+NaHS group received NaHS (100 μmol/kg bolus +1 mg·kg-1·h-1 infusion) 10 min prior to the onset of reperfusion, whereas the rats in I/R group and sham group received equal volume of normal sodium. Ileum epithelial mitochondrial morphology and function were measured. Plasma H2S was detected by sensitive sulfide electrode. The expression of Bcl-2 and Bax mRNA was studied by RT-PCR. The protein levels of caspase-3, cleaved caspase-3, cytochrome C (Cyt C), Bcl-2 and Bax were tested by Western blot.RESULTS: The area, volume density, maximum diameter, minimum diameter and equivalent diameter of mitochondria, and the expression of cleaved caspase-3, Cyt C and Bax in I/R group were significantly higher than those in I/R+NaHS and sham groups (P<0.01). The mitochondrial count, circumference, specific surface area, area density and population density, plasma H2S, respiratory control rate (RCR), the ratio of P/O, R3 , R4, and the expression of Bcl-2 in I/R group were sharply lower than those in I/R+NaHS and sham groups (P<0.01). H2S was negatively correlated with caspase-3, cleaved caspase-3, Cyt C and Bax (P<0.01), and was positively correlated with Bcl-2 (P<0.01). CONCLUSION: H2S has a protective effect on mitochondrial morphology and function in rats with intestinal I/R injury by down-regulating cleaved caspase-3, Cyt C and Bax and up-regulating Bcl-2.  相似文献   

10.
AIM: To investigate the effect of acetyl-L-carnitine (ALC) on H2O2-induced oxidative damage in PC12 cells and its possible mechanism. METHODS: A moderate oxidative damage PC12 cell model was induced by exposure of the PC12 cells to H2O2. ALC at different concentrations (100, 200 and 400 μmol/L) was applied to the PC12 cells cultured in vitro, and CCK8 assay was used to detect the cell viability. The cells were divided into control group, H2O2 group, and low-ALC, medium-ALC and high-ALC groups. The apoptosis of the cells was analyzed by flow cytometry. The protein levels of Nrf2 and cleaved caspase-3 were determined by Western blot. The nuclear translocation of Nrf2 was observed by immunofluorescence staining. RESULTS: ALC at different concentrations (100, 200 and 400 μmol/L) significantly inhibited H2O2-induced PC12 cell apoptosis, and the medium concentration group had the best effect. Compared with H2O2 group, low, medium and high concentrations of ALC significantly increased the viability of the PC12 cells induced by H2O2, inhibit cell apoptosis (P<0.05), significantly down-regulated the protein level of cleaved caspase-3 (P<0.05), up-regulated the protein level of Nrf2 (P<0.05), and promoted the translocation of Nrf2 from the cytoplasm to the nucleus. CONCLUSION: Acetyl-L-carnitine attenuates H2O2-induced oxidative damage of PC12 cells, inhibits the apoptosis and increases the viability, which is related to the activation of Nrf2 signaling pathway.  相似文献   

11.
AIM: To study the effect of Lycium barbarum polysaccharides (LBP) on oxidative stress injury of human endothelium-like EA.hy926 cells induced by hydrogen peroxide (H2O2). METHODS: The EA.hy926 cell model of oxidative stress injury was established by H2O2 treatment. The EA.hy926 cells were divided into 5 groups:control group, damage (H2O2 at 50 mmol/L) group, LBP (100 mg/L) group, anti-damage groups (LBP at 50 mg/L, 100 mg/L or 200 mg/L+50 mol/L H2O2), and LY294002 (20 μmol/L) group. The effect of LBP at different concentrations on the cell viability of EA.hy926 cells was measured by CCK-8 assay, and the optimum concentration of LBP was screened out. The apoptotic of EA.hy926 cells was analyzed by flow cytometry. Acridine orange/ethidium bromide (AO/EB) staining was used to observe the morphological characteristics of the apoptotic cells. The cell migration ability was detected by scratch method. The levels of nitric oxide (NO) and vascular endothelial growth factor (VEGF) in the cell culture medium were examined. The protein levels of cleaved caspase-3, Bax, Bcl-2, endothelial NO synthase (eNOS), p-eNOS and p-Akt were determined by Western blot. RESULTS: LBP at concentration of 100 mg/L significantly attenuated the injury of EA.hy926 cells induced by H2O2, as indicated by improved cell viability (P<0.05) and decreased apoptosis (P<0.05). Pretreatment with LBP elevated the levels of NO and VEGF (P<0.05), and promoted the migration ability of EA.hy926 cells. LBP also increased the Bcl-2/Bax ratio, down-regulated the protein level of cleaved caspase-3, and up-regulated the protein levels of eNOS and p-eNOS. The protective effect of LBP were abolished by pretreatment of the EA.hy926 cells with the inhibitor of PI3K (P<0.05). As a result, the protein level of p-Akt was down-regulated, and the level of NO was also significantly reduced. CONCLUSION: LBP has protective effect on H2O2 -induced EA.hy926 cells by attenuating apoptosis of the cells. The mechanism is closely related to the activation of PI3K/Akt/eNOS signaling pathway.  相似文献   

12.
AIM:To explore the effects of genipin (GEN) on high glucose (HG)-induced oxidative stress injury and apoptosis in H9c2 cardiomyocytes.METHODS:H9c2 cells were cultured in vitro and HG-induced injury model was established. H9c2 cells were divided into 4 groups:normal control (NC) group (glucose at 5.6 mmol/L), HG group (glucose at 50 mmol/L), NG+GEN group and HG+GEN group. The concentration of genipin was used at 10 μmol/L. The viability of the H9c2 cells was measured by CCK-8 assay. The intracellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined by enzyme labeling and WST-1 methods, respectively. The activity of lactate dehydrogenase (LDH) in the cell culture supernatant was detected by microplate method. Fluorescent probe DCF was used to detect intracellular levels of reactive oxygen species (ROS). Nucleosome fragments was measured to evaluate cell apoptosis by ELISA. The intracellular mitochondrial membrane potential was detected by JC-1 method. The protein levels of Mn-SOD, cytochrome C (Cyt C), Bax and cleaved caspase-3 were determined by Western blot. RESULTS:Compared with HG group, the cell viability in HG+GEN group was increased significantly (P<0.05), the levels of MDA and LDH were decreased (P<0.05), SOD activity was increased (P<0.05), the levels of ROS and nucleosome fragments in HG+GEN group were decreased (P<0.05), and the mitochondrial membranes potential was notably increased (P<0.05). Compared with NG group, the activation of Mn-SOD was decreased, but the protein levels of Cyt C, Bax and cleaved caspase-3 were increased in HG group (P<0.05). Compared with HG group, the activation of Mn-SOD was increased, and the protein levels of Cyt C, Bax and cleaved caspase-3 were decreased in HG+GEN group (P<0.05).CONCLUSION:Genipin protects HG-induced H9c2 cardiomyocytes against oxidative stress injury and apoptosis.  相似文献   

13.
AIM:To investigate the effects of rapamycin (Rapa) on hydrogen peroxide (H2O2)-induced vascular endothelial cell senescence and to explore the underlying mechanisms. METHODS:The human umbilical vascular endothelial cells (HUVECs) were divided into 4 groups:control group, senescence group, Rapa+H2O2 group and 3-methyladenine (3-MA)+H2O2 group. MTT assay was performed to assess the cell viability. Senescence-associated β-ga-lactosidase (SA-β-Gal) staining was performed to measure the senescent cells in each group. The subcellular structures were observed under transmission electron microscope (TEM). The protein levels of phosphorylated Rb (p-Rb), Rb, p21, LC3-Ⅱ and beclin-1 were determined by Western blot. RESULTS:Compared with control group, the cell viability in H2O2 group was significantly decreased accompanied with higher rate of SA-β-Gal staining positive cells (P<0.05) and markedly damaged structure. Additionally, the protein levels of p-Rb and p21 in senescence group were increased markedly compared with control group (P<0.05). However, the cells pre-treated with Rapa prior to stimulation with H2O2 showed increased viability, decreased number of senescent cells and decreased protein levels of p-Rb and p21 as compared with the cells stimulated with H2O2 alone (P<0.05). Moreover, the TEM observation showed that the structure of the cells in Rapa+H2O2 group was roughly normal and the autophagosome was captured, and the expression levels of beclin-1 and LC3-Ⅱ were increased (P<0.05). Conversely, pre-treatment with autophagy inhibitor 3-MA resulted in opposite results. The cell viability was decreased significantly, more senescent cells were stained blue, higher protein levels of p-Rb and p21 were detected (P<0.05), poor subcellular structures were captured, and no beclin-1 and LC3-Ⅱ was detected. CONCLUSION:Rapa may retard the senescence of HUVECs induced by H2O2, and promoting autophagy may be the underlying mechanism.  相似文献   

14.
AIM: To observe the expression of 26S proteasome LMP2 subunit in vascular endothelial cells (VECs) under oxidative stress, and to evaluate its role in the development of tolerance against oxidative stress in VECs. METHODS: The cell model of H2O2 preconditioning-induced oxidative tolerance was established in VECs. The expression of LMP2 was detected by cellular immunofluorescent labeling and Western blotting. The LMP2 anti-sense and sense oligonucleotides were transfected into VECs by LipofectamineTM 2000. The damages of VECs were evaluated by detecting the activity of lactate dehydrogenase (LDH) and the concentration of malondialdehyde (MDA) in the culture medium. RESULTS: H2O2 (500 μmol/L for 3 h) induced oxidative stress in VECss in a dose- and the activity of time-dependent manner, characterized by the increase in the concentration of MDA and LDH in the culture medium. Pretreatment with H2O2 (10 μmol/L for 24 h) up-regulated the expression of LMP2. Meanwhile, the capacity of cellular tolerance against oxidative stress induced by H2O2 was increased as the concentration of MDA and the activity of LDH in the culture medium significantly decreased. Compared with H2O2 group, up-regulation of LMP2 by IFN-γ pretreatment (20 μg/L for 48 h) increased the tolerance of VECs against H2O2 injury, and the MDA conentration and the activity of LDH in the culture medium also significantly decreased. Transfection with LMP2 antisense oligonucleotide partly inhibited the increased expression of LMP2 induced by IFN-γ in VECs and abolished the tolerance against H2O2. CONCLUSION: The 26S proteasome LMP2 subunit is associated with the development of the tolerance against H2O2-induced oxidative stress in VECs.  相似文献   

15.
AIM: To evaluate the effect of senegenin (Sen) on H2O2-treated retinal ganglion cells (RGCs) and to explore its underlying mechanisms. METHODS: RGCs were retrograde labeled by injection of fluorogold into the superior colliculi of SD rats on the postnatal day 3. On the postnatal days 6 to 8, the retinas were dissociated with papain and cultured. Primary RGCs cultured in vitro were treated with H2O2 and/or various doses of Sen. The viability of RGCs was evaluated by counting the fluorescence-labeled neurons under microscope. The morphological changes of the nuclei in the retinal neurons were observed by Hoechst 33258 staining. Western blotting was applied to determine the expression of cleaved caspase-3, cytochrome C and Bcl-2 in cultured retinal neurons. RESULTS: Compared with the control cells, Sen at doses of 10, 20 or 40 μmol/L had no toxicity to RGCs (P>0.05). However, Sen at doses of 80 and 160 μmol/L had significant toxicity to RGCs (P<0.01). Compared with H2O2-injured group, Sen at doses of 10, 20 and 40 μmol/L effectively protected against H2O2-induced injury in RGCs (P<0.05) with the best efficiency at 40 μmol/L. Hoechst 33258 staining showed that the neuronal apoptosis caused by H2O2 was reduced by Sen. The results of Western blotting showed an up-regulation of Bcl-2, and decreased cytochrome C and cleaved caspase-3 levels by Sen in H2O2-treated retinal neurons. CONCLUSION: Sen is able to protect RGCs from H2O2-induced injury by enhancing Bcl-2 expression and inhibiting cell apoptosis.  相似文献   

16.
AIM: To observe the influence of erythropoietin (EPO) on eryptosis and production of reactive oxygen species (ROS) in erythrocytes under stimulation of hydrogen peroxide (H2O2),and to explore its related mechanism. METHODS: The erythrocyte suspension (1%) was cultured in vitro and divided into 3 groups:control group (C group, the culture medium was PBS), H2O2 group (H group, the culture medium was PBS containing H2O2 at final concentration of 100 μmol/L) and EPO group (E group, the culture medium was PBS containing H2O2 at final concentration of 100 μmol/L and EPO at final concentration of 2×104 U/L). The erythrocytes were collected at 24 h and 60 h. The eryptosis was detected by flow cytometry with Annexin V staining. The production of ROS and intracellular calcium ion concentration ([Ca2+]i) were also analyzed by flow cytometry. RESULTS: The eryptosis in C group was increased as the incubating time extended. The eryptosis in H group was higher than that in C group (P<0.01), while that in E group was lower than that in H group (P<0.01). Meanwhile, ROS production and[Ca2+]i were higher in H group than those in C group (P<0.01), but those were lower in E group than those in H group (P<0.05 or P<0.01). CONCLUSION: EPO inhibits eryptosis induced by H2O2 and its mechanism may be related to antioxidant effect and change of[Ca2+]i.  相似文献   

17.
AIM: To investigate the role of autophagy inhibitor 3-methyladenine(3-MA) in the injury of U251 glioma cells induced by H2O2. METHODS: The following groups in this study were set up: control group, 10 mmol/L 3-MA group, 1 mmol/L H2O2 group and 1 mmol/L H2O2 +10 mmol/L 3-MA group. The viability of U251 cells in each group was detected by MTT assay. Autophagic vacuoles in the cells were observed by staining with MDC. The cells were stained with Hoechst 33342 to determine the chromatin condensation. Cell apoptotic ratio was measured by flow cytometry analysis. RESULTS: Compared with control group, no effect of 3-MA on the viability of U251 cells was observed. In H2O2 group, the cell viability decreased and cell apoptotic ratio increased.The autophagic vacuoles and nuclear chromatin condensation in the cells were also detected. Compared with H2O2 group, addition of 3-MA inhibited the increase in autophagic vacuoles but exacerbated the apoptosis. CONCLUSION: Autophagy inhibitor 3-MA inhibits autophagy partially, but exacerbates apoptosis in U251 cells, indicating that autophagy exerts protective effect in the process of injury in U251 cells induced by H2O2.  相似文献   

18.
AIM: To explore whether morphine protects oxidative stress-damaged myocardial cells by inhibiting the PERK pathway to reduce endoplasmic reticulum stress and prevent mitochondrial permeability transition pore (mPTP) opening. METHODS: Rat myocardial H9c2 cells were cultured to establish an oxidative stress model, and then randomly divided into control group, H2O2 group, H2O2+morphine group, H2O2+morphine+PERK pathway inhibitor GSK2656157 group, morphine group and GSK2656157 group. Immunohistochemical method was used to detect the effects of morphine on expression of glucose-regulated protein (GRP) 78 and GRP94 induced by oxidative stress. The protein levels of PERK signaling pathway-related molecules were determined by Western blot. Confocal microscopy was used to observe the effects of morphine on mPTP opening and endoplasmic reticulum induced by oxidative stress. Cellular toxicity was detected by lactate dehydrogenase (LDH) kit and cell viability was measured by MTT assay. RESULTS: Compared with control group, GRP78 and GRP94 proteins in H2O2 group were strongly expressed, and the brown-yellow particles were significantly increased, but morphine significantly inhibited this process. Compared with control group, the phosphorylation of PERK was significantly reduced with GSK2656157 treatment at different concentrations, among which 2 μmol/L had the most significant effect (P < 0.05). Oxidative stress significantly increased the protein levels of GRP78, GRP94, p-PERK and CHOP, but significantly decreased p-GSK-3β level. These changes were inhibited by morphine, and the effects of morphine were further enhanced by GSK2656157 (P < 0.05). Compared with control group, oxidative stress significantly reduced the fluorescence intensity of mitochondrial TMRE and ER-Tracker Red. Morphine significantly inhibited this effect even when mitochondrial membrane potential was reduced, mPTP was open, and endoplasmic reticulum was damaged, while GSK2656157 further enhanced the effect of morphine (P < 0.05). Compared with control group, H2O2 significantly increased cellular toxicity and decreased the cell viability. Morphine inhibited this effect and GSK2656157 significantly enhanced the effect of morphine (P < 0.05). CONCLUSION: Morphine protects cardiac H9c2 cells under oxidative condition by inhibiting endoplasmic reticulum stress through PERK pathway and preventing the mPTP opening via GSK-3β inactivation.  相似文献   

19.
AIM: To investigate whether oxidative stress is able to induce autophagy in mesenchymal stem cells (MSCs), and to explore the effects of autophagy on MSC proliferation and apoptosis under oxidative stress circumstance as well as the underlying mechanism for promoting the therapeutic effects of transplanted MSCs on treating diabetes mellitus erectile dysfunction (DMED). METHODS: Hydrogen peroxide (H2O2) was applied to simulate the oxidative stress circumstance. The effects of H2O2 at concentration of 0, 50, 100, 200, 400 μmol/L on the viability of MSCs were tested by the method of Trypan blue exclusion and MTT assay respectively . The methods of MTT assay, Western blot and transmission electron microscope (TEM) were used to explore the effects of H2O2 on MSC apoptosis and autophagy. RESULTS: The proliferation of MSCs was obviously inhibited by H2O2 in a dose-dependent manner (P<0.01) and the 50% inhibiting concentration (IC50) was (384.58±16.89) μmol/L. H2O2 induced apoptosis and autophay of MSCs. The proliferation rate of MSCs was suppressed by H2O2 significantly (P<0.05), with a further decline by blockade of autophagy (P<0.05) whereas increased by blockade of apoptosis (P<0.05). H2O2 induced MSCs apoptosis obviously (P<0.05), with an augment of apoptosis (P<0.05) by blockade of autophagy. Furthermore, the H2O2 increased expression of cleaved caspase-3 and cleavage of poly ADP-ribose polymerase 1 (PARP1), Which were decreased by apoptosis blockade whereas were enhanced by blockade of autopahgy. CONCLUSION: Oxidative stress plays a dual role in MSC survival, which induces MSC apoptosis and autophagy. Moreover, blockade of autophagy intensifies MSC apoptosis. Therefore, it is a promising method to ameliorate the effects of stem-cell based therapy on DMED by enhancing protective autophagy to increase the survival rate of transplanted MSCs against oxidative stress circumstance caused by diabetes mellitus.  相似文献   

20.
AIM: To investigate the role of microRNA-486-5p (miR-486-5p) in the apoptosis of human bone marrow mesenchymal stem cells (hMSCs) induced by hydrogen peroxide (H2O2). METHODS: The hMSCs were cultured in vitro and exposed to serum-free medium and H2O2 (10 mmol/L). The changes of miR-486-5p expression in oxidative stress-related apoptosis of hMSCs were measured by real-time PCR. The hMSCs were transfected with miR-486-5p mimic or inhibitor at concentration of 30 nmol/L by Lipofectamine RNAiMAX. The effect of miR-486-5p on H2O2-induced decrease in cell viability was evaluated by MTT assay. Hoechst 33342 staining and flow cytometry were applied to determine the role of miR-486-5p in the apoptosis of hMSCs. The protein expression was evaluated by Western blotting. Caspase-3 activity was determined using a caspase-3 activity kit. RESULTS: Compared with control group, the expression of miR-486-5p significantly decreased after treated with H2O2 (P<0.05). In addition, over-expression of miR-486-5p in the hMSCs reduced the cell viability, accelerated apoptosis, down-regulated Bcl-2/Bax ratio, caspase-3 enzyme precursor content and phosphorylation of Akt, and activated caspase-3 activity. Conversely, down-regulation of miR-486-5p significantly inhibited H2O2-induced cell apoptosis and the caspase-3 activity, increased cell viability and up-regulated Bcl-2/Bax ratio and phosphorylation level of Akt. CONCLUSION: Over-expression of miR-486-5p promotes H2O2-induced hMSCs apoptosis, and repression of miR-486-5p protects hMSCs from H2O2-induced cellular apoptosis, which may be mediated by regulating Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号