首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
AIM: To explore the therapeutic effect of a novel Rho kinase inhibitor FSD-C10 on β-amyloid protein precursor (APP)/presenilin-1 (PS1) double transgenic mice. METHODS: The transgenic mice overexpressing human APP with the Swedish mutation (695) and human PS1 with ΔE9 mutation at the age of 8 months were used in this study. The mice were randomly divided into model group and FSD-C10 intervention group, and wild-type mice at the same age served as normal controls. The mice in FSD-C10 intervention group were treated with FSD-C10 (25 mg·kg-1·d-1) for 2 months by intraperitoneal injection. The mice in model group and the wild-type mice were injected with saline in the similar manner. Morris water maze (MWM) test was applied to examine the capacity of learning and memory. The Aβ1-42 deposition, Tau protein phosphorylation, and the expression of β-site APP-cleaving enzyme (BACE) as well as inflammatory molecules, such as TLR-4 and NF-κB, and M1/M2 microglial markers, such as iNOS and Arg-1, were determined by the methods of immunohistochemistry and Western blot. RESULTS: Compared with model group, FSD-C10 significantly improved the learning and memory abilities of APP/PS1 double transgenic mice, accompanied by reduced Aβ1-42 deposition, Tau protein phosphorylation and BACE expression in the hippocampus. The intervention of FSD-C10 decreased the protein levels of TLR-4 and p-NF-κB, reduced the expression of iNOS and increased the expression of Arg-1 in the brain tissues. CONCLUSION: The novel Rho kinase inhibitor FSD-C10 improves the capacity of spatial learning and memory in APP/PS1 double transgenic mice, which may be related to the inhibition of TLRs/NF-κB signaling pathway, the reduction of the secretion of inflammatory molecules and the polarization of anti-inflammatory M2 microglia, thus improving the inflammatory microenvironment of the brain in APP/PS1 double transgenic mice.  相似文献   

2.
AIM: To investigate the protective effects of astrocyte protein phosphatase 2A(PP2A) up-regulation on APP/PS1 double transgenic mice.METHODS: An eGFP-wtPP2A lentivirus with glial fiber acidic protein promoter was constructed to specifically increase PP2A expression in the astrocytes. The mice were divided into wild -type mice+vector virus group(Con), APP/PS1 transgenic mice+vector virus group(APP/PS1) and APP/PS1 transgenic mice+eGFP-wtPP2A lentivirus group(PP2A) by lateral ventricular injection of the lentivirus. Four weeks after injection of the virus, the immunofluorescence of brain slices were used to detect the level of β-amyloid protein(Aβ). Golgi staining was used to detect the changes of dendritic spine density and morphology. Electron microscopy was applied to detect the thickness of postsynaptic density(PSD). The Morris water maze test was applied to examine the learning and memory abilities of the mice.RESULTS: Up-regulation of PP2A in the astrocytes attenuated Aβ level increasing in APP/PS1 group. Up-regulation of PP2A in the astrocytes significantly attenuated both decreases in the dendritic spine density and the percentage of mushroom-like dendritic spines in the hippocampal CA3 region of APP/PS1 mice. Up-regulation of PP2A in the astrocytes significantly attenuated the reduced thickness of PSD in APP/PS1 group. Up-regulation of PP2A in the astrocytes attenuated the escape latency extending in APP/PS1 group.CONCLUSION: Up-regulation of PP2A in the astrocytes reduces AD-like pathological changes, and attenuates synaptic impairment, synaptic plasticity deficits and cognitive impairment in the APP/PS1 double transgenic mice.  相似文献   

3.
AIM: To investigate the expression of α-synuclein in the brain of AD-like animal model at different age and to explore the pathology mechanism of α-synuclein in neural degeneration.METHODS: APP V717I transgenic (Tg) mouse model of Alzheimers disease was observed at age of 4,10 and 16 months.The Tg mice were randomly divided into 3 model groups (4,10 and 16 months of age).Control adopted the same age and background C57BL/6J mice.The mRNA expression of α-synuclein was measured by genechips and RT-PCR method.The protein of α-synuclein was detected by immuno-histochemistry and Western blotting.RESULTS: The expression of α-synuclein mRNA increased significantly in hippocampus and cortex in Tg mice at age of 4 months,10 months and 16 months compared with age matched controls.The production of α-synuclein protein also increased significantly in hippocampus and cortex in Tg mice at 3 groups.With aging,α-synuclein expression was increased and aggregated in Tg mice.CONCLUSION: Overexpression and aggregation of α-synuclein in different age of APP transgenic mice may play a key role in learning-memory deficit and the pathology of Alzheimers disease,aging,and neural degeneration.  相似文献   

4.
AIM: To investigate the expression changes of brain-derived neurotrophic factor (BDNF) in the cerebral cortex and hippocampus and their effects on the ability of learning and memory in the wild-type (WT) mice and APP/PS1 transgenic mice. METHODS: WT mice and APP/PS1 transgenic mice were selected as study subjects. Aβ plaques, apoptosis rate and BDNF expression in the cerebral cortex and hippocampus of WT mice and APP/PS1 transgenic mice were detected by the methods of Congo red staining, TUNEL, immunofluorescence and Western blot. The abilities of learning and memory were determined by Morris water maze test. RESULTS: The Aβ plaques appeared in the cerebral cortex and hippocampus of APP/PS1 transgenic mice, and the number of Aβ plaques in 12-month-old mice was larger than that in 6-month-old mice (P<0.05). The number of apoptotic neurons in the cerebral cortex and hippocampus of 12-month-old APP/PS1 transgenic mice was larger than that of WT mice (P<0.01). The expression level of BDNF in the cerebral cortex and hippocampus of WT mice was higher than that of APP/PS1 transgenic mice (P<0.01). The Morris water maze test showed that the escape latency in APP/PS1 transgenic mice was longer than that in WT mice, and the times across the platform quadrant in 60 s was less than that in WT mice (P<0.01). The swim-tracking path of APP/PS1 transgenic mice was disordered and irregular. CONCLUSION: The expression of BDNF in the cerebral cortex and hippocampus of APP/PS1 transgenic mice was lower than that of WT mice, accompanied by increased neuronal apoptosis and decreased spatial learning and memory ability. The decrease in learning and memory ability may be related to decreased BDNF expression in the cerebral cortex and hippocampus of APP/PS1 transgenic mice, leading to increased neuronal apoptosis, which may be one of the pathological mechanisms of Alzheimer disease.  相似文献   

5.
AIM: To investigate the therapeutic and preventive effects of paeoniflorin (PF) on APP/PS1 mice, and to explore the possible mechanism. METHODS: Fifteen male 5-month-old APP/PS1 non-dominant mice were chosen as normal control group, 15 male 5-month-old APP/PS1 double transgenic mice were used as model group, and 15 male 5-month-old APP/PS1 double transgenic mice treated with 5 mg/kg PF by intraperitoneal injection were allocated in administation group. The learning and memory ability of the mice in each group was detected by Morris water maze. The apoptosis was assessed by TUNEL fluorescence staining. The protein expression of PI3K, Akt, p-PI3K, p-Akt, caspase-3, caspase-9, Bcl-2 and Bax in cerebral cortex and hippocampus was detected by Western Blot. The protein expression levels and distribution of caspase-3 and caspase-9 were detected by immunohistochemistry. RESULTS: (1) Compared with normal control group, the learning and memory ability declined in APP/PS1 model group. Compared with APP/PS1 model group, PF obviously improve the ability of learning and memory in mice. (2) Compared with normal control group, the apoptosis of nerve cells in APP/PS1 model group significantly increased and distributed in wider areas, while that in PF group was reduced (P<0.05). (3) Compared with APP/PS1 model group, PF could significantly lower pro-apoptotic factors, caspase-3, caspase-9 and Bax (P<0.05), and increase the expression of anti-apoptotic factors, p-PI3K, p-Akt and Bcl-2 (P<0.05). CONCLUSION: PF can up-regulate the expression of Bcl-2 and down-regulate the expression levels of caspase-9, caspase-3 and Bax via the activation of PI3K/Akt pathway, thereby inhibiting the nerve cell apoptosis and protecting the nerve cells, so as to treat neurodegenerative diseases.  相似文献   

6.
AIM: To investigate the effect of butylphthalide on apoptosis of hippocampal neurons in Alzheimer disease (AD) rats via SIRT1/NF-κB signaling pathway and its mechanism. METHODS: AD rat model was established by intragastric administration of AlCl3 and intraperitoneal injection of D-galactose. After treated with butylphthalide at 25 mg/kg (low dose), 50 mg/kg (medium dose) and 100 mg/kg (high dose), the effects of butylphthalide on the morphology of hippocampal neurons, apoptosis rate, and the protein levels of Bcl-2, Bax, cleaved caspase-3 and the SIRT1/NF-κB signaling pathway associated proteins were determined by HE staining, flow cytometry and Western blot, respectively. After treated with SIRT1 agonist SRT1720 and inhibitor sirtinol, the role of SIRT1/NF-κB signaling pathway in hippocampal neuronal apoptosis was observed. On the basis of giving 50 mg/kg butylphthalide, sirtinol was administered, and the effect of butylphthalide on neuronal apoptosis regulated by SIRT1/NF-κB signaling pathway was evaluated. RESULTS: The morphology of hippocampal neurons in the AD rats were improved, the apoptosis rate of hippocampal neurons and the protein levels of Bax and cleaved caspase-3 were inhibited, and the protein levels of Bcl-2 and the activation of SIRT1/NF-κB signaling pathway were promoted by butylphthalide significantly (P<0.05). The protein expression of Bcl-2 and the activation of SIRT1/NF-κB signaling pathway were promoted, and the apoptosis of hippocampal neurons and the protein levels of Bax and cleaved caspase-3 were inhibited by SRT1720 remarkably (P<0.05), whereas the effect of sirtinol was contrary to that of SRT1720. After sirtinol treatment, the inhibitory effect of butylphthalide on apoptosis of hippocampal neurons, the protein levels of Bax and cleaved caspase-3, and the promotion of Bcl-2 protein expression in hippocampal neurons were markedly weakened (P<0.05). CONCLUSION: Butylphthalide inhibits the apoptosis of hippocampal neurons in the AD rats by down-regulating the protein expression of Bax and cleaved caspase-3, and up-regulating the protein expression of Bcl-2 through activating SIRT1/NF-κB signaling pathway.  相似文献   

7.
AIM: To evaluate the effect of curcumin on impaired learning-memory ability and the expression of high mobility group box protein 1 (HMGB1) and c-Jun N-terminal kinase (JNK) in a rat model of Alzheimer disease (AD). METHODS: Male Sprague-Dawley rats, weighing 250~270 g, were randomly divided into 4 groups (n=9): blank control group (group A), model group (group B), curcumin treatment group (group C, curcumin injected intraperitoneally at 100 mg·kg-1·d-1 for 6 consecutive days) and solvent control group (group D). The rats of AD model were induced by injection of ibotenic acid into the nucleus basalis of Meynert (NBM) bilaterally. All rats were trained in Morris maze to assess the ability of learning and memory. The expression of HMGB1 and JNK in the hippocampus was detected by the methods of immunohistochemistry and Western blotting. RESULTS: Compared with group A, the average escape latency (AEL) in groups B and D were obviously longer (P<0.05), while AEL in group C in the 5th and 6th days were significantly shorter (P<0.05). The releases of HMGB1 in the CA1 and CA3 areas in groups B and D from the nucleus were abundant. Compared with groups B and D, HMGB1 in hippocampal CA1 and CA3 areas in group C secreted out of the nucleus decreased obviously (P<0.05). No significant difference of the release of HMGB1 between group A and group C was observed (P>0.05). No significant difference in the expression of HMGB1 in the hippocampus among the 4 groups was found (P>0.05). However, compared with groups B and D, the expression of JNK in group C was decreased obviously (P<0.05). CONCLUSION: Curcumin significantly improves the learning and memory ability of AD rats. The probable mechanisms may be related to inhibiting the release of HMGB1 from the nucleus of hippocampal neurons and decreasing the expression of JNK in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号