首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The aim of this work was to develop a comprehensive fluvial suspended sediment budget for a large regulated river, the lower River Ebro (NE Spain).

Materials and methods

The sediment loads of the Ebro mainstem and its main tributaries were estimated from continuous records of water discharge and turbidity (appropriately transformed to suspended sediment concentrations). Records were obtained at ten monitoring sections during the relatively dry 2008–2011 period.

Results and discussion

The sediment load estimated for the River Ebro upstream of the Mequinenza Reservoir is remarkable (i.e. mean suspended load of 0.6?×?106?t?year?1), despite the fact that the site is already affected by a sediment deficit due to upstream reservoirs. Further downstream, and owing to their humid characteristics, the contribution of the Pyrenean tributaries (Segre and Cinca Rivers) is much larger compared with their Iberian Massif counterparts (Matarranya and Algars Rivers), with sediment loads of 0.49?×?106 and 2,260 t, respectively. The suspended sediment load trapped in the Mequinenza-Ribarroja-Flix Dam Complex for the study period was estimated at 2.3?×?106?t. Below the dams, the sediment load was reduced by 95 % but increased gradually in a downstream direction due to the erosion processes that clear water (i.e. very low sediment concentrations) flood flows exert on the river bed and banks and the episodic contribution from ephemeral tributaries.

Conclusions

Reservoirs have reduced the overall sediment load and the natural variability of flow and sediment transport in the River Ebro. In addition, the sediment budget revealed that floods were not the only drivers of the sediment dynamics in the lower Ebro. For instance, the particular location of the monitoring sections showed that episodic contributions from small tributaries alter the general sediment load of the river during certain torrential events.  相似文献   

2.

Purpose

Dominant discharges and associated sediment dynamics of the River Isábena, a 445-km2 catchment in the central Pyrenees of Spain that is punctuated by badlands, are analysed.

Materials and methods

Calculations of suspended sediment loads are based on continuous records of discharge and turbidity obtained at the basin outlet for the period 2005–2010.

Results and discussion

Dominant discharges for sediment load (i.e. effective discharge) present a bimodal distribution, with one peak falling in the range of low flows and the other associated to less frequent but higher magnitude floods (i.e. bankfull). The highly suspended sediment availability in the badlands, together with the high connectivity between the badlands and the stream network and the important in-channel fine sediment storage, causes both large and small events to remobilize fines. Baseflows, despite their low competence, generate resuspension and massive sediment loads. Thus, effective discharge (i.e. the discharge which transports most of the sediment) is not solely associated with bankfull (i.e. the discharge that dominates channel form), but to a wider range of discharges. Consequently, this river channel is not specifically adjusted to convey most of the sediment load during high floods, as in many other rivers, but instead large volumes of sediment are transferred downstream at an almost constant rate.

Conclusions

Results suggest that dominant discharge may play a lesser role in terms of (suspended) sediment load in non-supply-limited fluvial systems and/or in rivers that permanently work close to, or at, full transport capacity, as is the case of the Isábena.  相似文献   

3.

Purpose

In-channel sediment storage is a fundamental component of a river basin’s sediment budget. Sediment remains stored until a competent flow re-suspends and transfers it downstream. The objectives of this paper are: (1) to quantify in-channel sediment storage and its spatial and temporal dynamics in the River Isábena, a mesoscale mountainous catchment draining highly erodible areas (badlands) in the south central Pyrenees (Ebro basin) and (2) to analyse changes in storage in the mainstem channel in relation to sediment yield from the main tributaries.

Materials and methods

In-channel sediment storage was measured seasonally (from winter 2011 to winter 2012) at 14 mainstem cross-sections using a re-suspension cylinder. A minimum of three locations were sampled at each section, and two levels of agitation were applied. Samples allowed determination of the amount of sediment accumulated per unit surface area at a given point in the river; estimates of the total storage in the bed of the mainstem Isábena were derived from these data. In addition, main five tributaries were monitored for discharge and suspended sediment transport.

Results and discussion

Results show an annual sedimentary cycle, with the sediment being produced in badlands during winter, transferred to the main channel during spring, stored in the river during summer and, finally, exported out of the basin by the autumn floods. Marked spatial variability was observed; sections located immediately downstream from the main tributaries (i.e. mainly Villacarli) generally held larger amounts of sediment in the bed. Runoff and sediment inputs from the tributaries were the most important factors determining sediment storage and its spatial and temporal dynamics. The overall sediment yield of the Isábena was much higher than the in-channel sediment storage, despite the large amounts stored in the channel.

Conclusions

This finding corroborates a previous published hypothesis that fine sediment in the drainage network has a mean residence time of the order of 1 year and that the basin’s delivery ratio exceeds 90 %; both of these characteristics can be related to the high connectivity between production areas (badlands) and the river network, and to the role of baseflows allowing continuous export of sediment from the catchment.  相似文献   

4.

Purpose

This study was developed to improve understanding of the temporal variability of sediment delivery in a representative, intensively agricultural, headwater system of the U.S. Midwest by identifying the primary sediment source (i.e., uplands or channel banks) to the fine suspended sediment loads of three consecutive runoff events (with the third event being a flash flood) using naturally occurring radionuclides.

Materials and methods

Suspended sediment concentrations (C s) from discrete and continuous sampling techniques agreed well despite differences in operating principles. The total sediment flux (Q s) during each event was quantified over a 24-h period from the initiation of the rainfall using the following: (1) measured C s and flow discharges (Q w); (2) individual Q w?CQ s relationships for each event (herein called individual event relationships); and (3) a cumulative Q w?CQ s rating curve. The radionuclide tracers, beryllium-7 (7Be) and excess lead-210 (210Pbxs), were used with a simple two end-member mixing model to differentiate eroded upland surface soils and channel-derived sediments in the suspended loads of each event.

Results and discussion

Total load estimates from the measurement-based values and individual event relationships were similar, within 10?%, because they accounted for an observed non-linearity between C s and Q w (i.e., a clockwise hysteresis) during the events. The sediment rating curve assumed a linear relationship between C s and Q w and under-estimated the loads of the first two events while over-estimating the load of the flood event. The radionuclide partitioning quantified the proportion of eroded upland soils at 67?% for the first event, which was attributed to a ??first flush?? of readily available material from past events. For the subsequent and flood-event loads, 34?% and 21?% were respectively derived from the uplands, because less material was readily available for mobilization. Proportions are based on integrated samples for each event and are consistent with individual samples where available. During the flood event, stream bank mass failure was observed and bank erosion estimates from multiple methods compared favorably with the load results.

Conclusions

The radionuclide analysis showed decreasing proportions of eroded upland soils in the loads of the three successive events that was supported by observed clockwise hysteresis from source material exhaustion. Decreasing slopes observed in successive hysteresis plots for the events suggested that less material was readily available for mobilization following the first event flushing. The results of this study can assist watershed planners in identifying erosion-prone areas and determining optimal management strategies for sediment control.  相似文献   

5.

Purpose

Almost 20 nuclear reactors are situated along the Rh?ne valley, representing Europe??s largest concentration of nuclear power plants. The fate of suspended sediments and natural and artificial particle-bound radionuclides in relation to extreme hydrological events was assessed at the lower course of the Rh?ne River, which provides the main source of water and sediment inputs to the northwestern Mediterranean Sea.

Materials and methods

We sampled water at a high frequency over the period 2001?C2008 and measured suspended particulate matter (SPM) loads and particle-bound natural and artificial radionuclide concentrations at the SORA observatory station in Arles, France. We monitored various hydrological events (either natural or anthropogenic origin) and characterize their influence on concentrations and fluxes.

Results and discussion

The relationship between SPM concentration and the very wide range of water discharges did not differ significantly from previous periods, indicating no significant shift in the average sediment delivery over the last 20?years. Unexpected hydrological events of anthropogenic origin, in particular those associated with flushing of reservoirs that are generally not captured by sampling strategies, were recorded and were shown to transfer significant additional sediment and associated contaminants towards the marine environment. Concentrations of anthropogenic radionuclides associated with sediment (i.e., 137Cs, 60Co, 54Mn, 110mAg, and Pu isotopes) varied over two to three orders of magnitude during periods of low and moderate flow due to variations in the liquid release from nuclear facilities. Except for Pu isotopes, the concentrations of the various particle-bound radionuclides generally showed a decreasing trend with increasing discharge, revealing the geochemical or anthropogenic background values, and providing a useful flood fingerprint for this large fluvial system before its entry into the marine environment.

Conclusions

Our approach produced key data on the level and fate of suspended solids and radionuclide concentrations during flood events occurring in a large river system that could be contaminated by chronic or accidental radioactive releases. These results are of fundamental importance for further interpretations of sediment dynamics at the river mouth.  相似文献   

6.

Purpose

The Isábena catchment (445 km2), Spain, features highly diverse spatial heterogeneity in land use, lithology and rainfall. Consequently, the relative contribution in terms of water and sediment yield varies immensely between its subcatchments, and also temporally. This study presents the synthesis of ~2.5 years of monitoring rainfall, discharge and suspended sediment concentration (SSC) in the five main subcatchments of the Isábena and its outlet.

Materials and methods

Continuous discharge at the subcatchment outlets, nine tipping bucket rainfall and automatic SSC samplers (complemented by manual samples), were collected from June 2011 until November 2013. The water stage records were converted to discharge using a rating curve derived with Bayesian regression. For reconstructing sediment yields, the data from the intermittent SSC sampling needed to be interpolated. We employed non-parametric multivariate regression (Quantile Regression Forests, QRF) using the discharge and rainfall data plus different aggregation levels of these as ancillary predictors. The subsequent Monte Carlo simulations allowed the determination of monthly sediment yields and their uncertainty.

Results and discussion

The stage–discharge rating curves showed wide credibility intervals for the higher stages, with great uncertainties associated with the discharge rates, especially during floods. The water yield of the subcatchments differed considerably. The entire catchment’s output was dominated by the northernmost subcatchment (~360 mm year?1). The smaller, southern subcatchments featured much higher variability and lower runoff rates (55–250 mm year?1). The SSCs exhibited a wide range and can exceed 100 g l?1 for the central subcatchments, where most of the badlands are located. For the reconstruction of the sedigraphs, the QRF method proved suitable with Nash–Sutcliffe indices of 0.50 to 0.84. The specific sediment yield ranges from relatively low (32 t km?2 year?1) in the highly vegetated north to high values (3,651 t km?2 year?1) in areas with many badland formations.

Conclusions

The Isábena catchment shows high erosion dynamics with great variability in space and time, with stark contrasts even between adjacent subcatchments. The natural conditions make water and sediment monitoring and instrumentation very challenging; the measurement of discharge is particularly prone to considerable uncertainties. The QRF method employed for reconstructing sedigraphs and monthly yields proved well suited for the task.  相似文献   

7.

Purpose

Quantifying suspended sediment fluxes and dynamics across mountains, and identifying the origin of sediment in severely eroded areas, are of primary importance for the management of water resources. This contribution aims to generalise previous results from suspended sediment fingerprinting obtained during 2007?C2009 in a mesoscale Alpine catchment (the Bléone River; 905?km2) in France, and to assess variability in sediment sources throughout the second half of the twentieth century.

Materials and methods

Sediment fingerprinting, based on elemental geochemistry and radionuclide measurements, was conducted on a sediment core collected in an alluvial floodplain at the basin outlet. This technique was combined with hydro-sedimentary time-series to reconstruct the origin of suspended sediment deposited at this location over the last 50?years.

Results and discussion

Interpretation of sedimentation based on historical hydrological databases corroborates core dating obtained with 137Cs and 210Pbxs activity measurements. Black marls and (marly) limestone sources provided the main fraction of sediment throughout the sequence (40 and 22?%, respectively). However, we also found evidence for the occurrence of major floods carrying large quantities of sediment originating from Quaternary deposits and conglomerates (25 and 16?%, respectively). The variability of sediment sources throughout the sequence may reflect the spatial variability of rainfall within the catchment, which in turn reflects its origin. However, the relatively homogeneous sediment composition throughout the sequence confirms that core-derived information is representative of widespread flood events.

Conclusions

These results are consistent with those obtained in previous studies. They also outline the need to take into account the entire grain size range of fine sediment in order to provide an overall picture of sediment sources and transfers within highly erosive catchments. This study also emphasizes the importance of using archival data to validate the results of sediment fingerprinting studies conducted during short contemporary monitoring programmes, and to extend fingerprinting of sediment sources over longer time-scales which include large and widespread floods.  相似文献   

8.

Purpose

Sediment resuspension is among the most widely cited concerns that lead to restricted dredging timeframes. Protection of fish species is a primary concern regarding the effects of dredging operations, yet experimental data establishing thresholds for uncontaminated suspended sediment effects are largely lacking. We conducted research to determine suspended sediment effects on walleye (Sander vitreus) egg hatching success and gross morphology following exposures mimicking sediment resuspension during dredging operations.

Materials and methods

Newly spawned eggs of northern and southern walleye strains were continuously exposed for 3?days to suspended sediment concentrations of 0, 100, 250, and 500?mg?l?1, using sediment from Maumee Bay, OH, USA. These concentrations spanned the range measured in the vicinity of dredging operations in the Western Basin of Lake Erie.

Results and discussion

Northern and southern strain egg hatching rates were 53% and 39% of exposed eggs and 82% and 74% of viable eggs exposed, which are within reported ranges for this species. Data indicated no statistically significant effects of suspended sediment on hatching success. Gross morphological observations of exposed fry yielded no evidence of detrimental effects.

Conclusions

Experimental results indicated that walleye eggs are relatively tolerant to exposures likely to be encountered at dredging projects as performed in the Great Lakes region. Our results suggest that, given detailed knowledge of dredging project site-specific conditions and the mode of dredging to be used, better informed decisions can be made regarding adequate protective management practices. In many cases, flexibility could be given to the dredging contractor while maintaining a very low probability of risk to walleye spawning habitat.  相似文献   

9.

Purpose

Sediment fingerprinting is a relatively recent research technique, capable of determining the origin of suspended sediment. In this study, we investigated sub-basins within a larger watershed we examined previously. The objectives were to determine if there was spatial variation in the origin of the suspended sediments and to test a streamlined fingerprinting approach which would reduce the cost, thereby paving the way for adoption by government agencies.

Materials and methods

Samples were collected from three tributaries, the outlet of the main stem, and at the middle of the main stem. Two methods to collect suspended sediment samples were compared: a mobile continuous-flow centrifuge and automated samplers. A relatively small initial tracer suite consisting of stable isotopes of nitrogen (N) and carbon (C) (15N and 13C), total N (TN), and total C (TC) was tested. Tracer concentrations were obtained through a single mass spectrometry analysis requiring <1 g of sediment.

Results and discussion

Multivariate discriminant analysis showed that three of the four tracers (δ 15N, δ 13C, and TC) from the initial pool were capable of accurate classification of the source samples. A multivariate mixing model showed that banks contributed the majority of sediment throughout all locations sampled and that in tributaries it was an even more dominant source. Despite variations in land use and stream order, the legacy sediments comprising the banks and floodplains were the main factor in impairment for suspended sediment. We found a small but statistically significant difference in δ 15N and δ 13C concentrations collected using automated samplers vs. the mobile centrifuge, but the effect on analysis of sediment source proportions was minimal.

Conclusions

The results of this study indicate that, at least in the study watershed, the majority of sediment in suspension was of streambank origin. A cost-effective tracer suite was identified as well as an attempt to make a streamlined approach to the technique. The streamlined approach cost much less ($7,550 US) than the conventional approach ($46,600 US) and should be suitable for total maximum daily loads analysis by state government agencies in the Southern Piedmont region of the USA.  相似文献   

10.

Purpose

The temporal variabilities of both soil erosion by water and sediment redistribution in watersheds are directly related to rainfall characteristics. The purpose of this work was to assess the temporal pattern of rainfall in a semiarid watershed in Brazil and explain how this feature controls soil erosion and sediment yield.

Materials and methods

Daily and 5-min rainfall records were used to assess the temporal pattern down to the sub-hourly scale. To study the effect of the rainfall on sediment processes, erosivity and sediment yield at the Aiuaba (12 km2) and Benguê (933 km2) watersheds, Brazil were determined. Erosivity was calculated based on the rainfall kinetic energy method, while sediment yield was estimated from sediment rating curves and daily water discharge measurements.

Results and discussion

A large portion of annual rainfall is restricted to a few rain events and strong concentration in the sub-daily scale occurs, producing high erosivity. The temporal concentration of erosivity is greater than that of rainfall; the 10th percentile of the highest magnitude events encompasses 51% of the precipitation, but 80% of the erosivity. The temporal concentration of sediment yield is more pronounced; 88 and 98% of the sediment yield for the Aiuaba and Benguê watersheds, respectively, are within the 10th percentile of events.

Conclusions

The strong temporal concentration of precipitation causes events with high intensity and erosivity, thus allowing for soil detachment. Nonetheless, the low runoff rates limit downstream sediment transport. Such behavior produces a much higher temporal concentration of sediment yield, which reaches its maximal after a sequence of rainy days, when hydrological connectivity is enhanced and the sediments are propagated throughout the entire transport-limited system.  相似文献   

11.

Purpose

Many Mediterranean drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity describes the ease with which sediment can move through a catchment. The spatial and temporal characterization of connectivity patterns in a catchment enables the estimation of sediment contribution and transfer paths. Apart from topography, vegetation cover is one of the main factors driving sediment connectivity. This is particularly true for the patchy vegetation cover typical of many dryland environments. Several connectivity measures have been developed in the last few years. At the same time, advances in remote sensing have enabled an improved catchment-wide estimation of ground cover at the subpixel level using hyperspectral imagery.

Materials and methods

The objective of this study was to assess the sediment connectivity for two adjacent subcatchments (~70 km2) of the Isábena River in the Spanish Pyrenees in contrasting seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. The fractional cover of green vegetation, non-photosynthetic vegetation, bare soil and rock were derived by applying a multiple endmember spectral mixture analysis approach to the hyperspectral image data. Sediment connectivity was mapped using the index of connectivity, in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighting factor. In this study, the cover and management factor (C factor) of the Revised Universal Soil Loss Equation (RUSLE) was used as a weighting factor. Bi-temporal C factor maps were derived by linking the spatially explicit fractional ground cover and vegetation height obtained from the airborne data to the variables of the RUSLE subfactors.

Results and discussion

The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover and on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in August as compared to April. The two subcatchments show a slightly different connectivity behaviour that reflects the different land cover proportions and their spatial configuration.

Conclusions

The connectivity estimation can support a better understanding of processes controlling the redistribution of water and sediments from the hillslopes to the channel network at a scale appropriate for land management. It allows hot spot areas of erosion to be identified and the effects of erosion control measures, as well as different land management scenarios, to be studied.  相似文献   

12.

Purpose

Few studies have described the bacterial community structures of turbid rivers. In this paper, the characteristics of the bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world, were studied.

Materials and methods

Water and sediment samples were collected from six sites along the river. Bacterial community composition was determined using the 16S ribosomal RNA (rRNA) gene clone library technique. The relationship between environmental parameters and bacterial diversity was analyzed.

Results and discussion

A total of 1,131 gene sequences were obtained and clustered into 639 operational taxonomic units (at the 97 % identity level), with Proteobacteria as the predominant phylum. The Shannon index for water samples ranged from 3.39 to 4.40 and was generally higher than that in other rivers; this was probably due to the high suspended particulate sediment (SPS) concentration in the Yellow River, which can provide more habitats for both aerobic and anaerobic bacteria. Also, the bacterial diversity of the water samples was slightly higher than that of the surface sediment samples. The bacterial diversity of water increased along the river in the downstream direction, while there was no trend for the sediment. Redundancy analysis indicated that pH, dissolved organic carbon (DOC), and SPS were the main factors controlling the water bacterial community in the Yellow River, and pH, nitrate–nitrogen, and water content were the main factors for the surface sediment bacterial community.

Conclusions

This study indicated that the bacterial diversity of the Yellow River is generally higher than that in other rivers, suggesting that SPS plays an important role in regulating bacterial diversity and community structure in aquatic environments.  相似文献   

13.

Purpose

The study aimed to use the Soil and Water Assessment Tool (SWAT) model to simulate erosion processes in an alpine–prealpine catchment in order to provide data and information that may be relevant for managers so as to minimize reservoir siltation and water quality degradation. The main objective was to assess sediment production across the catchment and sediment supply to the main reservoir.

Materials and methods

The Barasona reservoir catchment (1,509 km2) is located in the Central Spanish Pyrenees, in the Ebro Basin. This catchment was selected for the case study given the regional significance of the Barasona reservoir and its siltation problems. The catchment has a mountain climate, with strong altitudinal and north–south gradients. The catchment is characterized by heterogeneous topography and lithology, resulting in a varied mosaic of slopes, soil types, and land covers. The Jueu karst system and two small headwater reservoirs were parameterized and calibrated in the model. The SWAT model sediment calibration for the catchment was based on a prior monthly hydrologic calibration, and the model validation was based on the sediment depositional history of the Barasona reservoir.

Results and discussion

The simulation period (2003–2006) and the validation period (1993–2002) produced average sediment yields to the reservoir of 643,000 and 575,000 t year?1, respectively. Large variations in sediment production were found between the subcatchments in the Barasona catchment due to differences in rock outcrops, land cover, and slope gradient. Sediment loss in the Jueu karst system was 15,500 t and the two small headwater reservoirs retained 31,200 and 50,300 t. Sediment production in relation to precipitation showed high temporal variability, with specific sediment yields to the Barasona reservoir ranging from 2.74 to 8.25 t ha?1 year?1. Strong lithological control was observed for sediment production in the subcatchments. The main sediment sources were located in the badlands developed on marls in the middle part of the catchment (internal depressions).

Conclusions

The proposed model has proved useful for identifying areas where significant erosion processes take place in large alpine–prealpine catchments at a regional level and also for assessing discharge losses by the karst system and the sedimentary role of the small reservoirs. The information obtained through this research will be of interest in assessing the spatial distribution of sediment sources and areas of high sediment yield, which will be useful to establish criteria for remediation strategies.  相似文献   

14.

Purpose

We analysed the status of current water and sediment management practices in six deltas and estuaries, which were part of the European DELTANET, INTERREG-funded network.

Materials and methods

These systems—the Danube, Ebro and Vistula deltas and the Elbe, Minho and Severn estuaries—represent different geographic regions of Europe. This enables comparison between the sites’ approaches to common coastal issues, notably those associated with sediment budgets, contamination and flood risk. Based on documentary analysis, workshop events and expert discussion, we employ a simple classification scheme to distinguish between levels of risk from these aspects.

Results

We suggest that flood risk is the most significant risk, followed by upstream sediment retention and sediment aggradation. Chemical contamination, though less severe, is not unimportant. Key management issues include a lack of environmental quality standards for sediment and suspended particulate matter, as well as the limited deployment of monitoring programmes, regular sediment sampling and associated chemical analyses.

Conclusions

These include both general and specific recommendations. Within these, the limited scope of integrated plans that aim for sustainability of the respective systems is highlighted. It is suggested that these do not challenge traditional, classical engineering approaches sufficiently. Nor do they address the origin of many environmental problems, especially those which are closely linked to short-term political and economic priorities.  相似文献   

15.

Purpose

Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process.

Materials and methods

This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1).

Results and discussion

The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal.

Conclusions

The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.  相似文献   

16.

Purpose

Information on the effects of eucalyptus forests on hydrosedimentological processes is scarce, particularly at the catchment scale. Monitoring and mathematical modeling are efficient scientific tools used to address the lack of information for natural resource management and the representation and prediction of those processes. This study evaluates the effects of eucalyptus cultivation on hydrosedimentological processes in watersheds and to use the Limburg soil erosion model (LISEM) to represent and predict hydrological processes.

Material and methods

The study was conducted in two forested watersheds: the main watershed (94.46 ha) and a nested sub-watershed (38.86 ha), both cultivated with eucalyptus and residual riparian native forest, located in southern Brazil. Hydrosedimentalogical monitoring was conducted from 16th February 2011 to 31st December 2012, and LISEM model calibrations were performed on the bases of six storms events.

Results and discussion

The sediment yield for 2011 was 41.6 Mg km?2 and 38.5 Mg km?2 for the watershed and sub-watershed, respectively. An extreme event in 2012 provided greater sediment yield for the sub-watershed (99.8 Mg km?2) than that for the watershed (51.7 Mg km?2). Rainfall events with a greater maximum intensity generated rapid discharge and suspended sediment concentration responses in the sub-watershed due to the smaller drainage area and steeper landscape. In the main watershed, the accumulation of flood waves occurred for most events, with less steep hydrographs, and a later occurrence of the discharge peak after that of the sub-watershed. The LISEM adequately reproduced the peak discharge and runoff for the calibrated events; however, the peak time and the shape of the hydrograph were not adequately represented.

Conclusions

The hydrosedimentological patterns of the watershed and sub-watershed, both cultivated with eucalyptus, was characterized by sedimentographs preceding hydrographs during rainfall–runoff events where scale effects occur, with maximum discharge and specific sediment yield greater in the watershed than that in the sub-watershed. Empirical models based on hydrologic variables may be used for estimating the suspended sediment concentration and sediment yield. Therefore, LISEM may be used for the prediction of hydrological variables in these forested watersheds.  相似文献   

17.

Purpose

Lowland chalk streams in the UK are experiencing increased deposition of fine sediment due to changes in land-use practices, channel modifications, and groundwater abstraction. The excessive fine sediment deposits have been linked to benthic habitat degradation, the obstruction of surface?Cgroundwater flow, and the storage of contaminants, such as nutrients and pesticides. While research has been conducted on the provenance, transport, deposition, and storage of fine sediment in chalk streams, none has expressly investigated the erosion of fine sediment deposits.

Materials and methods

A year-long field survey was conducted in two reaches of the Frome-Piddle catchment (Dorset, UK) to quantify spatial and temporal variations in the erosion thresholds of surficial fine sediment deposits. Erosion thresholds were measured at randomly located points within areas of sediment accumulation using a cohesive strength meter (CSM). The threshold measurements were paired with sediment cores for analysis of the physical, chemical, and biological properties of the sediment. Spatial and temporal patterns in the erosion thresholds of fine sediment were analyzed using nonparametric statistical tests and visualized with GIS. The sediment properties underlying the variations in erosion thresholds were examined through correlation and linear regression analyses.

Results and discussion

Erosion thresholds varied significantly over space and time within the stream reaches. Erosion thresholds were greater for fine sediment deposits found in the center of the channel than in the margins. Thresholds were highest in September 2008 and declined substantially to a minimum in May 2009, with a small peak in March 2009, indicating an annual cycle in erosion thresholds. Effective particle size was identified statistically as the most important sediment property influencing erosion thresholds and was probably underlying much of the spatial variation within the reaches. None of the measured sediment properties adequately characterized the temporal variation in erosion thresholds, however, the results suggest that biological sediment properties and water geochemistry (i.e., cation content) may play a role.

Conclusions

By identifying significant spatial and temporal variations in erosion thresholds, this study provides valuable information on the stability of fine sediment deposits, and sediment-bound contaminants, in lowland river systems. This is a crucial step in assessing their local environmental impacts and developing models of fine sediment transport for the effective management of catchment sediment budgets and water resources.  相似文献   

18.

Purpose

The source and diagenesis of sediment organic matter (OM) based on amino sugar yields and compositions were investigated in sediment samples collected along a reach of the upper Pearl River Estuary in south China.

Materials and methods

Sediment samples were collected from the estuary. Three sediment size fractions—coarse particulate OM (CPOM), fine particulate OM (FPOM), and ultrafiltered dissolved OM (UDOM)—were analyzed for total hydrolysable amino sugars (THAS), total organic carbon (TOC), and total nitrogen (N).

Results and discussion

THAS contributed much more to sediment TOC and total N in UDOM than in CPOM and FPOM. Percentages of TOC as THAS increased with increasing sediment size. The low glucosamine/galactosamine ratios indicated a relatively large bacterial contribution to the sediment OM size fractions and the less reactive nature of sediment OM in the upper Pearl River Estuary. However, the depletion in muramic acid in the three sediment fractions, especially in UDOM, suggested that living bacteria or intact peptidoglycan units were not a major contributor to sediment OM.

Conclusions

The increases of TOC as THAS and C-normalized yields of THAS with the different sediment size fractions demonstrated that they could be used as diagenetic indicators.  相似文献   

19.

Purpose

Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (100–104 km2).

Materials and methods

Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed.

Results and discussion

Rainfall erosivity in the study area was moderate (4600 MJ mm ha?1 h?1 year?1), whereas runoff depths (16–60 mm year?1), and therefore the sediment transport capacity, were low. Consequently, ~60 % of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km2 per reservoir) also limits sediment propagation, retaining up to 47 % of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 % of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km2 basin, the SDR was reduced to 1 % downstream of a large reservoir (1940-hm3 capacity).

Conclusions

Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential.  相似文献   

20.

Purpose

This study investigated desorption of potassium (K) and phosphorus (P) from soil and river suspended sediments sampled during a storm event in a Brazilian watershed traditionally used for tobacco plantations.

Material and methods

Suspended sediment samples were collected automatically at the outlet of the watershed and were grouped into three phases: beginning (phase a), middle (phase b) and final stages (phase c) of the storm event. Granulometric and mineralogical characterisation of soils (0 to 0.20 m depth) and suspended sediments was determined, and K and P extractions were performed using a cation and anion exchange resin (CAER) membrane. A kinetic modelling approach was used to estimate the amount of K and P desorbed.

Results and discussion

Clay-sized (<2 μm) content of the soils were all <21 %. Kaolinite, smectite (partially with hydroxy-Al interlayer) and a small amount of illite were found in the clay fraction of the different soils. The clay-sized fractions in sediments of phases a, b and c of the storm event were 49, 52 and 72 %, respectively. Smectite (>90 %) and kaolinite (<10 %) were the dominant clay minerals in the suspended sediments. The values of labile P and potentially available P of suspended sediments were higher than those for soils. In sediments, the highest values of labile P (325 mg kg?1) and labile K (4,458 mg kg?1) were found in phase c and in phase a, respectively.

Conclusions

Particle size distribution and clay mineralogy of soils differed from those of suspended sediments collected during the storm event. By comparison with the watershed soils, suspended sediments collected during the storm event were enriched in fine particles composed mainly of smectite, and this may explain their P and K desorption behaviour. This suggests particle size and clay species selectivity processes during the transfer of sediment particles from soils to aquatic systems. The amounts of P and K desorbed from the suspended sediments in the three phases of the storm event were much larger than those desorbed from soils. This indicates that rainfall promoted the transfer of these nutrients to the watercourses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号