首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Free asparagine is an important precursor for acrylamide in cereal products. The content of free asparagine was determined in 11 milling fractions from wheat and rye. Whole grain wheat flour contained 0.5 g/kg and whole grain rye flour 1.1 g/kg. The lowest content was found in sifted wheat flour (0.2 g/kg). Wheat germ had the highest content (4.9 g/kg). Fermentation (baker's yeast or baker's yeast and sourdough) of doughs made with the different milling fractions was performed to investigate whether the content of free asparagine was reduced by this process. In general, most of the asparagine was utilized after 2 hr of fermentation with yeast. Sourdough fermentation, on the other hand, did not reduce the content of free asparagineas efficiently but had a strong negative impact on asparagine utilization by yeast. This indicates that this type of fermentation may result in breads with higher acrylamide content than in breads fermented with yeast only. The effect of fermentation time on acrylamide formation inyeast‐leavened bread was studied in a model system. Doughs (sifted wheat flour with whole grain wheat flour or rye bran) were fermented for a short (15+15 min) or a long time (180+180 min). Compared with short fermentation time, longer fermentation reduced acrylamide content in bread made with whole grain wheat 87%. For breads made with rye bran, the corresponding reduction was 77%. Hence, extensive fermentation with yeast may be one possible way to reduce acrylamide content in bread.  相似文献   

2.
Six wheat cultivars covering a range of quality parameters were mixed to various proportions of their optimum work input using mechanical dough development (MDD) mixers. Mixing and baking characteristics were determined and each dough was subsampled. The proteins were extracted for analysis by reversed-phase HPLC. Considerable protein mobilization appeared to occur during the MDD process, but the changes appeared to be cultivar-specific and did not indicate how mixing or baking behavior could be predicted. Protein content in extracted fractions was lowest for the weakest, poorest quality wheat but failed to consistently rank the stronger samples. Acetic acid insoluble protein level decreased with mixing as did extractable high molecular weight glutenin subunits. Gliadin protein level initially decreased with mixing before rising sharply with overmixing, while low molecular weight glutenin subunits displayed the reverse pattern. The rate of change of the extractability of the protein fractions with work input was greatest for the weakest samples and least for the stronger samples. However, when the protein quantity in the extractable fractions was plotted against relative work input, the rate of change of protein extractability did not appear to vary significantly between cultivars of different strengths.  相似文献   

3.
The objective of this study was to examine treatments that directly influence Norwegian lean doughs destined to be frozen. Therefore a strip-block experimental design with four dough treatment factors (wheat flour blend, diacetyl tartaric acid esters of monoglycerides [DATEM], water absorption, and dough temperature) and two storage factors (frozen storage time and thawing time) was used. Four levels were selected for frozen storage time and two levels were selected for the remaining factors. After frozen storage (2–70 days), the doughs were thawed and baked. Principal component analysis showed that to obtain a high loaf volume and bread score after freezing, a high dough temperature after mixing (27°C) was essential. The highest form ratio (height/width) level was obtained after 28 days of frozen storage and with a short thawing time (6 hr). Analysis of variance (ANOVA) of dough treatments showed that an increase in dough temperature from 20 to 27°C after mixing resulted in a significant increase in loaf volume (1,653 to 2,264 mL), form ratio (0.64 to 0.69), and bread score (1.7 to 3.2), and a reduction in loaf weight (518.4 to 512.5 g) and crumb score (7.9 to 5.9, i.e., a more open bread crumb). Also, the addition of DATEM significantly increased loaf volume (1,835 to 2,081 mL), form ratio (0.64 to 0.69), and bread score (2.2 to 2.6). Frozen dough storage time significantly affected loaf volume, loaf weight, bread score, and crumb score. Increasing thawing time from 6 to 10 hr significantly increased loaf volume (1,855 to 2,121 mL), and reduced the form ratio (0.69 to 0.63) and loaf weight (516.8 to 511.4 g). ANOVA of the interaction between dough treatment and frozen storage time showed that decreasing water absorption significantly increased the loaf volume.  相似文献   

4.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

5.
Pyranose oxidase (P2O) improves wheat flour dough stability and bread quality. We related its effect on dough spread behavior to that on dough and bread crumb structure. Increasing P2O addition levels gradually reduced dough flow. High P2O addition levels further increased dough strength, significantly increased dough cell wall thickness, and decreased bread loaf volume. Taken together, affecting dough spread behavior impacts dough and bread (crumb) structure, and dough structure largely determines bread crumb structure.  相似文献   

6.
Altering the properties of dough by reducing sodium chloride (NaCl) content affects aeration processes during mixing. The effect of NaCl concentration on the bubble size distribution (BSD) in unyeasted doughs was investigated by an ultrasonic transmission technique through analysis of frequency‐dependent ultrasonic phase velocity and attenuation coefficient. As NaCl concentration was decreased, the volume fraction of gas in the dough increased, resulting in a larger attenuation coefficient for the dough. From the peak in attenuation coefficient, estimates of the median radius and the width of the lognormal BSD in the dough were extracted, both of which were sensitive to the dough's NaCl concentration. As NaCl concentration was reduced, the bubble radius decreased and the width of the distribution increased, in accordance with expectations arising from changes in the dough's consistency. Over the course of 150 min, the radius increased (40–50%) and the width decreased (4–8%) for all dough formulations, consistent with changes in the BSD arising from disproportionation. These dynamic changes demonstrate that dough is an interesting soft material whose formulation can be manipulated to enable it to possess different BSDs; the diffusively driven evolution in these bubble sizes can be investigated noninvasively with ultrasound.  相似文献   

7.
The assay of dehydro-l -ascorbic acid (DHAA) in dough and bread was done by reduction of DHAA to l -ascorbic acid (AA) in aqueous dithiothreitol (DTT) at pH 6–7 followed by quantitation of the AA using HPLC with electrochemical detection. At room temperature and pH 6.6, with 4.0 equivalents of DTT, the conversion of DHAA to AA was stoichiometric after 5 min. In mixograms on flour-water doughs, DHAA added in dimeric form at 200 ppm had no effect on absorption but increased mixing time by 9–19% with the same effects occurring in full-formula doughs. AA added to doughs did not affect mixing peak time or absorption. Mixing bread doughs with an initial level of 25–200 ppm of AA based on flour (14% mb) produced DHAA in the freshly mixed doughs at concentrations of 20–51 ppm, or from 80 to 26% of AA added. During ≈120 min of fermentation and proofing, the levels of AA in the doughs increased by 4–10 ppm. Mixing bread doughs with an initial level of 25–200 ppm of DHAA produced no AA in the freshly mixed doughs, but the proofed doughs and fresh breads contained 4–10 ppm and 7–49 ppm of AA, respectively. Fresh bread made from dough with 200 ppm of AA retained 66% total vitamin C (110 ppm of AA + 21 ppm of DHAA), whereas bread made with 200 ppm of DHAA retained 9.5% total vitamin C (13 ppm of AA + 6 ppm of DHAA). DHAA was 2–4 times more effective in improving loaf volume than an equal weight of AA in no-time dough, and 1.5–2 times more effective in straight-dough. In straight-dough bread made with a commercial bread flour, increasing concentrations of DHAA markedly improved bread up to ≈20 ppm, beyond which overoxidation occurred rapidly. In contrast, increasing concentrations of AA improved bread up to ≈150 ppm with a broad tolerance up to 200 ppm. The improving action of DHAA was independent of the concentration of air in the mixing bowl, and DHAA was much more heat-labile than AA.  相似文献   

8.
为促进大豆副产物资源利用,开发新型营养面制品,本试验以豆渣为原料,利用柠檬明串珠菌E12为发酵剂制作豆渣酸面团,探究不同豆渣酸面团添加量(0%、20%、30%和40%)对馒头面团(对应编号分别为S0、S20、S30和S40)发酵活力、动态流变特性、抗氧化特性以及膳食纤维含量的影响,并研究豆渣酸面团馒头(对应编号分别为CS0、CS20、CS30和CS40)的感官品质,以及在贮藏期间馒头质构和水分含量的变化。结果表明,添加豆渣酸面团会降低馒头面团的弹性、黏性和综合黏弹性。馒头面团的抗氧化特性以及膳食纤维含量随着豆渣酸面团添加量的增加而显著增加;当添加量为40%时,S40馒头面团的1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率和2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)自由基清除率分别达到15.61%和79.59%,比S0增加了5.10和15.02个百分点,总膳食纤维含量达到3.91 g·100g-1,比S0增加了138.79%。豆渣酸面团的添加量为20%时,CS20馒头的比容和延展率与CS0相比无显著差异,但对馒头的外观、色泽、风味和口感产生了积极影响,整体可接受度达到7.8。在贮藏5 d后,CS0的硬度、咀嚼性和胶着性分别增加了180.85%、69.62%和98.08%,而CS40分别增加了76.19%、30.88%和33.96%,与CS0相比增加量显著减小,且在贮藏期间CS40的水分含量始终高于CS0,表明豆渣酸面团有利于减缓馒头的老化。本研究为实现豆渣资源的合理化应用以及新型营养的酸面团产品开发提供了一定的理论基础。  相似文献   

9.
Freezing and prolonged frozen storage of dough results in constant deterioration in the overall quality of the final product. In this study the effect of wheat bran and wheat aleurone as sources of arabinoxylan (AX) on the quality of bread baked from yeasted frozen dough was investigated. Wheat fiber sources were milled to pass through a 0.5 mm screen, prehydrated for 15 min, and incorporated into refined wheat flour at 15% replacement level. Dough products were prepared from refined flour (control A), whole wheat flour (control B), aleurone composite flour (composite flour A), and bran composite flour (composite flour B) and stored at –18°C for 28 weeks. Dough samples were evaluated for breadmaking quality at zero time, 14 weeks, and 28 weeks of storage. Quality parameters evaluated were loaf weight, loaf specific volume, and crumb firmness. Composite flour bread samples showed the most resistance to freeze damage (less reduction in the overall product quality), indicating a possible role of some fiber components (e.g., AX) in minimizing water redistribution in the dough system and therefore lessening adverse modifications to the gluten structure. The data suggest that the shelf life of frozen dough and quality of obtained bread can be improved with the addition of an AX source.  相似文献   

10.
This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.  相似文献   

11.
Polyols could prolong shelf life and improve the quality of white bread. But the effect of high contents of polyols on dough properties and bread qualities is not yet clearly known. Thus, the properties of dough and white bread with different addition of polyols were evaluated by means of selected physicochemical properties. Rheology experiment results showed that both glycerol and sorbitol decreased the G′ and G″ of the dough. The results of thermogravimetric analysis revealed that polyols hindered the evaporation of water and that glycerol had a greater capacity for water retention than did sorbitol. In the bread, they caused more water to be absorbed on the surface of the gluten–starch system. They decreased the water activity and mass loss of the bread, but the specific volume of the bread also decreased. We found when glycerol and sorbitol addition was higher than 8%, it could slightly increase the viscidity of dough, enhance the moisture content of bread, and reduce the water activity of bread. But the gluten strength of dough decreased, and shaping and proofing of dough were difficult, which resulted in the deterioration the quality of white bread. We conclude that the addition of glycerol or sorbitol below 8% would be beneficial to the properties of dough and white bread and that sorbitol is a better option than glycerol.  相似文献   

12.
The effects of ferulic acid and transglutaminase (TG) on the properties of wheat flour dough and bread were investigated. Ferulic acid and TG were blended with hard wheat flour at levels of 250 and 2,000 ppm of flour weight, respectively. The addition of ferulic acid reduced the mixing time and mixing tolerance. The addition of TG did not obviously affect the mixing properties. Significant effects of ferulic acid plus TG on the rested dough texture were observed for overmixed dough. The maximum resistance (Rmax) of the dough was significantly reduced with the addition of ferulic acid but increased with the addition of TG. The addition of TG with ferulic acid restored the Rmax reduced by ferulic acid alone. The proportion of SDS‐soluble high molecular weight proteins in the dough increased with the addition of ferulic acid and decreased with TG, when assessed with size‐exclusion HPLC fractionation. Although the addition of TG improved the handling properties of the dough made sticky with added ferulic acid, it did not improve the quality of the bread with added ferulic acid as measured by loaf volume and firmness.  相似文献   

13.
Diacetyl tartaric acid ester of monoglycerides (DATEM) is a kind of anionic emulsifier. To date, the positive effect of DATEM on the volume of bread has been reported, but the effects on Chinese steamed bread (CSB) quality and other parameters for bread quality are still unclear. The effects of DATEM on the characteristics of dough and the qualities of CSB and bread were investigated. The results showed that, the effects of DATEM on the rheological properties of dough were complex. Water absorption ratio of CSB dough decreased slightly, while that of bread dough increased slightly. But gas retention and structure improved and gluten strength increased for both CSB and bread doughs after DATEM was added. The studies also showed that structure, elasticity, tenacity, and whiteness of CSB were improved, but specific volume was almost unchanged. The structure, color, and smoothness were significantly improved for bread, and specific volume increased compared with the control. The optimal quantities of DATEM for CSB and bread were both ≈0.10% (on flour mass basis).  相似文献   

14.
The role of starch granules in the expansion of doughs during baking was investigated using artificial flours made from dry vital wheat gluten and wheat starch, potato starch, or tapioca starch. The three starches were selected because of their diverse gelatinization properties. Baking tests on flour from tapioca starch gave the largest loaf volume and the most extensive postbaking shrinkage. Potato starch flour gave the smallest volume and the least shrinkage. Amylograph test data, dough expansion under decreased pressure, progress of expansion during baking, and scanning electron microscopy revealed the role starch granules play in ideal baking conditions. Starch granules should not gelatinize early in the baking cycle as potato starch does but should gelatinize later in the baking cycle as wheat starch does. This prevents early setting of the dough which inhibits expansion. Starch granules should not disrupt and fuse together during gelatinization as tapioca starch does, forming an impermeable gas membrane. Granules should gelatinize individually as wheat starch does, causing a disruption of cell membranes which prevents shrinkage of the loaf during cooling after baking.  相似文献   

15.
《Cereal Chemistry》2017,94(5):827-833
Glutens isolated from 15 soft red winter (SRW) wheat flours were added into a SRW wheat flour to obtain protein levels of 9.6 and 11.3% for determination of the qualitative effect of added gluten on the dough properties and quality of northern‐style Chinese steamed bread (CSB). Sodium dodecyl sulfate sedimentation (SDSS) volume of the gluten source flour exhibited positive relationships with mixograph absorption, midline peak time (MPT), and midline peak value (MPV) of the gluten‐added flours and with surface smoothness, crumb structure, and total score of CSB prepared from the gluten‐added flours regardless of protein content. Positive correlations were also observed between SDSS volume of the gluten source flour and specific volume and stress relaxation score of CSB prepared from the gluten‐added flours of 11.3% protein. The increase in protein content from 9.6 to 11.3% by gluten addition raised mixograph absorption, MPT, and MPV but had no apparent effect on resistance breakdown, dough maximum force for extension, and extensibility, and it increased CSB specific volume and crumb structure score without affecting surface smoothness, stress relaxation, and total score. Mixograph parameters exhibited significant relationships with CSB total score, indicating that they could be effective predictors of the CSB‐making quality of flours.  相似文献   

16.
《Cereal Chemistry》2017,94(4):760-769
The interrelationships between flour quality and the variability in the dough physical properties and bread loaf characteristics were investigated under reduced salt conditions using partial least squares (PLS) regression analysis. Seventy‐two percent of the variability in dough physical properties was explained by the flour quality using a three‐factor PLS model. Damaged starch content (DS), protein content, and farinograph dough development time (DDT) explained the variability of dough creep‐recovery behavior along PLS‐1. Farinograph absorption (FAB), located along PLS‐2, was strongly related to dough adhesiveness, in which adhesiveness was highly correlated to dough stickiness (r = 0.91). Eighty‐nine percent of the variability in bread loaf characteristics was explained by the flour quality using a four‐factor PLS model; the first two PLS factors explained 66% of the variability. The loaf volume was related to a high number of loaf cells, whose expansion resulted in a greater loaf height. The relation between loaf volume and loaf height was expressed more in PLS‐3 than PLS‐1 and PLS‐2. Mean cell wall thickness and mean cell diameter were closely related negatively along PLS‐1, for which DS and farinograph dough stability explained much of the variability in these loaf characteristics. Along the third PLS factor, FAB explained the variability in loaf weight.  相似文献   

17.
Empirical and fundamental rheology measurements were made on fresh and frozen dough to investigate the effects of freezing, frozen storage, and additives. These results were compared with results of a standard baking test. Four formulations were tested: a control dough, and doughs with additions of 100 ppm of ascorbic acid (AA), 0.5% sodium stearoyl lactylate (SSL), and 0.5% diacetyl tartaric acid esters of monoglycerides (DATEM). Rheological and baking tests were performed on fresh doughs and on doughs after two, five, and eight weeks of frozen storage. Resistance to extension was higher for doughs with additives in fresh and frozen doughs. There was a decrease in resistance to extension due to freezing. Complex modulus in fresh doughs was highest for doughs with SSL. There was a decrease complex modulus after freezing and thawing. In frozen doughs at 10 Hz, doughs with additives had higher complex modulus values and lower phase angle values when compared to the control. The additives used all had a positive effect on proof time, loaf volume, and crumb firmness, and all formulations deteriorated in quality during frozen storage. Resistance to extension and complex modulus were positively correlated with loaf volume (r = 0.86 and r = 0.64, P < 0.01). Phase angle was negatively correlated with loaf volume (r = -0.74, P < 0.01).  相似文献   

18.
《Cereal Chemistry》2017,94(3):581-587
Wheat bran is a low‐cost by‐product abundantly produced by the wheat flour industry. As a staple food of China, Chinese steamed bread (CSB) represents about 40% of China's wheat consumption. This study investigated the effects of incorporating wheat bran into the CSB at different levels (5, 10, and 15%). The dough behavior was measured by analyzing rheological properties. Quality of CSB was analyzed from two perspectives: physical properties and nutritional quality. For physical properties, specific volume, loaf height, moisture, and texture were measured by 1 . The predicted glycemic response of the bread was analyzed by using an in vitro digestion method. The results illustrated that the incorporation of wheat bran into wheat flour reduced the extensibility of the dough, decreased specific volume, and increased bread hardness, gumminess, and chewiness. However, this study also showed that addition of wheat bran can decrease the predicted glycemic response of steamed bread by up to 39%.  相似文献   

19.
The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures of 25–60°C. Strain hardening and failure strain of cell walls both decreased with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties at higher temperatures (60°C), while the cell walls of poor breadmaking doughs became unstable at lower temperatures (45–50°C) and had lower strain hardening. Strain hardening measured at 50°C gave good correlations with baking volume, with the best correlations achieved between rheological measurements and baking tests that used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to strain hardening properties, and that extensional rheological measurements can be used as indicators of baking quality.  相似文献   

20.
The effect on O2 uptake during the mixing of yeasted dough, either unsupplemented or supplemented with glucose oxidase (GOX), horsebean flour (HB), soybean flour (SB), or combinations thereof, was studied using an airtight mixer. Two wheat flours with a low (flour A) and a high (flour B) content of free polyunsaturated fatty acids were used. Addition of HB or SB provokes a similar increase of O2 uptake for both wheat flours, whereas addition of GOX causes a larger increase for flour A than for flour B. When the wheat flours were supplemented with HB or SB, addition of GOX caused a small but significant increase of O2 uptake for flour A. This increase was not observed for flour B. The mixing tolerance of dough A, determined with the Chopin Consistograph, is increased by GOX addition. However, this effect is less pronounced when flour A is supplemented with HB or SB. Similarly, the relaxation index of dough B is decreased by GOX addition, but the decrease is less distinct in the presence of HB or SB. These results can be explained by a competition among yeast, GOX, and lipoxygenases (present in wheat, HB, and SB flours) for the O2 uptake by dough, which likely decreases the amount of hydrogen peroxide produced by GOX during dough mixing. This competition for O2 consequently also modifies the rheological properties of dough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号