首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hull-less barley (HB) has been investigated in many countries for use in feed, food, and industry since the publication of the last review in 1986. Literature published since 1990 on various aspects of HB utilization, other than in monogastric feeds, has been reviewed. Several HB cultivars containing low or β-glucan, low or high extract viscosity, and waxy (0–5% amylose) or normal starch are now available. Interest in HB utilization in the food industry developed largely due to its high β-glucan content, particularly in the waxy cultivars. β-Glucan is a major component of soluble fiber implicated in hypocholesterolemia, hypoglycemia, and in reducing incidence of chemically induced colon cancer in experimental animals. However, large-scale clinical trials using human subjects are needed to corroborate these effects. The zero amylose HB starch had low syneresis or a high freeze-thaw stability suitable for use in frozen foods. Single- or double-modified waxy HB starch may replace corn starch in some food applications, and cationized HB starch can replace corn and potato starches in the pulp and paper industry. HB may be milled using conventional wheat milling equipment to yield bran and flour for multiple food uses. Hull-less barley may also be used as a feed stock for fuel alcohol production, for the preparation of food malt with low or high enzyme activities, and for brewer's and distiller's malts.  相似文献   

2.
Five registered cultivars of hull-less barley (HB) with regular or waxy starch were milled in a Quadrumat Jr. mill to obtain whole grain flour; pearled in a Satake mill (cultivar Condor only), and the pearled fractions examined by microscopy to determine true HB bran. The samples were milled after tempering and drying in a Buhler mill to obtain bran and flour yields. Flour color and composition of HB were unaltered on milling in the Quadrumat Jr. mill. Microscopic evidence showed that a 70% pearl yield was devoid of the grain's outer coverings, including the aleurone and subaleurone layers. Therefore, the balance of 30% constitutes true bran in HB. Dry milling (as-is grain moisture) of regular starch HB in the Buhler mill gave 59% total flour and 41% bran (bran + shorts) yields, the comparative values for the waxy starch HB were 42 and 58%. On tempering HB from 9 to 16% grain moisture, the total flour yield decreased in both types of HB but to a lesser extent in the waxy starch HB due to decreases in reduction flour. On drying HB to 5 or 7% moisture, total flour yields increased due to contamination with bran and shorts. The milling study led to the conclusion that HB, at best, be dry-milled and a bran finisher be used to obtain commercial flour extraction rates. Lower total flour yields in the waxy starch HB than in the regular starch HB milled at the same grain moisture levels seemed due to higher β-glucan rather than grain hardness. Waxy starch HB flour had higher mixograph water absorption and water-holding capacity than regular starch HB or soft white wheat flour milled under identical conditions. Roller-milled HB products offer the best potential for entry into the food market.  相似文献   

3.
Zero amylose starch isolated from hull-less barley (HB) showed a typical A-type diffraction pattern. The X-ray analysis suggested that granules of zero amylose (SB94794) and 5% amylose (CDC Candle) HB starches had lower crystallinity than did commercial waxy corn starch. Differential scanning calorimetry showed lower transition temperatures and endothermal enthalpies for the HB starches than for the waxy corn starch. The zero amylose HB starch showed a Brabender pasting curve similar to that of waxy corn starch, but with lower pasting and peak temperatures and a higher peak viscosity. Noteworthy characteristics of zero amylose HB starch were its low pasting temperature and high paste clarity and freezethaw stability, which make this starch useful for many food and industrial applications.  相似文献   

4.
One oat cultivar grown in Idaho (three field sites) was pin-milled and separated by sieving to investigate whether starch from oat bran differs from the remainder of kernel. Ground oat particles were classified into three sieve fractions: 300–850 μm, 150–300 μm and <150 μm). β-Glucan content in sieve fractions was analyzed and starch was extracted from kernels without milling and from kernels of each sieve fraction. β-Glucan contents of 300–850, 150–300, and <150 μm sieve fractions were 4.2, 2.3, and 0.8%, respectively. Therefore, starch in bran (300–850 μm sieve fraction) and endosperm (<150 μm sieve fraction) were separated. Starch isolated from entire kernels had significantly higher apparent and absolute amylose content than starch from the 300–850 μm sieve fraction. Starch from different sieve fractions was not significantly different in the apparent amylose, absolute amylose, amylopectin molecular weight, gyration radii, starch gelatinization, and amylose-lipid complex thermal transition temperatures. Starch from the 150–300 μm sieve fraction had significantly lower peak, final, and setback viscosity compared with the starch isolated from the 300–850 μm and <150 μm sieve fractions. Starch removed from the oat bran fraction during β-glucan enrichment may have different applications compared with starch obtained from other kernel compartments. Because pin-milling decreased apparent amylose content and shortened amylopectin branch chains, its potential to alter starch structure should be considered.  相似文献   

5.
The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p < 0.05). Increase in grain protein concentration was not only related to total starch concentration (r(2) = -0.80, p < 0.01) but also affected enzymatic hydrolysis of pure starch (r(2) = -0.67, p < 0.01). However, an increase in amylopectin unit chain length between DP 12-18 (F-II) was detrimental to starch concentration (r(2) = 0.46, p < 0.01). Amylose concentration influenced granule size distribution with increased amylose genotypes showing highly reduced volume percentage of very small C-granules (<5 μm diameter) and significantly increased (r(2) = 0.83, p < 0.01) medium sized B granules (5-15 μm diameter). Amylose affected smaller (F-I) and larger (F-III) amylopectin chains in opposite ways. Increased amylose concentration positively influenced the F-III (DP 19-36) fraction of longer DP amylopectin chains (DP 19-36) which was associated with resistant starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p < 0.01) influenced resistant starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.  相似文献   

6.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

7.
Canadian and Japanese barleys were compared for whole and pearled grain composition and starch properties. Whole grain color and composition of the barleys showed large intercultivar differences, but few (color, protein, and total dietary fiber) significant differences between the Canadian and Japanese barleys. The Canadian hull-less barleys (HB) were pearled to 55% yield to match pearl yields of Japanese barleys. In Canadian HB, pearl time was correlated (r2 = +0.96**) with grain hardness. There were large intercultivar differences in color and composition of the pearled barleys; only protein, starch, total dietary fiber, and viscosity showed significant differences between the Canadian and Japanese pearled barleys. Pasting properties of the four Canadian pearled barleys (CDC Candle, AC Hawkeye, Falcon, and CDC Richard) and three Japanese pearled barleys (Hinode, Ichiban-Boshi, and Minori) showed Canadian pearled barleys had higher peak viscosity, viscosity at 95°C, and setback viscosity than the Japanese barleys. These differences in pasting properties were not related to amylose or crude lipid contents of Canadian and Japanese pearled barleys, nor to swelling factor and thermal properties of starches isolated from the barleys. They were likely due to higher β-glucan and protein in starch slurries of Canadian HB.  相似文献   

8.
The extractability and molecular weight of β-glucan in oat bran, oat bran muffins, and oat porridge and the changes taking place during processing and storage were studied. The β-glucan was extracted using hot water and a thermostable α-amylase and by an in vitro system that simulated human digestion. Molecular weight (MW) of the extracted β-glucan was determined using high-performance size-exclusion chromatography. Hot-water treatment extracted 50–70% of total β-glucan in oat bran samples and rolled oats. The chromatographic peak MW of extracted β-glucan was in the 1.4–1.8 × 106 range. Using the in vitro digestion system, 12–33% of total β-glucan in bran and rolled oats was solubilized, and peak MW was in the same range as β-glucan extracted by hot-water treatment. In muffins, 30–85% of total β-glucan was solubilized by in vitro digestion, with a major difference in extractability among muffins from different recipes. Peak MW of extracted β-glucan was lower in all muffins when compared to original bran. During frozen storage, extractable β-glucan decreased by >50% in all muffins, but no change in peak MW of extracted β-glucan was detected.  相似文献   

9.
The viscosity of soluble fibers such as β-glucan depends on their concentration in solution and molecular weight (MW) distribution. We investigated whether freezing treatment of oat bran muffins affected the physicochemical properties of β-glucan, and its physiological effectiveness in lowering postprandial blood glucose response. A controlled range of β-glucan solubility was achieved by subjecting oat bran muffins containing two levels of β-glucan to repeated freeze-thaw temperature cycling. β-Glucan solubilized by in vitro digestion extraction was measured by flow-injection analysis. MW distributions of β-glucan were analyzed using size-exclusion chromatography. β-Glucan solubility decreased as the number of freeze-thaw cycles increased, while MW distribution of β-glucan decreased slightly. Peak blood glucose rise (PBGR) after fresh muffins (8 and 12 g of β-glucan/serving) was significantly lower than that after muffins (8 and 12 g of β-glucan/serving) treated with four freeze-thaw (FT) cycles (1.84 ± 0.2 vs. 2.31 ± 0.1 mmol/L, P = 0.007). Compared with the control whole wheat muffins, the reduction in incremental area under the glucose response curve (AUC) after fresh muffins (8 and 12 g of β-glucan/serving) was nearly twice that after 4 FT cycles (43.3 ± 4.4% vs. 27.0 ± 5.4%, P = 0.016). A significant inverse linear relationship was found between the log [concentration] of extractable β-glucan and PBGR (r2 = 0.85, P = 0.01), and AUC (r2 = 0.71, P = 0.03). The results show that reduction of β-glucan solubility in foods attenuates its physiological effectiveness in lowering postprandial glycemia.  相似文献   

10.
Roller milled flours from eight genotypes of hull‐less barley (HB) with normal, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch were incorporated at 20 and 40% (w/w) with a 60% extraction Canada Prairie Spring White (CPSW, cv. AC Vista) wheat flour to evaluate their suitability as a blend for yellow alkaline noodles (YAN). The barley flour supplemented noodles were prepared using conventional equipment. Noodles containing 40% HB flour required less work input than the corresponding 20% blend noodles due to a higher water absorption at the elevated level of HB flour addition, which probably caused them to soften. The addition of any HB flour at either level to the CPSW flour resulted in significantly decreased brightness (L*) and yellowness (b*), elevated redness (a*), concomitant with a significantly greater number of specks per unit area of noodle sheet compared with the control flour. The addition of 40% HB flour to YAN decreased cook time and cooking losses. Noodle firmness, as determined by maximum cutting stress (MCS), was significantly increased by the addition of 40% HB flour. Noodle chewiness, as determined by the texture profile analysis (TPA), was affected by the type of starch in the barley samples; the addition of waxy and ZAW HB flour decreased chewiness, whereas normal and HA HB flour increased chewiness of composite noodles.  相似文献   

11.
Molecular characteristics were determined for mixed-linkage (1→3) (1→4)-β-d -glucans (β-glucans) extracted from Azhul, Crystal, Waxbar, and Prowashonupana barleys. β-Glucans in extracts (with or without α-amylase, protease, hemicellulase, or xylanase treatment) were separated from other components by high-performance size-exclusion chromatography and detected with multiple-angle laser light scattering, refractive index, and fluorometry following postrefractive index treatment with Calcofluor. Pretreatment of barley with 70% ethanol (80°C, 4 hr) reduced β-glucanase activity by ~20%. Hot-alcohol treatment also reduced β-glucan extraction at 23 and 65°C by 42 and 14%, respectively. Molecular weights of β-glucans in the first water extract were generally higher than in succeeding water and alkali extracts. Weight average molecular weights ranged from 0.44 × 106 to 2.34 × 106 g/mol after α-amylase treatment to remove interfering starch. Interference due to pentosans was not demonstrated using enzyme treatments.  相似文献   

12.
Wheat preprocessing technology produces a bran fraction rich in both soluble (8.5%) and insoluble (29.2%) fibers. The fraction, prepared by the Tkac and Timm commercial process, contained 9% alkaline extractable nonstarch polysaccharides (NSP). Conditions for extraction of NSP were chosen on the basis of both yield and molecular size of product. The extracted NSP was composed of an arabinoxylan and a mixed linkage(1→3)(1→4)-β-d -glucan. The NSP differed from previously reported wheat pentosans by exhibiting shear-thinning flow behavior at low concentration in water (0.5%, 25°C) and, more importantly, forming a thermally reversible gel upon cooling at 4°C. This unique gelling property is neither the commonly described irreversible gelation brought about by oxidation of wheat endosperm pentosans nor a characteristic property of cereal β-glucan. The low degree of substitution of the xylan chain of the arabinoxylan (xylose-to-arabinose ratio = 3) in this NSP might be responsible for the rheo-logical behavior.  相似文献   

13.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

14.
β-Glucanase activity interferes with molecular characterization of mixed-linkage (1→3)(1→4)-β-d -glucans (β-glucans). Reductions in β-glucanase activity were determined after barley cvs. Azhul, Waxbar, and Baronesse were treated with autoclaving (120°C, 45 min), calcium chloride (0.05M, 1 hr), 70% ethanol (80°C, 4 hr), hydrochloric acid (0.1N, 1 hr), oven heating (120 and 140°C, 40 min), sodium hydroxide (0.0025M, 1 hr), and 5% trichloroacetic acid (TCA) (40°C, 1 hr). High-performance size-exclusion chromatography (HPSEC) of α-amylase-treated aqueous extracts was used to demonstrate the effects of treatments on the molecular weights of β-glucans. The HPSEC system included multiple-angle, laser light scattering, refractive index, and fluorescence detectors. β-Glucanase activities, ranging from 52 to 65 U/kg of barley, were reduced by autoclaving (50–75%), hot alcohol (67–76%), oven heating (40–96%), CaCl2 (75–95%), NaOH (76–89%), and TCA (92–96%). Some malt β-glucanase activity remained after most treatments. HCl and TCA treatments reduced extraction and molecular weights of β-glucans. Weight-average molecular weights (Mw) for β-glucans extracted with water at 23°C were low (most <8 × 105). Base treatment (pH 9) and extraction at 100°C for 2.5 hr resulted in the greatest extraction of β-glucans and highest Mw. As a result, the conditions seem appropriate for measurement of physical characteristics of β-glucans in cereal products.  相似文献   

15.
Starch was isolated from three different barleys with normal, highamylose, or high‐amylopectin (waxy) starch. The laboratory‐scale starch isolation procedure included crushing of grains, steeping, wet milling, and sequential filtration and washing with water and alkali, respectively. Yield and content of starch, protein, and dietary fiber, including β‐glucan, were analyzed in isolated starch and in the by‐products obtained. Starch yield was 25–34%, and this fraction contained 96% starch, 0.2–0.3% protein, and 0.1% ash. Most of the remaining starch was found in the coarse material removed by filtration after wet milling, especially for the high‐amylose barley, and in the starch tailings. Microscopy studies showed that isolated starch contained mostly A‐granules and the starch tailings contained mostly B‐granules. Protein concentration was highest in the alkali‐soluble fraction (54%), whereas dietary fiber concentration was highest in the material removed by filtration after alkali treatment for the normal and waxy barleys (55%). The β‐glucan content was especially high for the waxy barley in this fraction (26%). The study thus showed that it was possible to enrich chemical constituents in the by‐products but that there were large differences between barleys. This result indicates a need for modifications in the isolation procedures for different barleys to obtain high yields of starch and different by‐products. Valuable by‐products enriched in β‐glucan or protein, for example, may render starch production more profitable.  相似文献   

16.
Prime and tailings starches of garbanzo beans and peas were separated and the chemical composition, physical properties, thermal behavior, and gel properties were determined. Starch granules <35 μm were 85% in garbanzo beans, 66.8% in a smooth pea cv. Latah, and only 18.4% in a smooth pea cv. SS Alaska. Amylose content of prime starch was 35.9% in garbanzo beans, 44.5–48.8% in smooth peas, and 86.0% in wrinkled pea cv. Scout. Tailings starch amylose content was at least 8% higher than the corresponding prime starch. The endothermic enthalpy value of garbanzo bean and two smooth pea prime starches ranged from 12.1 to 14.2 J/g, while prime starch from wrinkled peas gave a distinctly lower enthalpy value of 1.1 J/g. Differential scanning calorimetry endothermic enthalpy and amylograph pasting properties of prime starch were significantly related to its amylose content (P < 0.05). Prime starches of garbanzo beans and smooth peas produced highly cohesive elastic gels. Wrinkled pea prime starch formed the strongest (though brittle) gel, as indicated by high hardness (21.8 N), low cohesiveness (0.29), and low springiness (0.82). Hardness of gel stored at 22°C and at 4°C was positively correlated with amylose content of starch.  相似文献   

17.
To obtain an indication of the effect of increasing the starch amylose content above normal levels (27–74%) and increasing the percentage of B‐type starch granules (11–60%) on durum dough properties and the quality of the spaghetti derived from these doughs, the reconstitution approach was used. Reconstituted flours were prepared from a common Wollaroi gluten, solubles and tailings fraction combined with starches containing varying B‐granule contents, or with starches from maize with varying amylose content. An increased B‐granule content increased farinograph water absorption. Cooked spaghetti firmness was highest with B‐type granules at 32–44% (volume percentage basis), which is ≈10–15% higher than normally found in durum starch. Increasing the amylose content in the starch caused the dough to be more extensible, increased spaghetti firmness, and decreased water absorption with optimum quality of amylose at 32–44%. The information indicates there would be benefit in producing durum wheats with slightly elevated B‐granule and amylose contents.  相似文献   

18.
Cereal β-glucan can function as a thickener, but endogenous β-glucanase enzymes of the grain cleave β-glucan, reducing its viscosity. Although different extraction techniques have been developed, the viscosity stability of β-glucan gum has not been reported. The objective of this study was to investigate the effect of extraction treatments on the yield, purity, and viscosity stability of barley β-glucan (BBG) gum. A regular barley cultivar, Condor, and a waxy cultivar blend were extracted at pH 7–10 and 55°C for 0.5 hr. Four extraction conditions were evaluated: 1) extraction at high pH with no additional heat treatment; 2) boiling of extract; 3) prior refluxing of flour with 70% ethanol; and 4) treatment of extract with thermostable α-amylase for purification. Viscosity of extracts was monitored for ≥24 hr at 25°C. The highest β-glucan purities were achieved with a boiled Condor extract at pH 7 (81.3% db, 4.1% yield) and with refluxed waxy barley extracted at pH 8 and treated with α-amylase and (79.3% db, 5.1% yield). Gums extracted without subsequent heat treatment or prior refluxing of flour had high protein (>17%) and starch (>24%) impurities, respectively. The viscosity of gums obtained without heating was unstable. Prior refluxing treatment was not sufficient to stabilize final extracts. Boiling extracts resulted in stable but low viscosity. Reflux followed by purification treatment produced the highest stable viscosity for 0.5% solutions of both Condor (64 mPa sec-1, pH 7) and waxy (48.8 mPa sec-1, pH 8) extracts. Stable BBG gum with high viscosity can be obtained using thermal treatments in combination with high pH. The potential use of such gums as thickeners in food systems needs to be assessed.  相似文献   

19.
Starch samples isolated from wheat flour that represented four possible waxy states (0, 1, 2, and 3‐gene waxy) were subjected to crushing loads under both dry and wet conditions. Calibrated loads of 0.5–20 kg were applied to the starch samples and the percentage of damaged granules was visually determined. Under dry crushing conditions, starches containing amylose (0, 1, and 2‐gene waxy) had between 1% (5‐kg load) to 3% (15‐ and 20‐kg load) damaged granules, whereas waxy starch (3‐ gene waxy; <1% amylose) began rupturing at 0.5‐kg load (3.5% damaged granules) and had 13% damaged granules when ≥10‐kg load was applied. Under wet crushing conditions, normal and partial waxy starch (0, 1, and 2‐gene waxy) showed little difference in percentage of damaged granules when compared to the results of dry crushing. Waxy starch (3‐gene waxy), however, showed substantially increased numbers of damaged granules: 12% damaged granules at 0.5‐kg load, rising to 55% damaged granules at 15‐kg load. The results indicate that waxy starch granules are less resistant to mechanical damage than normal starch granules. Furthermore, blends of normal and waxy wheats or wheat flours intended to have a particular amylose‐amylopectin ratio will be a complex system with unique processing and formulation considerations and opportunities.  相似文献   

20.
Three mechanisms of oat milling were tested for laboratory-scale oat bran production. Oat bran consistent with AACC definition and commercially obtained product was generated with either roller-milling or impact-milling of groats, followed by sieving to retain larger particles. These bran preparations were enriched ≈1.7-fold in β-glucan and ash, 1.4-fold in protein, and 1.1-fold in lipid. Bran finishing made further enrichments in protein, β-glucan, and ash. Tempering oat (to 12% moisture for 20 min) improved bran yield from roller-milling nearly two-fold but had little effect on bran composition. Bran yield from the impact-type mill was significantly affected by grinding screen size. Oat bran obtained from a pearling mill was only slightly enriched in β-glucan and protein, but it was more heavily enriched in ash and oil than brans from roller or impact mills. The pearling mill isolated the outer layers of the groat directly, but because of its low β-glucan composition it did not meet the AACC definition of oat bran, indicating a relatively uniform distribution of β-glucan in the groat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号