首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorghum undergoes structural changes during tempering, steam cooking, and flaking at various tempering moisture levels. Physical properties of flakes, digestibility, birefringence, scanning electron microscopy (SEM), and environmental SEM (ESEM) were used to evaluate the quality of steam-flaked sorghum from grain containing 11–23% water. As moisture levels increased, the flakes became stronger (57–69% whole flakes) and less dusty (9–4% fines). The diameter of the flakes varied among moisture levels, but preflake and final flake moisture contents increased as the temper level increased. Starch birefringence remained unchanged after tempering, and decreased only slightly after steam cooking; gelatinization occurred primarily during the flaking process. The steaming process prepared the grain for flaking by heating and softening the kernels. Tempering allowed extra water to penetrate inside the kernel endosperm. More starch granules had the opportunity to reach the glass transition temperature (T g) during flaking. Based on subjective evaluation, birefringence, and SEM, poor quality flakes were opaque, chalky in appearance, and prone to high levels of breakage. The starch granules were more intact and less tightly packed into the flake. Good quality flakes were translucent, thin, and strong, with little chalkiness, and low levels of dust and fines. The dehydrated gelatinized starch continuous phase surrounding the granules reduced the amount of air spaces within the flake, increasing the translucency. ESEM inspection revealed that starch was more extensively gelatinized in the tempered samples. The starch granules were much larger in diameter, and the relative level of gelatinization, evident by the presence of starch granules with collapsed centers, was much higher.  相似文献   

2.
Correlations among grain sorghum quality factors (proximate composition, physical properties, and water absorption properties) were evaluated. Samples of 46 commercial hybrids (24 and 22 from crop years 1993 and 1994) were analyzed for starch, protein, crude free fat, test weight, absolute density, 1,000 kernel weight, percent kernel abraded, water absorption index, initial water absorption rate, and moisture saturation point. Test weight, absolute density, and percent kernel abraded were positively correlated among themselves (r > 0.5). Protein was negatively correlated with both test weight and absolute density (r < -0.5), while moisture saturation point showed negative correlations with test weight, absolute density, 1,000 kernel weight, and percent kernel abraded (r < -0.4). Principal component factor analysis through the covariance matrix explained 95% of the total variation of quality factors among hybrids (two factors), and, through the correlation matrix, 85% of the total variation (five factors). Water absorption rate decreased with increasing starch content of grain sorghum kernels as water absorption rate increased and amount of water for saturation decreased with softening of kernels.  相似文献   

3.
Mutation of the gene coding for the granule bound starch synthase (waxy protein) leads to reduced amylose content in cereal endosperm. Durum wheat (Triticum turgidum L. var. durum) has one waxy locus in each of its two genomes. Full waxy durum wheat is produced when both genomes carry the waxy null alleles. When only one locus is mutated, partial waxy durum wheat is obtained. Partial and full waxy near‐isogenic lines of durum wheat developed by a breeding program were analyzed as to their quality characteristics. Amylose was largely eliminated in full waxy lines; however, no reduction in amylose content was detected in partial waxy lines. The waxy mutation did not affect grain yield, kernel size, or kernel hardness. Full waxy durum lines had higher kernel ash content, α‐amylase activity, and a unique nonvitreous kernel appearance. Protein quality, as evaluated by SDS microsedimentation value, gluten index, and wet gluten was slightly lower in the full waxy lines than in the other genotypes. However, comparisons with current cultivars indicated that protein quality of all derived lines remained in the range of strong gluten cultivars. Semolina yield was lowered by the waxy mutations due to lower friability that resulted in less complete separation of the endosperm from the bran. Waxy semolina was more sensitive to mechanical damage during milling, but modified tempering and milling conditions may limit the damage. Overall, quality characteristics of waxy durum grain were satisfactory and suitable for application testing.  相似文献   

4.
Tempering agents affect the pericarp of steamed grain and the endosperm of steam-flaked sorghum. Examination by environmental scanning electron microscopy (ESEM) clearly showed that β-mercaptoethanol (BME), sulfurous acid (SA), phosphoric acid, and cellulase significantly altered the structure of the pericarp and endosperm during tempering. Lime and protease had a lesser effect on the pericarp structure of the kernels, and had little effect on the endosperm. Steamed flakes from the SA treatment were more translucent and durable than all other treatments. Flakes with BME were translucent and high in quality, but were more fragile than the SA flakes. Nontempered, water only, and commercial conditioner treatments produced flakes with the lowest quality. Peak, final, and breakdown Rapid Visco Analyzer (RVA) viscosities were lowest for the SA flakes due to disruption of the starch chains by the weak acid. BME viscosity values were higher than SA, but lower than the water and commercial tempering treatments. The commercial conditioner (15×normal concentration) did not alter kernel structure and did not cause any changes in the RVA profiles over kernels tempered with water alone. Starch gelatinization, measured by enzyme susceptible starch (ESS), was highest in the SA and BME flakes and lowest in the nontempered flakes. Feedlot operators may be able to save money by avoiding the use of chemical additives that do nothing to the grain. By using chemicals proven to have positive effects on flake quality, operators could save money by reducing the processing time and energy needed to produce good quality flakes.  相似文献   

5.
Development of high‐protein digestibility (HPD)/high‐lysine (hl) sorghum mutant germplasm with good grain quality (i.e., hard endosperm texture) has been a major research objective at Purdue University. Progress toward achieving this objective, however, has been slow due to challenges posed by a combination of genetic and environmental factors. In this article, we report on the identification of a sorghum grain phenotype with a unique modified endosperm texture that has near‐normal hardness and possesses superior nutritional quality traits of high digestibility and enhanced lysine content. These modified endosperm lines were identified among F6 families developed from crosses between hard endosperm, normal nutritional quality sorghum lines, and improved HPD/hl sorghum mutant P721Q‐derived lines. A novel vitreous endosperm formation originated in the central portion of the kernel endosperm with opaque portions appearing both centrally and peripherally surrounding the vitreous portion. Kernels exhibiting modification showed a range of vitreous content from a slight interior section to one that filled out to the kernel periphery. Microstructure of the vitreous endosperm fraction was dramatically different from that of vitreous normal kernels in sorghum and in other cereals, in that polygonal starch granules were densely packed but without the typically associated continuous protein matrix. We speculate that, due to the lack of protein matrix, such vitreous endosperm may have more available starch for animal nutrition, and possibly have improved wet‐milling and dry‐grind ethanol processing properties. The new modified endosperm selections produce a range that approaches the density of the vitreous parent, and have lysine content and protein digestibility comparable to the HPD/hl opaque mutant parent.  相似文献   

6.
Gluten‐free breadmaking quality of 10 sorghum flours was compared using (relative basis) decorticated sorghum flour (70), corn starch (30), water (105), salt (1.75), sugar (1), and dried yeast (2). Batter consistency was standardized by varying water levels to achieve the same force during extrusion. Crumb properties were evaluated by digital image analysis and texture profile analysis (TPA). Significant differences (P < 0.001) in crumb grain were found among the hybrids with mean cell area ranging from 1.3 to 3.3 mm2 and total number of cells ranging from 13.5 to 27.8/cm2. TPA hardness values of the crumb also varied significantly (P < 0.001). Based on significant correlations (P < 0.01), starch damage, influenced by kernel hardness, was identified as a key element for these differences. Breads differed little in volume, height, bake loss, and water activity. Investigation of added ingredients on bread quality was conducted using response surface methodology (RSM) with two sorghum hybrids of opposite quality. Addition of xanthan gum (0.3–1.2% flour weight basis [fwb]) and skim milk powder (1.2–4.8% fwb) and varying water levels (100–115% fwb) were tested using a central composite design. Increasing water levels increased loaf specific volume, while increasing xanthan gum levels decreased the volume. As skim milk powder levels increased, loaf height decreased. Quality differences between the hybrids were maintained throughout the RSM.  相似文献   

7.
Abstract

Corn (Zea mays L.) is a major source of nutrition for humans and animals. Chemical and physical properties of corn endosperm vary among hybrids, are influenced by genotype and environment, and may affect the crop's response to nitrogen (N) fertilization. The objective of the study was to measure the responses of grain yield and grain N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), iron (Fe), boron (B), zinc (Zn,) and copper (Cu) concentration of different endosperm types to N fertilization. The study was conducted at two Ohio locations in 1988, where six endosperm types and two N rates (34 and 200 kg N/ha) were combined in a split plot arrangement. Nitrogen rate (main plots) had little effect on yield at either location, and the soft endosperm hybrid was the only hybrid to respond to N fertilizer. Within fertilizer level, hybrids differed in grain yield with the waxy hybrid out yielding the normal endosperm hybrid, and the hard endosperm hybrid out yielding the soft one at the 200 kg N/ha rate. Application of N fertilizer increased the grain N concentration of all hybrids. Grain of the waxy hybrid contained an equal or greater N concentration than the normal hybrid. In contrast, no difference in N level was found between hard and soft endosperm hybrids at either fertilizer level. Climatic conditions and soil fertility differences might have been partly responsible for location effects. Genetic make‐up could have been a factor in differing hybrid response since grain concentration of nutrients Varied by location, endosperm type, and N treatment.  相似文献   

8.
The single kernel characterization system (SKCS) has been widely used in the wheat industry, and SKCS parameters have been linked to end‐use quality in wheat. The SKCS has promise as a tool for evaluating sorghum grain quality. However, the SKCS was designed to analyze wheat, which has a different kernel structure from sorghum. To gain a better understanding of the meaning of SKCS predictions for grain sorghum, individual sorghum grains were measured for length, width, thickness (diameter), and weight by laboratory methods and by the SKCS. SKCS predictions for kernel weight and thickness were highly correlated to laboratory measurements. However, SKCS predictions for kernel thickness were underestimated by ≈20%. The SKCS moisture prediction for sorghum was evaluated by tempering seven samples with varying hardness values to four moisture levels. The moisture contents predicted by SKCS were compared with a standard oven method and, while correlated, SKCS moisture predictions were less than moisture measured by air oven, especially at low moisture content. Finally, SKCS hardness values were compared with hardness measured by abrasive decortication. A moderate (r = 0.67, P < 0.001) correlation was observed between the hardness measurements. The SKCS predictions of kernel weight and diameter were highly correlated with laboratory measurement. Moisture prediction, however, was substantially lower by the SKCS than as measured by an air oven method. The SKCS should be suitable for measuring sorghum grain attributes. Further research is needed to determine how SKCS hardness predictions are correlated to milling properties of sorghum grain.  相似文献   

9.
10.
A method of comparing milling values of sorghum by adjusting yields to standard L values was developed. The milling values of ‘Dorado’ (an excellent food-type sorghum variety), ‘ATx399 × RTx430’ (a commercial red sorghum hybrid) and three ‘Warner 902W’ (commercial white food type hybrids with different levels of weathering designated W-1, W-2, and W-3) were determined using a tangential abrasive dehulling device for various times. Color (L, a, b) was measured on the decorticated grain (grits) and the ground grits (flour). The yields (by weight) of flours adjusted to an L value of 85 were 93, 88, 86, 84, and 70% for Dorado, W-2, W-1, W-3, and red, respectively. The b (yellow) values were highest for red and lowest for Dorado. The grits yields were 96, 89, 84.5, 81.5, and 56.5% when adjusted to an L of 67 for Dorado, W-2, W-1, W-3, and red sorghums, respectively. Milling yields expressed at comparable flour or grit color clearly demonstrate that white food-type sorghums have significantly better milling yields than red sorghums. Adjusting milling yields to a standard L value is an accurate and easy way to compare milling properties of sorghums for yield and product color.  相似文献   

11.
Five white corn hybrids were processed (nixtamalized) using 10 different processing conditions; tortillas were prepared to establish relationships between corn composition, physical characteristics, and nixtamalization process or product properties. Corn hybrids were characterized by proximate analysis and by measuring Stenvert hardness, Wisconsin breakage, percent floaters, TADD overs, thousand‐kernel weight, and test weight. Corn characteristics were correlated with process and product variables (effluent dry matter loss and pH; nixtamal moisture and color; masa moisture, color, and texture; and tortilla moisture, color, and rollability). Process and product variables such as corn solid loss, nixtamal moisture, masa texture, and tortilla color were influenced not only by processing parameters (cook temperature, cook time, and steep time) but also depended on corn characteristics. Significant regression equations were developed for nixtamalization dry matter loss (P < 0.05, r2 = 0.79), nixtamal moisture (P < 0.05, r2 = 0.78), masa gumminess (P < 0.05, r2 = 0.78), tortilla texture (P < 0.05, r2 = 0.77), tortilla moisture (P < 0.05, r2 = 0.80), tortilla calcium (P < 0.05, r2 = 0.93), and tortilla color a value (P < 0.05, r2 = 0.87).  相似文献   

12.
To evaluate the ethanol production performance of waxy sorghum hybrids and the effects of location and harvest year on ethanol yield, samples of four waxy sorghum hybrids collected from two Nebraska locations (Mead and Lincoln) in both 2009 and 2010 were tested for ethanol production in a dry‐grind process. No significant difference (P = 0.216) in starch contents was observed among the four hybrids, but starch contents of the hybrids were significantly affected by growth location (P = 0.0001) and harvest year (P = 0.0258). Location, hybrid, and harvest year all had significant effects on ethanol fermentation efficiency in the dry‐grind process. Lincoln sorghum samples showed higher (P = 0.022) ethanol fermentation efficiency (90.4%) than did Mead sorghum samples (90.0%). Sorghums harvested in 2010 had higher (P < 0.001) ethanol fermentation efficiency (91.1%) than those harvested in 2009 (89.3%). The 2009 sorghum flours had more amylose‐lipid complexes than the 2010 samples did, and amylose‐lipid complexes as previously reported had adverse effects on ethanol fermentation. Residual starch contents in distillers dried grains with solubles (DDGS) were significantly affected by hybrid and harvest year (P < 0.0001), but we observed no difference in protein content in DDGS from the four hybrids.  相似文献   

13.
Abstract

Physical characteristics of corn (Zea mays L.) kernels influence end‐use. Agronomic practices including nitrogen (N) fertilization may influence kernel hardness. The objective of this study was to determine if com endosperm characteristics influence the effect of N fertilization on kernel hardness and breakage susceptibility. In 1988, six corn hybrids differing for endosperm were grown at two locations in Ohio and with two N rates (34 and 200 kg/ha). Kernels of the waxy hybrid were denser less susceptible to breakage than its near‐isogeneic normal counterpart. Soft kernels weighted less and were less dense than hard kernels, but these two hybrid classifications did not differ for breakage susceptibility. Hard kernels possessed a greater resistance to grinding than soft kernels. Increasing N fertilizer rate increased resistance to grinding and reduced susceptibility to breakage of both soft and hard endosperm types. Fertilization with N not only affects corn grain yield, but also affects physical characteristics that are important to end‐users.  相似文献   

14.
The objective of this research was to investigate the fermentation performance of waxy grain sorghum for ethanol production. Twenty‐five waxy grain sorghum varieties were evaluated with a laboratory dry‐grind procedure. Total starch and amylose contents were measured following colorimetric procedures. Total starch and amylose contents ranged from 65.4 to 76.3% and from 5.5 to 7.3%, respectively. Fermentation efficiencies were in the range of 86.0–92.2%, corresponding to ethanol yields of 2.61–3.03 gallons/bushel. The advantages of using waxy sorghums for ethanol production include easier gelatinization and low viscosity during liquefaction, higher starch and protein digestibility, higher free amino nitrogen (FAN) content, and shorter fermentation times. The results showed a strong linear relationship between FAN content and fermentation rate. Fermentation rate increased as FAN content increased, especially during the first 30 hr of fermentation (R2 = 0.90). Total starch content in distillers dried grains with solubles (DDGS) was less than 1% for all waxy varieties.  相似文献   

15.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

16.
This study examined the interaction between sorghum grain hardness and sorghum malt quality in terms of diastatic power and free amino nitrogen with endosperm modification during malting. The changes in kernel hardness during malting of four commercial sorghum cultivars of differing quality in terms of endosperm texture and potential malt quality were measured using tests for hardness and density, and endosperm modification was followed by scanning electron microscopy. The general pattern of modification during sorghum malting was confirmed to start at the endosperm–scutellum interface and then continue into the floury endosperm toward the kernel distal end. Significantly, a cultivar of intermediate hardness and low malting quality remained harder and modified more slowly than a harder cultivar of high malting quality. It appeared that intrinsic grain hardness and malt amylase and protease activity both affected malt hardness and endosperm modification, but amylase and protease activity had a greater effect because of their degradation of endosperm starch and protein. Of the hardness and density tests studied, the tangential abrasive dehulling device (TADD) gave the best measure of hardness throughout malting; maximum range was 24–100% kernel removed over five days of malting. Also, the data agreed with the observed malt modification rates. Thus, the TADD may have application as a simple and rapid test for estimating sorghum malt quality.  相似文献   

17.
Hard winter wheat (Triticum aestivum L.) flours (n = 72) were analyzed for free lipids (FL) and their relationships with quality parameters. The two main glycolipid (GL) classes showed contrary simple linear correlations (r) with quality parameters. Specifically, kernel hardness parameters, flour yields, and water absorptions had significant negative correlations with monogalactosyldiglycerides (MGDG) but positive correlations with digalactosyldiglycerides (DGDG). MGDG showed negative correlations with gluten content but positive correlations with gluten index. The percentages of DGDG in FL had significant positive correlations among cultivars (n = 12) with mixograph and bake mix times (r = 0.71, P < 0.01 and r = 0.67, P < 0.05, respectively), mixing tolerance (r = 0.67, P < 0.05), and bread crumb grain score (r = 0.71, P < 0.01). These results suggest that increasing DGDG in FL could contribute to enhancing wheat quality attributes including milling, dough mixing, and breadmaking quality characteristics. FL content and composition (ratio of MGDG or DGDG to GL) supplement flour protein content to develop prediction equations of mixograph mix time (R2 = 0.89), bake mix time (R2 = 0.76), and loaf volume (R2 = 0.72).  相似文献   

18.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

19.
The development of genetically modified starches has relied on the use of maize (Zea mays L.) endosperm mutant alleles that alter starch structural and physical properties. A rapid method for predicting amylose content would benefit breeders and commercial handlers of specialty starch corn. For this reason, a study was conducted to investigate the use of near-infrared transmittance spectroscopy (NITS) as a rapid and nondestructive technique for predicting grain amylose content (GAC) in maize. Many single- and double-mutant inbreds and hybrids were used to create a calibration set for the development of a predictive model using partial least squares analysis. A validation set composed of similar genetic material was used to test the prediction model. A coefficient of correlation (r) of 0.94 was observed between GAC values determined colorimetrically and those predicted by NITS; however, the predicted values were associated with a large standard error of prediction (SEP = 3.5). Overall, NITS discriminated well among high amylose and waxy genotypes. The NITS calibration was used to determine levels of contamination by normal kernels in waxy and high-amylose (Amy VII) grain samples intended for wet milling. In both cases, a 5% contaminated sample could be detected from pure samples according to predicted NITS values.  相似文献   

20.
We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy, and waxy endosperm, as well as hard wheat, were tested for amylose content, pasting properties, and SC baking quality. Starches isolated from wheat flours of normal, single‐null partial waxy, double‐null partial waxy, and waxy endosperm were also tested for pasting properties and baked into SC. Double‐null partial waxy and waxy wheat flours produced SC with volume of 828–895 mL, whereas volume of SC baked from normal and single‐null partial waxy wheat flours ranged from 1,093 to 1,335 mL. The amylose content of soft white and club wheat flour was positively related to the volume of SC (r = 0.790, P < 0.001). Pasting temperature, peak viscosity, final viscosity, breakdown, and setback also showed significant relationships with SC volume. Normal and waxy starch blends having amylose contents of 25, 20, 15, and 10% produced SCs with volume of 1,570, 1,435, 1,385, and 1,185 mL, respectively. At least 70 g of starch or at least 75% starch in 100 g of starch–gluten blend in replacement of 100 g of wheat flour in the SC baking formula was needed to produce SC having the maximum volume potential. Starch properties including amylose content and pasting properties as well as proportion of starch evidently play significant roles in SC baking quality of wheat flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号