首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

2.
Amylose contents of prime starches from nonwaxy and high-amylose barley, determined by colorimetric method, were 24.6 and 48.7%, respectively, whereas waxy starch contained only a trace (0.04%) of amylose. There was little difference in isoamylase-debranched amylopectin between nonwaxy and high-amylose barley, whereas amylopectin from waxy barley had a significantly higher percentage of fraction with degree of polymerization < 15 (45%). The X-ray diffraction pattern of waxy starch differed from nonwaxy and high-amylose starches. Waxy starch had sharper peaks at 0.58, 0.51, 0.49, and 0.38 nm than nonwaxy and high-amylose starches. The d-spacing at 0.44 nm, characterizing the amylose-lipids complex, was most evident for high-amylose starch and was not observed in waxy starch. Differential scanning calorimetry (DSC) thermograms of prime starch from nonwaxy and high-amylose barley exhibited two prominent transition peaks: the first was >60°C and corresponded to starch gelatinization; the second was >100°C and corresponded to the amylose-lipid complex. Starch from waxy barley had only one endothermic gelatinization peak of amylopectin with an enthalpy value of 16.0 J/g. The retrogradation of gelatinized starch of three types of barley stored at 4°C showed that amylopectin recrystallization rates of nonwaxy and high-amylose barley were comparable when recrystallization enthalpy was calculated based on the percentage of amylopectin. No amylopectin recrystallization peak was observed in waxy barley. Storage time had a strong influence on recrystallization of amylopectin. The enthalpy value for nonwaxy barley increased from 1.93 J/g after 24 hr of storage to 3.74 J/g after 120 hr. When gel was rescanned every 24 hr, a significant decrease in enthalpy was recorded. A highly statistically significant correlation (r = 0.991) between DSC values of retrograded starch of nonwaxy barley and gel hardness was obtained. The correlation between starch enthalpy value and gel hardness of starch concentrate indicates that gel texture is due mainly to its starch structure and functionality. The relationship between the properties of starch and starch concentrate may favor the application of barley starch concentrate without the necessity of using the wet fractionation process.  相似文献   

3.
Among common cereals, barley is a low glycemic index food. In an attempt to better understand this character, the nutritional properties of glycemic carbohydrates and dietary fiber concentrations of nine cultivars were evaluated. The cultivars were selected based on botanical variations and commercial value to investigate the impact of pearling and cooking on nutritional properties. Each cultivar was pearled into four fractions ranging from hull removal only to hull, bran, germ, and crease removal. The study showed that botanical class and degree of pearling significantly affect the carbohydrate composition and digestion indices of barley. Waxy starch cultivars had less total starch and more rapidly digestible starch (RDS), rapidly available glucose (RAG), and β‐glucan than the other nonwaxy cultivars. Regardless of the barley type, the less pearled kernels had significantly lower total starch and higher total low molecular weight sugars, insoluble, and total fiber. However, β‐glucan content was fairly comparable in the whole grain and pearled fractions. Cooking had a significant effect on nutritional properties of Celebrity and AC Klinck cultivars. The only consistent significant difference between raw and cooked barley was resistant starch (RS), which increased after cooking regardless of cultivar or fraction. The study showed that barley cultivar and carbohydrate composition significantly affected starch digestion with some cultivar fractions holding a promise for the development of low glycemic index foods.  相似文献   

4.
Wet fractionation of barley flours was conducted to identify appropriate fractionation water temperature considering the recovery and purity of starch and protein. In abraded hulless regular barley, yield of starch fraction, starch recovery, and purity of the protein fraction increased from 43.3 to 45.7%, from 61.7 to 64.8%, and from 37.6 to 65.2% when water temperature in fractionation was increased from 23 to 60°C. In abraded hulless waxy barley, recovery of starch with 40°C water was much greater (67.7%) than that at other temperatures (<61.7%). Starch recovery and protein purity of regular barley cultivars were higher than those of waxy barley cultivars with fractionation water of 60°C. In whole hulless barley flours fractionated with 60°C water, waxy barley flours showed similar to or higher protein purity (44.8–48.9%) than regular barley flours (42.8– 44.6%), while regular barley flours exhibited higher starch recovery (>60.6%) than waxy barley flours (<57.3%). The purity of isolated starch was >97.7%, regardless of water temperature and barley type. Considering yield and recovery of the isolated starch, and purity of the isolated protein, 60°C water for hulless regular barley and 40°C for hulless waxy barley seem to be appropriate for fractionation of barley flour for isolation of starch and protein.  相似文献   

5.
Manufacture of pasta products is paramount for durum wheat (Triticum turgidum L. var. durum). The recent development of waxy durum wheat containing starch with essentially 100% amylopectin may provide new food processing applications and present opportunities for value‐added crop production. This investigation was conducted to determine differences in some chemical and functional properties of waxy durum starch. Starch was isolated from two waxy endosperm lines and four nonwaxy cultivars of durum wheat. One of the waxy lines (WX‐1) was a full waxy durum wheat whereas the other line (WX‐0) was heterogeneous, producing both waxy and nonwaxy seed. Effects on starch swelling, solubility, pasting, gelatinization, and retrogradation were examined. The full waxy starch had four times more swelling power than the nonwaxy durum starches at 95°C, and was also more soluble at three of the four temperatures used. Starch pasting occurred earlier and peak viscosities were greater for starches from both waxy lines than for the nonwaxy starches, but their slurries were less stable with continued stirring and heating. Greater energy was required to melt gelatinized waxy starch gels, but no differences were found in either refrigerated storage or freeze‐thaw retrogradation, as determined by differential scanning calorimetry. The results of this investigation showed some significant differences in the starch properties of the waxy durum wheat lines compared to the nonwaxy durum wheats.  相似文献   

6.
Native starch granules of 11 selected cultivars (potato, waxy potato, sweet potato, normal maize, high‐amylose maize, waxy maize, wheat, normal barley, high‐amylose barley, waxy barley, and rice) were treated with a calcium chloride solution (4M) for surface gelatinization. The surface‐gelatinized starch granules were investigated using light microscopy and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). In general, those starches with larger granule sizes required longer treatment time to complete the gelatinization. The salt solution treatment of starch was monitored by light microscopy and stopped when the outer layer of the granule was gelatinized. The surface gelatinized starch granules were studied using scanning electron microscopy. On the basis of the gelatinization pattern from calcium chloride treatments, the starches could be divided into three groups: 1) starches with evenly gelatinized granule surface, such as normal potato, waxy potato, sweet potato, maize, and high‐amylose maize; 2) starches with salt gelatinization concentrated on specific sites of the granule (i.e., equatorial groove), such as wheat, barley, and high‐amylose barley; and 3) starches that, after surface gelatinization, can no longer be separated to individual granules for SEM studies, such as waxy barley, waxy maize, and normal rice. The morphology of the surface gelatinized starch resembled that of enzyme‐hydrolyzed starch granules.  相似文献   

7.
Fermentation performance of eight waxy, seven nonwaxy soft, and 15 nonwaxy hard wheat cultivars was compared in a laboratory dry‐grind procedure. With nitrogen supplements in the mash, the range of ethanol yields was 368–447 L/ton. Nonwaxy soft wheat had an average ethanol yield of 433 L/ton, higher than nonwaxy hard and waxy wheat. Conversion efficiencies were 91.3–96.2%. Despite having higher levels of free sugars in grain, waxy wheat had higher conversion efficiency than nonwaxy wheat. Although there was huge variation in the protein content between nonwaxy hard and soft wheat, no difference in conversion efficiency was observed. Waxy cultivars had extremely low peak viscosity during liquefaction. Novel mashing properties of waxy cultivars were related to unique pasting properties of starch granules. With nitrogen supplementation, waxy wheat had a faster fermentation rate than nonwaxy wheat. Fermentation rates for waxy cultivars without nitrogen supplementation and nonwaxy cultivars with nitrogen supplementation were comparable. Ethanol yield was highly related to both total starch and protein content, but total starch was a better predictor of ethanol yield. There were strong negative relationships between total starch content of grain and both yield and protein content of distillers dried grains with solubles (DDGS).  相似文献   

8.
Effects of nonwaxy (21% amylose, 79% amylopectin) and waxy (100% amylopectin) rice starch-lipid complexes on the rate of in vitro digestibility were determined. Long-chain (≥C:18) saturated emulsifiers reduced digestibility more than short-chain (<C:18) saturated and unsaturated emulsifiers when complexed with nonwaxy and waxy rice starch. The largest decrease in digestibility (33%) was achieved with Polyaldo 10-1-2 (100% C18:0 with decaglyceryl monostearate modification) for nonwaxy rice. Waxy rice starch did not complex with most of the emulsifiers, in contrast to nonwaxy rice starch. Most of the emulsifiers that reduced digestibility by 10% or less were composed of unsaturated monoglycerides, including some acetylated and succinylated monoglycerides. The fluid behavior of nonwaxy rice starch-emulsifier solutions was more pseudoplastic than waxy rice starch-emulsifier solutions. The consistency index varied with emulsifiers. The nonwaxy rice starchemulsifier solutions and some of those prepared using waxy rice starch would be suitable for semisolid food applications. The waxy rice starchemulsifier solutions with low consistency (0.4–0.7) and high-flow behavior (0.7–0.8) indices would be suitable for beverage applications.  相似文献   

9.
The physicochemical properties and ultrastructures of japonica vs indica rice varieties and waxy vs nonwaxy rice varieties were compared. The viscogram values of the indica varieties were significantly higher than those of the japonica varieties. The gelatinization temperatures, breakdown, and setback were significantly lower for waxy than for nonwaxy rice varieties. Japonica rice exhibited lower hardness but higher adhesiveness than indica rice. The air space between individual starch granules was larger for waxy than for nonwaxy rice. The starch granules were compact in japonica rice, while the compound starch granules of indica rice were much smaller than those of japonica rice and were scattered widely in the endosperm. The protein bodies in japonica rice were concentrated near the cell wall, whereas those in indica rice were scattered around amyloplasts. These results suggest that the ultrastructure of rice affects the texture of the cooked product.  相似文献   

10.
Brown rice kernels (japonica type) were soaked in water at different temperatures (25 or 50°C) before cooking to a moisture content of 20 or 30%. Soaked brown rice was cooked in either the soaking water (SW) or in distilled water (DW) (rice solids to water ratio 1:1.4). Color, texture, and in vitro digestive properties of the cooked rice were examined. When the soaking temperature was higher (50°C vs. 25°C), water absorption and starch leaching were greater. To reach 20% moisture, the rice required 1 hr of soaking at 50°C but 2 hr of soaking at 25°C. Both the moisture content of the soaked rice and the soaking temperature affected the texture of the cooked brown rice. Rice that attained 20% moisture content during soaking was harder and less adhesive when cooked compared with rice that attained 30% moisture content. The rice soaked at 50°C was slightly softer but more adhesive when cooked than rice soaked at 25°C. The soaking temperature and moisture content of the rice kernels also affected the digestive properties of the cooked rice. The cooked brown rice that had attained 30% moisture before cooking was digested to a greater extent than rice that had attained 20% moisture. Even at equal moisture content, the rice soaked at the higher temperature (50°C) was digested more readily. It was assumed that the amount of soluble material leached during soaking differed according to the soaking temperature and moisture content, which subsequently affected the texture and digestive properties of the cooked brown rice. The rice cooked in its own soaking water was harder and more adhesive, had higher levels of resistant starch (RS), and exhibited smaller glycemic index (GI) values than its counterpart cooked with distilled water. This result indicated that the soluble material leached during soaking made the cooked rice harder and less digestible, perhaps due to interactions between these molecules and the gelatinized rice during cooking.  相似文献   

11.
Four rice starches were isolated from waxy and nonwaxy rice cultivars collected from different places in China. Individual rice starches were examined, along with their corresponding mixtures in different ratios, in terms of pasting and hydration properties. Analysis by micro‐viscoamylography (MVAG) showed that waxy rice starch and its blends had higher peak viscosity (PV), breakdown (BD), and setback (SB) than the remaining starches and mixtures. Apparent amylose content (AC) was 16.95–29.85% in nonwaxy individual rice starches and 13.69–25.07% in rice starch blends. Incorporating waxy rice starch (25%) significantly decreased the AC. AC correlated negatively with swelling power (SP) (r = ‐0.925, P < 0.01). SP exhibited nonlinear relationship (r2 = 0.8204) with water solubility (WS) and both increased with temperature. The correlation showed that WS is also an index of starch characteristics and the granules rigidity affected the granule swelling potential. The results show that turbidity of gelatinized starch suspensions stored at 4 ± 0.5°C generally increased during storage up to five days.  相似文献   

12.
Roller milled flours from eight genotypes of hull‐less barley (HB) with normal, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch were incorporated at 20 and 40% (w/w) with a 60% extraction Canada Prairie Spring White (CPSW, cv. AC Vista) wheat flour to evaluate their suitability as a blend for yellow alkaline noodles (YAN). The barley flour supplemented noodles were prepared using conventional equipment. Noodles containing 40% HB flour required less work input than the corresponding 20% blend noodles due to a higher water absorption at the elevated level of HB flour addition, which probably caused them to soften. The addition of any HB flour at either level to the CPSW flour resulted in significantly decreased brightness (L*) and yellowness (b*), elevated redness (a*), concomitant with a significantly greater number of specks per unit area of noodle sheet compared with the control flour. The addition of 40% HB flour to YAN decreased cook time and cooking losses. Noodle firmness, as determined by maximum cutting stress (MCS), was significantly increased by the addition of 40% HB flour. Noodle chewiness, as determined by the texture profile analysis (TPA), was affected by the type of starch in the barley samples; the addition of waxy and ZAW HB flour decreased chewiness, whereas normal and HA HB flour increased chewiness of composite noodles.  相似文献   

13.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

14.
The effects of amylose content and other starch properties on concentrated starch gel properties were evaluated using 10 wheat cultivars with different amylose content. Starches were isolated from grains of two waxy and eight nonwaxy wheat lines. The amylose content of waxy wheat lines was 1.4–1.7% and that of nonwaxy lines was 18.5–28.6%. Starch gels were prepared from a concentrated starch suspension (30 and 40%). Gelatinized starch was cooled and stored at 5°C for 1, 8, 16, 24, and 48 hr. The rheological properties of starch gels were studied by measuring dynamic viscoelasticity with parallel plate geometry. The low‐amylose starch showed a significantly lower storage shear modulus (G′) than starches with higher amylose content during storage. Waxy starch gel had a higher frequency dependence of G′ and properties clearly different from nonwaxy starches. In 40% starch gels, the starch with lower amylose showed a faster increase in G′ during 48 hr of storage, and waxy starch showed an extremely steep increase in G′. The amylose content and concentration of starch suspension markedly affected starch gel properties.  相似文献   

15.
Kernel hardness is not a well‐characterized food quality trait in barley. Unlike wheat, not much is known about the effect of barley kernel hardness on food processing. Ten barley genotypes differing in single kernel characterization system hardness index (SKCS‐HI) (30.1–91.2) of dehulled kernels were used to determine the association of barley HI with other physical grain traits and food processing parameters. Thousand kernel weight (TKW) values of 10 genotypes were 29.7–38.1 g. Values for bulk density of grains were 721.1–758.9 kg/m3. Crease width and depth values were 0.9–1.3 mm and 0.4–0.7 mm, respectively. Barley HI showed no significant association with TKW, bulk density, or kernel crease dimensions. Kernel loss due to pearling after 325 sec of abrasion was 28.8–38.4% and showed significant negative correlation with HI (r = –0.87, P < 0.01). Proportion of barley flour particles >106 μm had values of 34.5–42.0%, and starch damage values were 1.8–4.5% among those 10 barley genotypes. HI showed significant positive correlations with both proportion of barley flour particles >106 μm (r = 0.93, P < 0.01) and starch damage (r = 0.93, P < 0.01). Water imbibition of barley kernels and cooked kernel hardness did not show significant correlation with HI.  相似文献   

16.
The content and molecular weight (MW) of β-glucan in extracts from a selection of oat and barley cultivars were compared using flow-injection analysis and high-performance size-exclusion chromatography. From 60 to 75% of the β-glucan was extracted from oat and waxy barley by hot water (90°C) containing heat-stable α-amylase, whereas just 50–55% was extracted from nonwaxy barley. Consecutive extractions with hot water and dimethylsulfoxide (DMSO) extracted 65% (nonwaxy barley) or 75–80% (oat and waxy barley) of the total β-glucan. An extraction with sodium hydroxide and sodium borohydride (NaOH/NaBH4) increased the percentage of β-glucan extracted to 86–100% but decreased the MW. The MW of β-glucan in the oat cultivars selected was significantly higher than those in the barley cultivars. The β-glucan extracted from the nonwaxy barley cultivars showed significantly higher peak MW than that from the waxy barley cultivars.  相似文献   

17.
Starches of waxy rices that showed varietal differences in hardness testing of cooked rice after amylopectin staling and high-amylose content (AC) rices differing in gel consistency (GC) and starch gelatinization temperature (GT) were studied to determine the factors related to varietal differences in amylopectin staling of cooked rice. Intermediate- and high-GT starches showed greater amylopectin staling of gelatinized rice by hardness testing values or differential scanning calorimetry (DSC) endotherm than did low-GT starches in both waxy and nonwaxy rices. Isoamylase-debranched amylopectins of waxy rices differed in the ratio of weight-average degree of polymerization (DPw) fractions, but these fraction ratios were not simply related to differences in amylopectin staling of cooked rice. Among high-AC rices, amylopectin from low-GT starch was confirmed to have higher iodine affinity (2.3–2.5%) than amylopectin from intermediate-GT starches (1.7–1.8%), regardless of GC. Within high-AC starch of the same GT type, soft-GC rice corresponded with more A + B1 DPw 16–18 and less B3 DPw 150–200 fractions of debranched amylopectin and low DPw of amylose. Amylopectin of amylose extender mutant of IR36 was confirmed to have a longer chain length than ordinary rice amylopectin: the debranched amylopectin has more B2 DPw 47–51 fraction, less A + B1 DPw fraction, but no B4 fraction with DPw > 200. Only high-AC amylopectin had debranched fraction with DPw >120.  相似文献   

18.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

19.
Twelve genotypes of barley, including hulled and hulless proanthocyanidin‐containing and hulled proanthocyanidin‐free types, were grown in five environments (location‐year combination) to determine the relative contribution of genotype and environment on quality traits associated with discoloration potential of barley. Barley grains were abraded and milled into flour. Protein, ash, total polyphenol content, and polyphenol oxidase (PPO) activity were determined. Brightness (L*) of abraded kernels, cooked kernels, gels, and dough sheets were determined and used as indicators of discoloration potential. Genetic factors were more important in determining total polyphenol content, PPO activity, and brightness of dough sheets and as important as environmental factors for protein and ash content. Across environments, L* of dough sheets was consistently higher in proanthocyanidin‐free barley (73–76) than in proanthocyanidin‐containing barley (59–70). Total polyphenol content of abraded grains was highest in barley grown in a dry area at 0.18%, lower in high rainfall areas at 0.13%, and lowest in irrigated areas at 0.12%. Genotype (G) by environment (E) interactions were significant for all traits, except for brightness of cooked kernels. However, the effects of the G × E interactions were generally small compared with either the genetic or the environmental effect alone and primarily due to changes in magnitude rather than in rank. Stability analyses confirmed the nature of the G × E interactions.  相似文献   

20.
Previous investigations have suggested waxy (amylose‐free) wheats (Triticum aestivum L.) possess weak gluten properties and may not be suitable for commercial gluten extraction. This limitation could prevent the use of waxy wheat as a source of unique starch, because gluten is a by‐product of the wheat starch purification process. Fifty waxy wheat lines were used to determine the extent to which gluten protein and other grain quality related traits might vary and, consequently, allow the development of waxy wheat with acceptable gluten properties. Among the waxy lines, significant variation was observed for all measured quality traits with the exception of flour protein concentration. No waxy entries statistically equaled the highest ranking nonwaxy entry for grain volume weight, falling number, flour yield, or mixograph mix time. No waxy lines numerically exceeded or equaled the mean of the nonwaxy controls for falling number, flour yield, or mixograph mix time. For grain and flour protein related variables, however, many waxy lines were identified well within the range of acceptability, relative to the nonwaxy controls used in this study. Approximately 50% of the waxy lines did not differ from the highest ranking nonwaxy cultivar for grain and flour protein concentrations. Forty‐three (86%) of the tested waxy lines were not sig‐nificantly different from the nonwaxy line with the highest mixograph mixing tolerance, 22/50 (44%) of the waxy wheat lines did not differ from the highest ranking nonwaxy line in gluten index scores, and 17/50 (34%) did not differ from the highest ranking nonwaxy line in extracted wet gluten. All waxy experimental lines produced gluten via Glutomatic washing. The quality of the gluten, as measured both by mixograph and gluten index, varied widely among the waxy lines tested. These observations suggest that weak gluten is not a natural consequence of the waxy trait, and waxy cultivars with acceptable gluten properties can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号