首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It has been reported that caroubin, a protein mixture obtained from carob seeds, has rheological properties similar to those of gluten. Comparative studies of the effects of hydration and temperature on caroubin and gluten were carried out with the aid of NMR, FTIR, scanning electron microscopy, and differential scanning calorimetry techniques. The results show that caroubin has a more ordered structure than gluten and that hydration has little effect on its secondary structure when compared to gluten. Caroubin is more easily accessible to water than gluten, suggesting that caroubin is more hydrophilic in nature. On hydration, caroubin, like gluten, forms fibrillar structures and sheets.  相似文献   

2.
Transglutaminase (TG) catalyzes the formation of nondisulfide covalent crosslinks between peptide‐bound glutaminyl residues and ∊‐amino groups of lysine residues in proteins. Crosslinks among wheat gluten proteins by TG are of particular interest because of their high glutamine content. Depolymerization of wheat gluten proteins by proteolytic enzymes associated with bug damage causes rapid deterioration of dough properties and bread quality. The aim of the present study was to investigate the possibility of using TG to regain gluten strength adversely affected by wheat bug proteases. A heavily bug‐damaged (Eurygaster spp.) wheat flour was blended with sound cv. Augusta or cv. Sharpshooter flours. Dynamic rheological measurements, involving a frequency sweep at a fixed shear stress, were performed after 0, 30, and 60 min of incubation on doughs made from sound or blended flour samples. The complex moduli (G* values) of Augusta and Sharpshooter doughs blended with 10% bug‐damaged flour decreased significantly after 30 min of incubation. These dough samples were extremely soft and sticky and impossible to handle for testing purposes after 60 min of incubation. To test the possibility of using TG to counteract the hydrolyzing effect of bug proteases on gluten proteins, TG was added to the flour blends. The G* values of TG‐treated sound Augusta or Sharpshooter doughs increased significantly after 60 min of incubation. The G* values of the Augusta or Sharpshooter doughs blended with bug‐damaged flour increased significantly rather than decreased after 30 and 60 min of incubation when TG was included in the dough formulation. This indicates that the TG enzyme substantially rebuilds structure of dough hydrolyzed by wheat bug protease enzymes.  相似文献   

3.
Extrudate expansion of cereal‐based products is largely dependent on the molecular interactions and structural transformations that proteins undergo during extrusion processing. Such changes strongly influence the characteristic rheological properties of the melt. It is possible to modify rheological properties of wheat flour during extrusion processing, in particular shear viscosity, with cysteine. The objective of this work was to further develop an understanding of the molecular interactions and structural transformations of wheat flour from dynamic oscillatory rheological measurements. Temperature and frequency sweeps were conducted in the linear viscoelastic range of the material. Changes in the storage modulus (G′), the loss modulus (G″) and the loss tangent (tan δ) of 25% moisture wheat flour disks as a function of cysteine concentration (0–0.75%) were monitored. Molecular weight between cross‐links (Mc) and the number of cross‐links (Nc) per glutenin molecule were determined from frequency sweep data. Increasing cysteine concentration broke cross‐links by decreasing G′ maximum and increasing tan δ values. Molecular weight between cross‐links increased and the number of cross‐links decreased. G′ values from temperature sweeps showed a similar trend. This information leads to a better understanding of the viscoelastic behavior of wheat flour doughs during extrusion cooking and elucidation of protein‐protein reaction mechanisms and other interactions in extruded cereal‐based snack foods.  相似文献   

4.
Seeds of bread wheat were incubated at 40 degrees C and 100% relative humidity for 0, 3, 4, 6, and 10 days. The effects of accelerated aging on seed germinability and some biochemical properties of flour (carotenoid, free radical, and protein contents and proteolytic activity) and gluten (free radical content and flexibility) were investigated. Seed germinability decreased during aging, resulting in seed death after 10 days. A progressive decrease of carotenoid content, in particular, lutein, was observed, prolonging the incubation, whereas the free radical content increased in both flour and gluten. A degradation of soluble and storage proteins was found, associated with a marked increase of proteolytic activity and a loss of viscoelastic properties of gluten. On the contrary, puroindolines were quite resistant to the treatment. The results are discussed in comparison with those previously obtained during accelerated aging of durum wheat seeds.  相似文献   

5.
Wheat gluten proteins are considered to have the unique ability to form viscoelastic matrices that are essential for breadmaking. This study shows that maize seed storage protein (zein), if properly treated, can be made to function similarly to gluten at the protein secondary structure level with concomitant improved viscoelasticity. Here, we propose the concept of a small amount of coprotein (high molecular weight glutenin or casein) acting to stabilize a build-up of β-sheet structure in a zein-based dough, thus creating a viscoelastic matrix that is retained over time. This discovery is relevant to the need for gluten replacement viscoelastic proteins for wheat intolerant individuals and as well opens possibilities of creating wheatlike cereal varieties that could more cheaply substitute for wheat imports in developing countries.  相似文献   

6.
A transglutaminase from Streptoverticillium sp. was used to create new covalent intermolecular cross‐links between proteins in gluten. This modification induced drastic changes in its physicochemical properties as well as in its rheological behavior. To understand these changes, we characterized the gluten extractability in acetic acid and identified the proteins of supernatant and pellet by immunoblotting using antibodies specific for each prolamin class. The proportion of soluble proteins decreased drastically after transglutaminase treatment due to the formation of large insoluble polymers as shown by SDS‐PAGE. Among the constitutive proteins of gluten, the high molecular weight glutenin subunits were the most affected in the transglutaminase reaction. The rheological behavior of gluten after 18 hr of incubation with transglutaminase was studied in shear by dynamic measurements over 10‐3 – 101 Hz frequency range and by creep and recovery tests. The behavior of treated glutens remained that of a transient network, but the viscoelastic response was shifted toward shorter times and the steady‐state viscosity was greatly increased. The enzymatic treatment caused a considerable reinforcement of the network. The modified glutens were also less sensitive to thermal processing than unmodified glutens, as shown by a lower amplitude of variation of storage modulus G′ with temperature after enzymatic treatment.  相似文献   

7.
The effects on the viscoelastic behavior of hydrated wheat gluten after treatment at different pressures (200–800 MPa), temperatures (20, 40, and 60°C), and holding times (20 and 50 min) were investigated by controlled stress rheometry. Because of the wide range of properties, four different torque amplitudes were used (0.5, 1.00, 3.00, and 6.00 mNm). Significant effects on rheological properties were observed, except when samples were analyzed at 0.5 mNm (limited heat and pressure treatments). Both storage modulus (G′) and loss modulus (G″) were more affected by temperature than pressure. The holding time had substantial effect on the slopes of both moduli at mild treatments; for the more severe treatments, the intercepts of the storage moduli in particular were extensively affected.  相似文献   

8.
The rheological properties of dough and gluten are important for end‐use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small‐deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G′], large negative loadings for tan δ and steady state compliance [Je0]), the presence of high molecular weight glutenin subunits (HMW‐GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high‐end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.  相似文献   

9.
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE‐HPLC, and high molecular weight glutenin subunit (HMW‐GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G′ and G″) and lower tan δ values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan δ and flatter bread loaves (lower form ratio).  相似文献   

10.
Wheat product quality is related to its physicochemical properties and to the viscoelastic properties of the kernel. The aim of this work was to evaluate the viscoelastic properties of individual wheat kernels using the uniaxial compression test under small strain (3%) to create experimental conditions that allow the use of the elasticity theory to explain the wheat kernel viscoelasticity and its relationships to physicochemical characteristics, such as weight tests, size, and ash and protein contents. The following viscoelastic properties of the kernels of hard and soft wheat cultivars at two different moisture contents (original and tempered at 15%) were evaluated: total work (Wt), elastic work (We), plastic work (Wp), and modulus of elasticity (E). There was a significant decrease in Wt as the moisture content increased. In the soft wheat Saturno, Wt decreased 80% (from 0.217 to 0.044 N·mm) as the moisture content increased. Individual wheat kernels at their original moisture content showed higher We than under the tempered condition. Wp increased as the moisture content increased. E decreased as the moisture content increased. The soft wheat Saturno showed the highest decline (54.9%) in E (from 14.18 to 6.39 MPa) as the moisture content increased. There were significant negative relationships between the viscoelastic properties and the 1,000‐kernel weight and kernel thickness. The uniaxial compression test under small strain can be applied to evaluate the viscoelastic properties of individual wheat kernels from different classes and cultivars.  相似文献   

11.
Intermediate wheatgrass (IWG) (Thinopyrum intermedium) is a perennial grass with desirable agronomic traits and positive effects on the environment. It has high fiber and protein contents, which increase the interest in using IWG for human consumption. In this study, IWG flour was blended with refined wheat at four IWG‐to‐wheat ratios (0:100, 50:50, 75:25, and 100:0). Samples were analyzed for proximate composition, microstructure features, pasting properties (Micro Visco‐Amylo‐Graph device), protein solubility, and total and accessible thiols. Gluten aggregation properties (GlutoPeak tester) and mixing profile (Farinograph‐AT device) were also evaluated. IWG flour enrichment increased the pasting temperature and decreased the peak viscosity of blended flours. IWG proteins exhibited higher solubility than wheat, with a high amount of accessible and total thiols. The GlutoPeak tester highlighted the ability of IWG proteins to aggregate and generate torque. Higher IWG flour enrichment resulted in faster gluten aggregation with lower peak torque, suggesting weakening of wheat gluten strength. Finally, the addition of IWG to refined wheat flour resulted in a decrease in dough development time and an increase in consistency, likely because of the higher levels of fiber in IWG. The 50% IWG flour enrichment represents a good compromise between nutritional improvement and maintenance of the pasting properties, protein characteristics, and gluten aggregation kinetics.  相似文献   

12.
Flour and doughs represent rheologically complex materials whose properties are dependent on many factors including processing conditions. To avoid some of the problems associated with the rheological characterization of dough, we have initiated a study focused on the rheological properties of one of the major components of dough, vital wheat gluten. Suspensions of vital wheat gluten were prepared with concentrations of 225–325 mg/mL.The moduli of the gluten suspensions was 0.2 Pa at 225 mg/mL to 37 Pa at 325 mg/mL. At <250 mg/mL, the gluten suspensions exhibited fluidlike behavior. The crossover frequency, (G′[ω] = G″[ω]) shifted slightly from 0.5 rad/sec at 225 mg/mL to 0.9 rad/sec at 250 mg/mL. At >300 mg/mL, the gluten suspensions exhibited solidlike behavior. The crossover frequencies were independent of concentration and equal to 100 rad/sec. At <250 mg/mL, the high‐frequency behavior of moduli were proportional to ω3/4, as expected for a semiflexible coil. At >300 mg/mL, the high‐frequency behavior of moduli were proportional to ω1/2, indicating a flexible coil. These results suggest vital wheat gluten suspensions undergo a structural change between 250 and 300 mg/mL.  相似文献   

13.
Starch and gluten were isolated from 10 wheat cultivars or lines with varied amylose content. The rheological properties of 30% wheat flour gel, starch gel, and the gel of isolated gluten mixed with common starch were determined in dynamic mechanical testing under shear deformation, creep‐recovery, and compression tests under uniaxial compression. Variation of wheat samples measured as storage shear modulus (G′), loss shear modulus (G″), and loss tangent (tan δ = G″/G′) was similar between flour and starch gels and correlated significantly between flour and starch gel. The proportion of acetic acid soluble glutenin exhibited a significant relationship with tan δ of gluten‐starch mixture gel. The small difference in amylose content strongly affected the rheological parameters of flour gels in creep‐recovery measurement. Wheat flour gel with lower amylose content showed higher creep and recovery compliance that corresponded to the trend in starch gel. Compressive force of flour gel at 50 and 95% strain correlated significantly with that of starch gel. Gel mixed with the isolated gluten from waxy wheat lines appeared to have a weaker gel structure in dynamic viscoelasticity, creep‐recovery, and compression tests. Starch properties of were primarily responsible for rheological changes in wheat flour gel.  相似文献   

14.
The effect of mixing time on gluten formation was studied for four commercial flour mixtures. The gluten phase was separated from dough using a nondestructive ultracentrifugation method. Small deformation dynamic rheological measurements and light and scanning electron microscopy were used. The recovered gluten was relatively pure with a small amount of starch granules embedded. The protein matrix observed by microscopy became smoother with prolonged mixing. No effect of overmixing was observed on the storage modulus (G′) of gluten for any of the flours. The amount of water in gluten increased from optimum to over‐mixing for most of the flours. Increased water content during prolonged mixing was not related to an effect on G′. The Standard flour resulted in the highest water content of gluten, which increased considerably with mixing time. The Strong flour had the lowest G′ of dough, a high G′ of gluten, and no increase in gluten water content from optimum to over‐mixing. The Durum flour did not show gluten development and breakdown similar to the other flours. The differences in gluten protein network formation during dough mixing are genetically determined and depend on the flour type.  相似文献   

15.
The mechanical and viscoelastic properties of intact wheat kernels of 36 wheat cultivars differing in low molecular weight glutenin subunit (LMW‐GS) composition (loci Glu‐A3, Glu‐B3, and Glu‐D3) were evaluated using load‐compression tests. Comparison among genotypic groups representing Glu‐3 allelic variants showed that groups representing the alleles Glu‐A3 b, c, and d; Glu‐B3 d, g, and h; and Glu‐D3 a, b, and d, had harder kernel texture, higher kernel elastic work and larger gluten strength‐related parameters than those possessing alleles Glu‐A3 e; Glu‐B3 f, i and j (translocation 1B/1R); and Glu‐D3 d. Modulus of elasticity (stress to strain ratio) showed low values (111.9–168.8 MPa) for allelic groups possessing poor elastic properties (Glu‐A3 e; Glu‐B3 f, i, and j; and Glu‐D3 d), and high values (179.8–222.6 MPa) for allelic groups possessing high kernel elastic properties (Glu‐A3 b c, and d; Glu‐B3 d, g, and h; and Glu‐D3 a, b and c). The highest values for gluten strength‐related parameters (SDS‐sedimentation, dough mixing time, and dough strength [W]) corresponded to allelic groups Glu‐A3 d; Glu‐B3 d and g; and Glu‐D3 d, while the lowest corresponded to Glu‐A3 e and Glu‐B3 j. No significant differences were observed among groups with regard to gluten extensibility parameters; however, the highest P/L value (least extensibility) corresponded to Glu‐B3 j, which indicates presence of 1B/1R translocation. Except for the Glu‐B3 j (translocation 1B/1R) allele, which presented more variation within samples, a general relationship between kernel viscoelastic properties and dough viscoelastic properties was observed; samples showing higher elastic work to plastic work ratio (E/P) tended to possess better gluten strength than cultivars with low E/P ratio.  相似文献   

16.
Wet glutens of 27 European spelt (Triticum aestivum ssp. spelta (L.) Thell.) cultivars were examined using fundamental rheological methods (oscillatory and creep tests) in conjunction with the determination of moisture contents of these glutens and the wet gluten contents of the flours. Furthermore, SDS sedimentation volumes were determined. A special baking test for spelt was developed that encompassed the characteristic elements used in the production of traditional German spelt speciality breads. Various significant correlations between gluten properties and baking results were found for three sets of spelt cultivars obtained from different demographic locations and years of harvest. Furthermore, the relationship between baking results (response) and gluten properties (predictors) could be modeled quite well with the help of multiple linear regression analysis. Radar charts used to profile the gluten properties of a particular cultivar showed a great amount of diversity within the spelt material, but there were also similarities between several cultivars. The differences between spelt cultivars should be taken into account when characterizing spelt in general terms or when comparing spelt and modern wheat.  相似文献   

17.
The beneficial effects of a new recombinant lipase (Rhizopus chinensis lipase [RCL]) and transglutaminase (TG) were investigated on frozen dough systems and their breadmaking quality. Rheological properties and microstructure of doughs were measured using a dynamic rheometer, rheofermentometer F3, and scanning electron microscopy (SEM). Measurements of viscoelastic properties showed that both G′ and G″ of dough containing RCL and TG were greater than those of the control after 35 days of frozen storage. The SEM micrographs showed that dough containing RCL and TG had the most starch granules embedded in or attached to the gluten network, and the gluten seemed more powerful and resilient than for the control dough after 35 days of frozen storage. Results of the gas production and dough development tests indicated that RCL and TG improved the rheofermentative characteristics of frozen dough. RCL and TG could improve water‐holding capacity and significantly increase the glycerol content of the control dough. Image analyses showed that bread crumbs containing RCL and TG had a more open network and uniform crumb structure, which resulted in higher specific volume. This combination also yielded a product with higher sensory scores for test breads.  相似文献   

18.
The contribution of the diploid wheat species Aegilops tauschii (Coss.) Schmall to the technological properties of bread wheat (Triticum aestivum L.) was previously studied by the investigation of synthetic hexaploids derived from tetraploid durum wheat (T. turgidum L.) and three diploid Ae. tauschii lines. The results indicated that bread volume, gluten index, SDS‐sedimentation volume, and maximum resistance of gluten were significantly influenced by the Ae. tauschii lines. To determine the relationship between technological properties and qualitative and quantitative compositions of gluten proteins, the flours of parental and synthetic lines were extracted using a modified Osborne fractionation. Gliadin and glutenin fractions were then characterized by reversed‐phase (RP) HPLC on C8 silica gel. The HPLC patterns revealed typical differences between synthetic and parental lines. The gliadin patterns of three synthetic lines and the glutenin patterns of two synthetic lines were more similar to that of the diploid Ae. tauschii parents involved in the hybrids. In the glutenin pattern of one synthetic line, characteristics from both Ae. tauschii and the durum wheat parents were observed. The amount of total gliadin and gliadin types of the synthetic lines was mostly intermediate between those of the durum and Ae. tauschii parents. The amounts of total glutenin and glutenin types (HMW and LMW subunits) of the synthetic lines were generally higher than those of the parental lines, and the ratio of gliadins to glutenins was significantly decreased. High positive correlations were found between the amount of total glutenins, HMW, and LMW subunits and bread volume, maximum resistance and extension area of gluten, and SDS‐sedimentation volume. The ratio of gliadins to glutenin subunits had a strong negative influence on these properties. The protein content of the flours and the amount of total gluten proteins were not correlated with any of the technological properties. Results on the relationship between biochemical characteristics and the breadmaking properties indicated that wheat prebreeding would benefit from studies on protein types and quantification in the choice of parents. In addition, the potential of the diploid Ae. tauschii for improvement of breadmaking quality should be further exploited.  相似文献   

19.
This research investigated the effects of micronization, at different moisture levels, on the chemical and rheological properties of wheat. A set of tests designed to analyze protein fraction characteristics and rheological behaviors were conducted on samples from four wheat cultivars (AC Karma, AC Barrie, Glenlea, and Kanata). After being subjected to infrared radiation at three moisture levels (as‐is, 16%, and 22%), the seeds were milled to produce straight‐grade flour. The protein fractionation test revealed significant decreases (P ≤ 0.01) in both monomeric proteins (from 54% of total protein in the control to 37% in the tempered micronized sample) and soluble glutenins (9.4–2.5%). There was a strong negative correlation (r = ‐0.98) between the percentages of monomeric proteins and insoluble glutenins. Total extractable proteins of micronized samples tempered to 22% moisture decreased 43.5% when compared with nonmicronized control samples using size‐exclusion HPLC (SE‐HPLC). Micronization had a significant effect on gluten properties, as seen from a decrease in water absorption (P ≤ 0.01) and dough development time (P ≤ 0.01). Results showed that micronization at 100 ± 5°C had detrimental effects on wheat flour gluten functionality, including a decrease in protein solubility and impairment of rheological properties. These phenomena could be due to the formation of both hydrophobic and disulfide bonds in wheat during micronization.  相似文献   

20.
The effects of lipids and residual starch components of wheat flour gluten on gluten hydration properties were investigated using nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) techniques. Whole or native, lipid-free, starch-free, and lipid- and starch-free gluten samples were prepared from wheat (Triticum aestivum) cv. Mercia. 2H NMR relaxation on gluten samples hydrated with deuterium oxide (D2O) was measured over a 278–363 K temperature range. FTIR spectra were recorded in dry and fully hydrated material. Transverse relaxation (T2) results indicated that all four gluten samples were hydrophilic in nature. There was little difference in relaxation behavior of whole and lipid-free gluten samples. T2 values and populations of the relaxation components were very similar in each. The FTIR spectra of both samples showed an increase in extended β-sheet secondary structures on hydration. These results suggest that lipid binding in gluten, if it occurs, has little effect on wheat gluten properties. Adding starch to the gluten matrix results in an increase in water sorption on heating that may be attributed to the effects of starch gelation. However, the whole water uptake of the gluten cannot be accounted for by the contribution of the residual starch, as estimated by the effects of added starch. Extraction of residual starch required solubilization of the protein, including breaking of the disulfide bonds. This process altered the gluten structure and properties. Light microscope investigation showed that glutens with residual starch extracted were unable to form fibrillar strands on hydration. NMR and FTIR results showed greater water sorption in both samples with extracted starch than in the unextracted samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号