首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise knowledge of the kinetics of water transport in durum wheat endosperm is a prerequisite for the optimization of wheat processing techniques like pasta dough mixing on a fundamental basis. Pieces of endosperm were cylindrically cut, prepared from durum wheat kernels, and used to study the water uptake by applying a gravimetric method and magnetic resonance imaging (MRI). The total water uptake of endosperm cylinders at different soaking times was determined by gravimetric soaking experiments and revealed a swelling limit of ≈40 g/100 g wb after 60 min. With these results it was possible to estimate an apparent diffusion coefficient of water in durum endosperm by using numerical simulation based on a diffusion model (D25°C ~ 0.76 × 10–10 m2/sec). MRI was used to quantify the water distribution in the endosperm cylinders over time at excess and limited water conditions. The calibration of MRI for the quantification of local and time‐dependent water contents was successful by correlating the spin‐spin relaxation time (T2) with the water content of calibration samples at intermediate moisture levels (19–45 g/100 g wb). Water content maps were generated and showed the kinetics of water distribution inside the endosperm cylinders up to equilibrium conditions. The water uptake of the endosperm cylinders over time, as measured by MRI, fitted well to the water uptake as determined gravimetrically in soaking tests, which validated the applied MRI calibration and measurement procedures. The results allow the quantitative prediction of water transport properties of durum wheat endosperm during moistening procedures.  相似文献   

2.
Mutation of the gene coding for the granule bound starch synthase (waxy protein) leads to reduced amylose content in cereal endosperm. Durum wheat (Triticum turgidum L. var. durum) has one waxy locus in each of its two genomes. Full waxy durum wheat is produced when both genomes carry the waxy null alleles. When only one locus is mutated, partial waxy durum wheat is obtained. Partial and full waxy near‐isogenic lines of durum wheat developed by a breeding program were analyzed as to their quality characteristics. Amylose was largely eliminated in full waxy lines; however, no reduction in amylose content was detected in partial waxy lines. The waxy mutation did not affect grain yield, kernel size, or kernel hardness. Full waxy durum lines had higher kernel ash content, α‐amylase activity, and a unique nonvitreous kernel appearance. Protein quality, as evaluated by SDS microsedimentation value, gluten index, and wet gluten was slightly lower in the full waxy lines than in the other genotypes. However, comparisons with current cultivars indicated that protein quality of all derived lines remained in the range of strong gluten cultivars. Semolina yield was lowered by the waxy mutations due to lower friability that resulted in less complete separation of the endosperm from the bran. Waxy semolina was more sensitive to mechanical damage during milling, but modified tempering and milling conditions may limit the damage. Overall, quality characteristics of waxy durum grain were satisfactory and suitable for application testing.  相似文献   

3.
The starchy endosperm proportion in durum wheat grain and its ability to be isolated from the peripheral tissues appear as main intrinsic characteristics potentially related to the milling value but still difficult to assess. In this study, several durum wheat samples displaying distinct grading characteristics were analyzed and processed through a pilot mill. The histological composition of grains and milling fractions was monitored by using identified biochemical markers of each wheat grain tissue. Contrasted milling yields of semolina and flour were observed between samples, despite displaying a similar starchy endosperm proportion determined by hand dissection. These yields were related both to differences in the starchy endosperm extraction and to the presence of the aleurone layer, particularly its cellular content. Furthermore, two distinct types of fractionation behavior of the aleurone layer were distinguished depending on the wheat grain sample. Extraction of the envelopes and embryonic axis into semolina and flours were found negligible in comparison with the other tissues.  相似文献   

4.
Due to the growing interest in the role of carotenoids in human health, their qualitative and quantitative analysis in foods is becoming more and more important. High-performance liquid chromatography has become the method of choice for the determination of these phytochemicals. A crucial step prior to the chromatographic separation is the quantitative extraction from the food matrix which was proven to be impeded in durum wheat. To optimize the extraction procedure, several factors with influence on extractability of carotenoids were investigated. Finally, it was shown that soaking of samples in water for 5 min prior to extraction with organic solvents had the strongest impact on extraction yield and led to the most rapid and gentle method. Contents of carotenoids in the extracts of several durum wheat and corn samples were doubled by soaking in water before extracting with methanol/tetrahydrofuran (1/1, v/v). In light of these findings, literature data on contents of carotenoids in cereal grains have to be viewed critically regarding the extraction procedures employed.  相似文献   

5.
Three samples were selected representing bread, soft, and durum wheat. Uniaxial compression and stress relaxation tests were performed on wheat kernels. Force‐deformation curves from intact wheat grain typically exhibited at least two points of inflection (PI) at ≈0.1 and 0.2 mm displacement. The first PI is related to the mechanical properties of all the bran layers. The second PI (0.2 mm) seems to be the endosperm boundary near the aleurone layer. These structures had higher degree of elasticity (DE) compared to the inner endosperm (0.5–0.6 mm). Besides wheat class and specific structures of the caryopsis, moisture content is a prominent factor affecting the mechanical strength of kernels. Stress relaxation tests show that bread wheat kernels with 69.2% DE at 13% moisture decreased to 31.6% DE with additional 6% moisture content. Soft wheat kernels DE of 61.0% at 13% moisture decreased to 22.7% at 19.7% moisture. Stress relaxation revealed pronounced time‐dependence. However, the differences of stress values at 120–180 sec were not significant in all wheat classes and moisture contents evaluated. The stress values after 120 sec might be attributed to the elastic deformation of the kernels.  相似文献   

6.
The phenolic acid composition and concentration of four manually separated fractions (pericarp, aleurone layer, germ, and endosperm fractions) as well as whole grains of yellow corn, wheat, barley, and oats were analyzed by HPLC‐MS/MS following microwave‐assisted alkaline aqueous extraction. Phenolic acid compositions in whole grains and their fractions were similar, with minor differences among the grain fractions. Significant differences (P < 0.05), however, were observed in phenolic acid concentrations among cereal types, within cereal varieties, and among grain fractions, with yellow corn exhibiting the highest values. The concentrations of p‐coumaric and syringic acid in the pericarp were 10‐ to 15‐fold and 6‐ to 10‐fold higher, respectively, in yellow corn than in wheat, barley, and oats. In the aleurone layer, sinapic and vanillic acids in yellow corn were about 8‐ and 30‐fold more than in wheat. The germ fraction of wheat had 1.8 times more syringic acid than yellow corn germ. Grain fractions, excluding endosperm, had enhanced levels of phenolic acids compared with whole grain. Sinapic acid was more concentrated in the pericarp and germ of wheat, whereas isoferulic acid was concentrated in the germ of purple barley. Syringic and vanillic acids were concentrated in the pericarp and sinapic acid in the aleurone layer of yellow corn. These findings are important in understanding the composition and distribution of phenolic acids, and they act as a guide in identification of grain fractions for use as food ingredients. In addition, yellow corn fractions (aleurone and pericarp) may be potential alternative phenolic‐rich functional food ingredients in grain‐based food products.  相似文献   

7.
TAXI type endoxylanase inhibitors in different cereals   总被引:2,自引:0,他引:2  
An affinity-based purification procedure with the immobilized family 11 Bacillus subtilis endoxylanase XynA allowed us to obtain high yields of highly pure endoxylanase inhibitor fractions from rye, barley, and durum wheat. In contrast, no inhibitors interacting with the B. subtilis endoxylanase affinity column are present in corn, buckwheat, rice, and oats. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and inhibitor specificity showed that the isolated inhibitors belonged to the TAXI endoxylanase inhibitor family, thus providing a view on the diversity of this cereal inhibitor family. The isolated inhibitors are basic proteins of ca. 40 kDa, occurring in two molecular forms, with pI values of ca. 8.5 (durum wheat) and ca. 9.0 (rye, barley). They are, in general, strong inhibitors of family 11 endoxylanases but not of family 10 endoxylanases. Because cereal endogenous endoxylanases belong to the latter family, this probably indicates that they do not influence cereal metabolic processes. For the first time, endoxylanase inhibitors, similar to TAXI I and TAXI II from wheat, were isolated from durum wheat and characterized. For each cereal, high-resolution cation exchange chromatography revealed the presence of multiple isoinhibitors, each of which occurs in two molecular forms. However, in durum wheat and barley, a single isoform is predominantly present.  相似文献   

8.
The mechanical, physical, and biochemical characteristics of mealy and vitreous endosperm were investigated. Endosperm were obtained from four durum wheat cultivars grown under different nitrogen fertilization designs. The textural properties and the density of the endosperm were measured on hand‐shaped parallelepiped endosperm samples. Endosperm protein content and composition and also gliadin composition were investigated by HPLC. Mechanical tests showed that mealy and vitreous endosperm differed in hardness and vitreousness. Vitreousness increased with nitrogen fertilization supply whereas there was no variation among the different cultivars. Hardness seemed to be linked to genotype and insensitive to nitrogen supply. From this result, we concluded that hardness and vitreousness are not related. Endosperm protein content and gliadin‐to‐glutenin ratio were related to nitrogen supply and increased especially when nitrogen supply was applied at flowering. At the same time, endosperm vitreousness increased. Further biochemical analyses were performed on 270 kernels, mealy or vitreous, hand‐picked from 148 different crops. Results showed that protein content of vitreous endosperm exceeded 9.7% in >90% of the cases. The glia/glu ratio was a less accurate predictor of kernel vitreousness, indicating that, by itself, it cannot account for the change in kernel vitreousness. Endosperm vitreous texture would rise above a threshold content of 9.7% protein within the endosperm.  相似文献   

9.
A biochemical study of the main durum wheat milling fractions (bran, embryo, and semolina) showed that peroxidases (POD) were present in multiple forms in the kernel and appeared to be tissue specific: one form for the embryo, one for the endosperm, one for the subaleuronic layer, and one for the outer layers. Large varietal differences were found regarding both the composition and the POD activity. POD activity, detected by diaminobenzidine, was found mainly in the cell wall of the subaleurone layer and inside some specific, differentiated cells of the embryo. Immuno‐localization with antibodies of durum wheat POD showed the presence of POD in several layers of the pericarp (epidermis) and the seed coat (testa), in the embryo, and also in the endosperm. In this latter tissue, the staining intensity decreased gradually from the outer layers toward the center of the kernel. The localization of POD in durum wheat kernel suggests specific functions for different forms.  相似文献   

10.
Worldwide, nearly 20 times more common wheat (Triticum aestivum) is produced than durum wheat (T. turgidum subsp. durum). Durum wheat is predominately milled into coarse semolina owing to the extreme hardness of the kernels. Semolina, lacking the versatility of traditional flour, is used primarily in the production of pasta. The puroindoline genes, responsible for kernel softness in wheat, have been introduced into durum via homoeologous recombination. The objective of this study was to determine what impact the introgression of the puroindoline genes, and subsequent expression of the soft kernel phenotype, had on the milling properties and flour characteristics of durum wheat. Three grain lots of Soft Svevo and one of Soft Alzada, two soft‐kernel back‐cross derived durum varieties, were milled into flour on the modified Quadrumat Senior laboratory mill at 13, 14, and 16% temper levels. Samples of Svevo (a durum wheat and recurrent parent of Soft Svevo), Xerpha (a soft white winter wheat), and Expresso (a hard red spring wheat) were included as comparisons. Soft Svevo and Soft Alzada exhibited dramatically lower single‐kernel characterization system kernel hardness than the other samples. Soft Svevo and Soft Alzada had high break flour yields, similar to the common wheat samples, especially the soft hexaploid wheat, and markedly greater than the durum samples. Overall, Soft Svevo and Soft Alzada exhibited milling properties and flour quality comparable, if not superior, to those of common wheat.  相似文献   

11.
Differences in milling behavior among hard‐type common wheat (Triticum aestivum) cultivars are well known to millers. Among them, the French cultivar Soissons, which contains the Pinb‐D1d allelic form of the puroindoline b gene, is particularly distinguished for its high milling value. Near‐isogenic lines (NILs) differing by the allelic forms of the puroindoline b gene, Pinb‐D1d or Pinb‐D1b (one of the most frequent alleles found in the European wheat population), were constructed. Grain characteristics obtained after wheat cultivation in distinct environmental conditions were compared between NILs and the cultivar Soissons, as was their fractionation behavior. Results showed that NILs containing the Pinb‐D1d allele displayed lower values of grain hardness and vitreousness than did the corresponding lines containing the Pinb‐D1b allelic form under the same cultivation conditions. Both genetic background and environmental conditions appeared to affect grain texture. Measured single‐kernel characterization system hardness index values of the samples under study were found to be correlated with the vitreousness values. Studies of the milling behavior helped to point out that grain vitreousness is an important factor acting on endosperm breakage ability, whatever the genetic background of the wheat. Our results also demonstrated that, at similar levels of vitreousness, the endosperm of Soissons could more easily be reduced than that of other wheat lines.  相似文献   

12.
《Cereal Chemistry》2017,94(2):215-222
Durum wheat (Triticum turgidum subsp. durum ) production worldwide is substantially less than that of common wheat (T. aestivum ). Durum kernels are extremely hard; thus, most durum wheat is milled into semolina, which has limited utilization. Soft kernel durum wheat was created by introgression of the puroindoline genes via homoeologous recombination. The objective of this study was to determine the effects of the puroindoline genes and soft kernel texture on flour, water absorption, rheology, and baking quality of durum wheat. Soft Svevo and Soft Alzada, back‐cross derivatives of the durum varieties Svevo and Alzada, were compared with Svevo, a hard durum wheat, Xerpha, a soft white winter wheat, and Expresso, a hard red spring wheat. Soft Svevo and Soft Alzada exhibited soft kernel texture; low water, sodium carbonate, and sucrose solvent retention capacities (SRCs); and reduced dough water absorptions similar to soft wheat. These results indicate a pronounced effect of the puroindolines. Conversely, SDS flour sedimentation volume and lactic acid SRC of the soft durum samples were more similar to the Svevo hard durum and Expresso samples, indicating much less effect of kernel softness on protein strength measurements. Alveograph results were influenced by the inherent differences in water absorption properties of the different flours and their genetic background (e.g., W and P were markedly reduced in the Soft Svevo samples compared with Svevo, whereas the puroindolines appeared to have little effect on L ). However, Soft Svevo and Soft Alzada differed markedly for W and L . Soft durum samples produced bread loaf volumes between the soft and hard common wheat samples but larger sugar‐snap cookie diameters than all comparison samples. The soft durum varieties exhibited new and unique flour and baking attributes as well as retaining the color and protein characteristics of their durum parents.  相似文献   

13.
The method to measure hardness and other viscoelastic properties of intact wheat kernels is presented. Wheat with 9.3% moisture showed high elastic behavior compared with wheat tempered at 22.5% moisture that showed a plastic behavior. Load‐deformation curves showed that bread wheat behaves as a more plastic material than durum wheat, which is a more elastic material. Yield point of all the wheat samples was ≈18.5 N, independent of wheat type and moisture content. The height of the wheat kernel increased linearly, and the compression area increased exponentially, with increasing moisture content. The modulus of elasticity of wheat ranged from 99.2 MPa for 22.5% moisture content to 394.8 MPa for 9.3% moisture content. Young's modulus range for soft wheat such as Salamanca, Saturno, and Cortazar cultivars was 232.2–308.5 MPa, as compared with Rayón bread wheat at 321.5 MPa and the Altar, Sofía, and Rafi cultivars of durum wheat that had elastic moduli of 438.7–485.8 MPa. The compression force and final stress decreased from 69.9 N and 40.1 MPa in soft wheat to 90 N and 78.9 MPa in durum, respectively. Total work range was 14.7 MPa/sec in soft wheat to 19.7 MPa/sec for durum wheat and, as expected, was higher in the durum and bread wheat than in soft wheat. The plastic part ranged from 2.4 MPa/sec in soft wheat to 0.6 MPa/sec in durum wheat.  相似文献   

14.
Cereal–legume intercropping can promote plant growth (i.e. facilitation) through an increase in the amount of phosphorus (P) taken up, especially in low P soils. The aim of this study was to test the hypothesis that these positive interactions are supported by rhizosphere processes that increase P availability, such as root-induced pH changes. In neutral and alkaline soils legumes are assumed to increase inorganic P availability by rhizosphere acidification due to N2 fixation which benefit to the intercropped cereal. Growth, P uptake, changes in inorganic P availability and pH in the rhizosphere of intercropped species were thus investigated in a greenhouse pot experiment with durum wheat and chickpea either grown alone or intercropped. We used a neutral soil from a P fertilizer long-term field trial exhibiting either low (−P) or high (+P) P availability. Phosphorus availability was increased in the rhizosphere of both species, especially when intercropped in −P. Such increase was associated with alkalization. Rhizosphere pH changes could not fully explain the observed changes of P availability though. Low rates of N2 fixation may explain why no rhizosphere acidification was observed. Increases in P availability did not lead to enhanced P uptake but growth promotion was observed for durum wheat intercropped with chickpea in −P soil. Our hypothesis of an increase in inorganic P availability in intercropping as a consequence of root-induced acidification by the legume was not validated, and we suggested that root-induced alkalization was involved instead, as well as other root-induced processes. Thus, the cereal through rhizosphere alkalization may also enhance P uptake and growth of the intercropped legume. Facilitation can thus occur in both ways.  相似文献   

15.
The objective measurement of cereal endosperm texture, for wheat (Triticum spp. L.) in particular, is relevant to the milling, processing, and utilization of grain. The objective of this study was to evaluate the interlaboratory results of compression failure testing of wheat endosperm specimens of defined geometry. Parallelepipeds (bricks) and cylinders were prepared from individual soft and hard near‐isogenic wheat kernels and compressed in two orientations (parallel and perpendicular to the long brush‐to‐germ axis). Compression curves were used to derive failure stress, failure strain, work density (area under the curve), and Young's modulus. In all five laboratories, the ability to delineate hard from soft wheat endosperm material properties was quite high. Four laboratories compressed endosperm bricks in the same orientation, on edge; texture class (soft vs. hard) was consistently the greatest source of variation in analysis of variance models (F‐values from 417 to 1401, Young's modulus and failure stress, respectively). Failure stress was found to be the best overall means of measuring the difference in what is known in the vernacular as wheat hardness. Across laboratories, the absolute measures of all four material properties ranged on the order of about two‐ to threefold from low to high, although within a laboratory, results were highly consistent. Laboratory by texture class interaction was deemed to be of minor importance. Brick size and moisture content within the ranges tested were not major sources of variation, and cylinders prepared from endosperm produced results similar to those obtained from bricks. The results suggested that wheat endosperm might express some level of anisotropic behavior, as specimens compressed in the kernel orientation parallel to the long axis failed at lower strain and stress values, with lower work density, when compared with kernel orientation perpendicular to the long axis. A key feature of interlaboratory variation was identified as being instrument rigidity, a subject of ongoing research. In conclusion, the preparation of endosperm specimens of defined size and shape, in combination with compression failure testing at low moisture content (<18%), is useful for objectively delineating the phenomenon known as hardness. The study presented here will advance our ability to objectively measure cereal grain texture and the material properties of endosperm.  相似文献   

16.
Fusarium head blight (FHB) is one of the major diseases of wheat (both common and durum wheat) caused by various fungi including Microdochium nivale and different Fusarium species. Most of the Fusarium species associated with FHB (mainly F. graminearum, F. culmorum and F. sporotrichioides), under favourable environmental conditions, can produce various toxic secondary metabolites (mycotoxins) that can contaminate grains. The major Fusarium mycotoxins that can occur in wheat and derived products are deoxynivalenol, nivalenol, T‐2 and HT‐2 toxins, and zearalenone. Processing has generally significant effects on the levels of mycotoxins in the final products. Deoxynivalenol is typically concentrated in the bran coat which is removed in the production of semolina; consequently, a consistent reduction of deoxynivalenol levels has been observed during each of the processing steps, from raw durum wheat to pasta production. To allow monitoring programs and protect consumers' health, several analytical methods have been developed for Fusarium mycotoxins, based on chromatographic or immunometric techniques. The European Union has established maximum permitted levels for some Fusarium mycotoxins in cereals and cereal‐based products (including unprocessed durum wheat, bran, wheat flour, and pasta). Recommendations for the prevention and reduction of Fusarium mycotoxins contamination in cereals based on identification of critical risk factors and crop management strategies have been published by the Codex Alimentarius and the European Commission.  相似文献   

17.
Detailed knowledge of food oxalate content is of essential importance for dietary treatment of recurrent calcium oxalate urolithiasis. Dietary oxalate can contribute considerably to the amount of urinary oxalate excretion. Because cereal foods play an important role in daily nutrition, the soluble and total oxalate contents of various types of cereal grains, milling products, bread, pastries, and pasta were analyzed using an HPLC-enzyme-reactor method. A high total oxalate content (>50 mg/100 g) was found in whole grain wheat species Triticum durum (76.6 mg/100 g), Triticum sativum (71.2 mg/100 g), and Triticum aestivum (53.3 mg/100 g). Total oxalate content was comparably high in whole grain products of T. aestivum, that is, wheat flakes and flour, as well as in whole grain products of T. durum, that is, couscous, bulgur, and pasta. The highest oxalate content was demonstrated for wheat bran (457.4 mg/100 g). The higher oxalate content in whole grain than in refined grain cereals suggests that oxalic acid is primarily located in the outer layers of cereal grains. Cereals and cereal products contribute to the daily oxalate intake to a considerable extent. Vegetarian diets may contain high amounts of oxalate when whole grain wheat and wheat products are ingested. Recommendations for prevention of recurrence of calcium oxalate stone disease have to take into account the oxalate content of these foodstuffs.  相似文献   

18.
The structure of the aleurone layer was considered for many years as a potential factor influencing wheat milling efficiency. Eight durum wheat samples of different milling values, including distinct cultivars and harvesting conditions, were employed to investigate the structural characteristics of the aleurone layer through image analysis of kernel sections. Particular attention was paid to tissue thickness and structural irregularity of its interface with the starchy endosperm. Wheat cultivar, agricultural conditions, and location of measurement within the grain had an influence similar to both thickness and irregularity of the aleurone layer. Conversely, grain weight and morphology showed no effect on these parameters. Statistical investigation demonstrated no correlation between structural characteristics and wheat milling behavior. However, the negative correlation between the extraction rate of semolina and starch content in the bran fraction, which was used as an indicator of the endosperm‐aleurone dissociation extent, demonstrated the relevance of the tissue adhesion on milling efficiency.  相似文献   

19.
In this study, a practical spectrophotometric approach was used to determine the hydroperoxidation activity of durum wheat lipoxygenase (LOX). As stated in the related literature, the buffered linoleic acid solution used as the reaction medium is not optically clear enough at neutral and lower pH values due to its limited solubility. In our study, the optical clarity was obtained by the formation of sodium-salt of unreacted linoleic acid just before absorbance measurement. The durum wheat LOX was characterized in terms of pH and temperature optima as well as kinetic parameters. The maximum linoleic acid hydroperoxidation activities were determined at pH 5.0 and 6.5 and at 40°C This result can be considered as evidence for the presence of at least two LOX isoforms with respective optima at pH 5.0 and 6.5 in the crude durum wheat extract. The Michaelis constant (Km) and maximum hydroperoxidation) activity rate (Vmax) of durum wheat LOX for linoleic acid were estimated) to be 0.131 ± 0.019 mM and 42.37 ± 3.32 units/mg of protein/min, respectively. The method seems to be useful for the determination of LOX activity in durum wheat and its milling fractions.  相似文献   

20.
A rapid shear‐based test using a GlutoPeak instrument was compared with tests commonly used by durum wheat breeders to assess the potential of this instrument to discriminate between samples. Thirty‐two durum wheat semolina samples were analyzed by mixograph, SDS sedimentation (SDSS), gluten index (GI), and GlutoPeak testing. A subset was also tested for pasta quality. GlutoPeak peak maximum time (PMT) was the best indicator of gluten strength and correlated well with the other tests except SDSS. Samples with higher levels of SDS‐unextractable glutenin (insoluble protein [IP]) had stronger dough and longer PMT, but the GlutoPeak test only correlated with pasta stickiness using a smaller set of samples. The range in mixogram profiles encountered in breeding material was related to the IP content, and the pasta made from the different types was of similar quality, differing more because of protein content rather than mixogram type. The GlutoPeak test is faster than GI and uses less sample, requires little technical skill, and is suitable for evaluating large numbers of breeder's lines. The GlutoPeak test is best suited to discriminating weak from strong dough samples and allows for testing with small samples, thus facilitating quality evaluations at early stages of a breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号