首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Head rice yield (HRY) is the primary parameter used to quantify rice milling quality. However, HRY is affected by the degree of milling (DOM) and thus HRY may not be comparable between different lots if the DOM is different. The objective of this study was to develop a method by which HRY values can be adjusted for varying DOM values when measured by surface lipid content (SLC). Seventeen rough rice lots including long‐grain and medium‐grain cultivars and hybrids were harvested from two 2003 and five 2004 locations. Duplicate subsamples of each lot were milled in a McGill No. 2 laboratory mill for 10, 15, 20, or 40 sec after zero, one, two, three, and six months of storage. HRY and SLC were measured. The average HRY versus SLC slope across all milling duration data sets was 9.4. As such, it is suggested that, when milling with a McGill No. 2 laboratory mill, the HRY of a rice lot can be adjusted by a factor of 9.4 percentage points for every percentage point difference between the rice lot SLC and a specified SLC.  相似文献   

2.
The objective of this research was to determine the influence on drying characteristics and resultant milling quality of storing high moisture content (MC) rough rice (Oryza sativa L. ‘Bengal’ and ‘Cypress’) under various conditions and durations before drying. Immediately after harvest, drying experiments were performed with samples of both cultivars using two drying air conditions: 52°C with 25% rh and 60°C with 17% rh. Rough rice from each cultivar also was stored for 27 and 76 days at ‐9 or 4°C. After storage, all samples were dried under the same two drying air conditions as at harvest. Head rice yields (HRY) were determined for all dried samples. There were no significant differences between the drying rates or resultant HRY of Bengal or Cypress rice samples stored for either 27 or 76 days at both storage temperatures and then dried compared with the HRY of samples dried immediately after harvest. This research shows that it may be possible to store high MC rice for extended periods of time without detrimental effects on HRY.  相似文献   

3.
The effects of the degree of milling (based on surface lipids content [SLC]) on cooked rice physicochemical properties were investigated. Head rice yield (HRY), protein, and SLC decreased with increasing milling, while the percent of bran removed and whiteness increased. Results showed that SLC significantly (P < 0.05) affected milled as well as cooked rice properties across cultivar, moisture content (MC) at harvest, and location (Stuttgart, AR, and Essex, MO). Cooked rice firmness ranged from 90.12 to 111.26 N after milling to various degrees (SLC). The decrease in cooked rice firmness with increasing milling was attributed to the lowering of total proteins and SLC. Cooked rice water uptake increased with increasing degree of milling. Water uptake by the kernel during cooking dictated the cooked rice firmness. The increase in cooked rice stickiness with increasing degree of milling was attributed to an increase in starch leaching during cooking because of the greater starch granule swelling associated with a greater water uptake.  相似文献   

4.
This study evaluated the physicochemical properties of high‐temperature, single‐pass dried rough rice. Pureline cultivars Wells (long grain) and Jupiter (medium grain) and hybrid cultivar CL XL729 (long grain), at initial moisture contents of 17.9–18.1% were dried in a single pass to approximately 12.5% moisture content with drying air temperatures of 60, 70, and 80°C and relative humidities of 13–83%. Immediately after drying, the samples were tempered for 1 h at the drying air temperatures in sealed plastic bags. Color, degree of milling, pasting viscosity, and thermal properties of the milled rice were evaluated. Results showed that color, degree of milling, and thermal properties were not affected by drying treatments. However, peak and final viscosities increased with increasing drying air temperatures in all three cultivars.  相似文献   

5.
The surface lipids and free fatty acids (FFA) content of head and broken rice samples generated through milling after various drying treatments were studied. Long grain cultivars Francis, Wells, and Cypress, and medium grain cultivar Bengal were dried under three air conditions (mild 25°C, 50% rh; moderate 45°C, 40% rh; and stressed 65°C, 20% rh) for two durations (10 and 30 min). Immediately after drying, the rough rice samples were placed in a conditioning chamber to continue drying slowly to ⋍12.5% moisture content (MC), which occurred within three to five days. After dehulling, a McGill No. 2 mill was used to mill the samples for 30 sec. The head rice yield (HRY) for all rice samples were within the range of 40–68%. Rice surface lipid was extracted with isopropanol (IPA) and the lipid and FFA content of the IPA extracts were determined. Broken rice kernels had significantly greater surface lipid and FFA content than head rice kernels. The surface FFA contents of broken kernels were within the range of 0.045–0.065% of broken rice mass, while that of head rice was 0.027–0.040%. Broken ricehad greater b values indicating greater yellow color than did head rice.  相似文献   

6.
Three cultivars of long-grain rice were milled to three degree of milling (DOM) levels. Inverse linear relationships were established between surface fat concentration (SFC) and Satake milling meter (MM1B) optical DOM measurement values, including whiteness, transparency, and DOM, for the unfractionated head rice within each cultivar. Milled bulk rice for each cultivar was subsequently separated into thickness fractions. Effects of milled rice kernel thickness on SFC and optical DOM measurements were investigated. For a given DOM level, SFC decreased with increasing milled rice kernel thickness up to a thickness of 1.67 mm, after which it remained constant. As the overall DOM level increased, the difference in DOM between thin kernels and thick kernels lessened, implying that thin kernels were milled at a greater bran removal rate than thick kernels. Milled rice kernel thickness significantly (at the 0.05 significance level) affected MM1B whiteness and MM1B transparency in two of the cultivars because of the predominant effects of the thinner kernel fractions. Within each cultivar, MM1B DOM was not significantly influenced by milled rice kernel thickness.  相似文献   

7.
The objective of this research was to study the effects of different milling conditions and postmilling handling procedures on appraised milling quality of rough rice. Rough rice (M202) with moisture content of 11.5 ± 0.2% was used for this study. The samples were milled with a McGill number 3 mill under four milling conditions, including normal milling, milling at high temperature, milling with cooling using ice water, and room temperature water. The milled rice samples were cooled in closed and open plastic containers and in open pans with three temperatures: 15, 23, and 35°C. The effects of milling and postmilling conditions on milled rice temperature, moisture loss, cooling rate, single and multiple fissuring rates, total rice yield (TRY), head rice yield (HRY), whiteness index (WI), and total lipid content (TLC) were evaluated. Results showed that high single and multiple fissuring rates and low TRY and HRY were inherent in improper milling and postmilling conditions. Single fissuring rates were 15.9 and 17.6% and multiple fissuring rates were 3.5 and 7.2% for rice samples milled under normal and high‐temperature conditions, respectively. Cooling methods that used open containers and pans had more moisture losses and further resulted in lowering appraised milling quality than methods that used closed containers. Low‐temperature milling conditions followed by cooling in closed containers significantly reduced single and multiple fissuring rates and improved TRY and HRY by 0.9 and 1.5 percentage points, respectively. The effects of tested milling and postmilling conditions on WI and TLC were not significant. Obtained results constitute valuable information for developing milling and cooling procedures to achieve consistent, accurate, and reliable milling quality appraisals for rough rice.  相似文献   

8.
The relationship of glass transition temperature Tg and moisture content (MC) gradient of rice kernels to head rice yield (HRY) variation was investigated. Mathematical models describing heat and moisture transfer inside rice kernels during drying were developed and solved using the finite element method. Moisture distributions inside a kernel were simulated and verified using thin-layer drying experiments, and the intra-kernel MC gradients during drying were accordingly determined and analysed. Results showed that in the glassy region, rice did not incur measurable HRY reduction after drying. However, when rice was dried in the rubbery region and then cooled down immediately without being tempered following drying, HRY decreased markedly after MC gradients exceeded certain levels. It was found in this study that the time when the percentage point of moisture removal reached a maximally allowable level before HRY decreased dramatically coincided with the time at which the curve of kernel MC gradients versus drying duration reached its peak. Such a relation was verified with the HRY data of two varieties (Cypress and M202) as measured in this study and cited from literature. The HRY trends for these two varieties were well explained through the behaviour of glass transition and MC gradients of rice.  相似文献   

9.
Rapid drying with high‐temperature air has gained interest in the rice industry, but the effects of elevated‐temperature exposure on physicochemical properties of rice are of concern. This study investigated the effects of exposing rough rice to elevated temperatures for various durations without removing moisture. Physicochemical property response was evaluated in terms of head rice yield (HRY), germination rate (GR), milled‐rice yellowing, pasting properties, and gelatinization temperatures. Two long‐grain cultivars (pure‐line Wells and hybrid CL XL729) at initial moisture contents (IMCs) of 17.9 and 18.6%, respectively, and dried moisture content (DMC) of 12.5%, were hermetically sealed and exposed to 40, 60, and 80°C for various durations. Exposure to 80°C of IMC samples of Wells and CL XL729 resulted in a significant (2.3–2.5 percentage point) reduction in the HRYs. A 2 hr exposure of both cultivars at IMC level to 60°C completely inhibited GR, and exposure to 80°C of the cultivars at both moisture content (MC) levels immediately inhibited GR. Exposure to 80°C for almost all durations and 60°C for durations over 4 hr produced significant yellowing in both cultivars at IMC. Significant yellowing in both cultivars at DMC was also observed during a 28 day storage following 80°C exposure. In general, peak viscosities of both cultivars at IMC increased only after extended exposure to 40 and 60°C, but peak viscosities of the cultivars exposed to 80°C increased sharply and immediately upon exposure. No significant differences were observed in gelatinization temperatures of either cultivar at either MC level from elevated‐temperature exposure. Results from this study suggest that extreme‐temperature exposure of rough rice affects HRY, GRs, yellowing, and pasting properties of rice, but the extent of impact is MC dependent.  相似文献   

10.
The degree of milling (DOM) of rice is a measure of how well the germ and bran layers are removed from the surface of rice kernels during milling. Because the majority of rice kernel lipids are found on the surface, measuring the surface lipid content (SLC) of rice after milling may be one way to quantify the DOM of rice. While there are several methods to measure the lipid content (LC) of rice, there is not an established standard method for determining the SLC of milled rice. The objective of this study was to evaluate the primary operating variables of a Soxtec apparatus in measuring the SLC of milled rice. This was accomplished by varying the preextraction drying, boiling, rinsing, and postextraction drying durations, as well as the solvent used for extraction, to achieve the maximum extraction of lipids from rice. Experiments were performed on stored Oryza sativa L. ‘Cypress’ and ‘Bengal’ rice milled for 10, 30, and 60 sec. Results showed that durations of 1 hr of preextraction, 20 min of boiling, 30 min of rinsing, and 30 min of postextraction drying provided the maximum lipid extraction from milled head rice with petroleum ether. Of the three solvents tested, petroleum ether, and ethyl ether yielded similar extraction results.  相似文献   

11.
Long-grain rice variety Kaybonnet was milled to three degree of milling (DOM) levels in two commercial milling systems (a single-break, friction milling system and a multibreak, abrasion and friction milling system) and separated into five thickness fractions. For both milling systems, the surface lipid content (SLC) and protein content of the milled rice varied significantly across kernel thickness fractions. SLC was influenced by DOM level more than by thickness, while the protein content was influenced by thickness more than by DOM level. Particularly at the low DOM levels, the thinnest kernel fraction (<1.49 mm) had higher SLC than the other kernel fractions. Protein content decreased with increasing kernel thickness to 1.69 mm, after which it remained constant. In both milling systems, thinner kernels were milled at a greater bran removal rate as indicated by SLC differences between the low and high DOM levels. For rice milled to a given DOM level, the multibreak system produced fewer brokens than did the single-break system.  相似文献   

12.
Dehulled glutinous black rice (cv. Kam Doi Saket) was abrasively milled (0–60 s) to make a degree of milling (DOM) curve. The curve showed a nonlinear relationship between milling time and DOM. The slope sharply increased in the first 20 s; after this point, the increase was moderate. The redness of grain and flour surprisingly increased after milling, and the highest value was found at 20 s of milling. Protein, fat, and crude fiber were not uniformly distributed in the dehulled rice kernel. The rice retained only 76.95, 32.79, 20.24, and 36.57% of protein, fat, crude fiber, and ash, respectively, after milling for 60 s. Anthocyanins, γ‐oryzanol, and α‐tocopherol decreased by 74.49, 55.35, and 70.36%, respectively, after 10 s of milling. The scavenging activity decreased sharply when milling was carried out for longer than 30 s. The methanolic extract from rice milled for 60 s showed the lowest activity, which was 21.1 times lower than that of the dehulled rice extract. It was concluded that milling for 20 s was sufficient to remove most of the bran layer of the black rice sample, but 10 s of milling retained higher contents of nutritional components and rice antioxidants.  相似文献   

13.
Long‐grain rice cultivars Francis and Wells and hybrid XL8 Clearfield were harvested from two locations at three harvest moisture contents (HMC) in 2003. The rough rice was dried, fractionated into thin, medium, and thick fractions, and milled. Physicochemical properties of unfractionated and fractionated samples were determined. The effects of HMC and location on thickness distributions were investigated and the weighted‐average physicochemical properties of the thickness fractions were compared with those of unfractionated rice. Generally, the growing location and HMC affected kernel thickness distributions, green kernel content, fissured kernel content, and head rice yield (HRY). As kernel thickness within samples increased, amylose content increased and the protein content and α‐amylase activity decreased. Thick fractions had greater peak viscosities than medium and thin fractions. The thin, medium, and thick fraction physicochemical property weighted averages provided good predictions of most unfractionated rice sample properties. However, this approach was not entirely accurate for predicting HRY, milled rice total lipid content, and bulk density.  相似文献   

14.
15.
《Cereal Chemistry》2017,94(2):251-261
The objective for this study was to investigate the effectiveness of scaled‐up infrared (IR) heating followed by tempering steps to dry freshly harvested rough rice. An industrial‐type, pilot‐scale, IR heating system designed to dry rough rice was used in this study. The heating zone of the equipment had catalytic IR emitters that provided heat energy to the sample as it was conveyed on a vibrating belt. The sample comprised freshly harvested rough rice of long‐grain pureline (Cheniere), long‐grain hybrid (6XP 756), and medium‐grain (CL 271) cultivars at initial moisture contents of 23, 23.5, and 24% wb, respectively. Samples at a loading rate of 1.61 kg/m2 were heated with IR of radiation intensity 5.55 kW/m2 for 30, 50, 90, and 180 s followed by tempering at 60°C for 4 h, at a product‐to‐emitter‐gap size of 450 mm, in one‐ and two‐pass drying operations. Control samples were gently natural air dried in an equilibrium moisture content chamber set at relative humidity of 65% and temperature of 26°C to moisture content of 12.5% wb. The effects of IR treatments followed by tempering on percentage points of moisture removed, head rice yield, energy use, rice color, and pasting characteristics were evaluated. For all cultivars, percentage point moisture removed increased with increase in IR drying duration. For all rice cultivars, one‐pass IR treatments for 180 s resulted in head rice yield significantly lower than that of rice dried with natural air in the controlled‐environment conditions (P < 0.05). Energy required to dry rice increased with increase in drying duration. Viscosity values of all the experimental samples were significantly greater (P value < 0.05) than that of the control samples for all the cultivars, except those treated with IR for 180 s. There was a significant difference (P < 0.05) in the color index (ΔE ) of treated milled samples and the controls. In conclusion, the study provided information crucial to understanding the effects of scaled‐up radiant heating and tempering of rough rice on drying rates and rice quality for long‐grain pureline, long‐grain hybrid, and medium‐grain rice cultivars.  相似文献   

16.
Degree of milling (DOM) of rice plays a key role in determining rice quality and value. Therefore, accurate, nondestructive, quick, and automated surface lipid content (SLC) measurement would be useful in a commercial milling environment. This study was undertaken to provide calibration models for commercial use to provide quick and accurate evaluation of milled rice SLC and Hunterlab color parameters (L,a,b) as indications of rice DOM. In all, 960 samples, including seven cultivars from seven southern United States locations, stored for 0, 1, 2, 3, and 6 months, were milled for four durations to obtain samples of varying DOM. The samples were used to develop calibration models of milled rice SLC and L,a,b values. Another sample set (n = 58) was commercially milled and used to validate the developed models. A DA 7200 diode array analyzer was used to scan milled rice samples in wavelength spectra of 950–1,650 nm. SLC and color parameters were measured using a Soxtec system and a HunterLab colorimeter, respectively. The partial least squares regression (PLS) method using the full near‐infrared spectra was used to develop prediction models for rice SLC and color parameters. Milled rice SLC was well fitted with a correlation of determination of predicted and measured values of (R2 = 0.934). Color parameters were also successfully fitted for L (R2 = 0.943), a (R2 = 0.870), and b (R2 = 0.855). Performance of the developed models to predict rice DOM was superior in predicting SLC and L,a,b values with R2 predicted and measured values of 0.958, 0.836, 0.924, and 0.661, respectively.  相似文献   

17.
18.
19.
Rice quality, specifically head rice yield (HRY), can vary inexplicably from one lot to another, and from year to year. In an effort to correlate air temperatures during various growth stages to HRY, growth staging data expressed in degree day units was used to predict the occurrence of sequential growth stages within a set of 17‐year historical data, which included HRY and 50% heading dates for two long‐grain rice cultivars, (Oryza sativa L) Newbonnet and Lemont, and area weather data. HRY was most strongly affected by the average daily low temperature (or nighttime temperature) during the R8 developmental stage. Lower HRY were associated with high nighttime air temperatures during this stage for both Newbonnet and Lemont. When used as a single variable in a regression model, the nighttime temperature during the R8 developmental stage explained over 25% of the variation in HRY.  相似文献   

20.
Five registered cultivars of hull-less barley (HB) with regular or waxy starch were milled in a Quadrumat Jr. mill to obtain whole grain flour; pearled in a Satake mill (cultivar Condor only), and the pearled fractions examined by microscopy to determine true HB bran. The samples were milled after tempering and drying in a Buhler mill to obtain bran and flour yields. Flour color and composition of HB were unaltered on milling in the Quadrumat Jr. mill. Microscopic evidence showed that a 70% pearl yield was devoid of the grain's outer coverings, including the aleurone and subaleurone layers. Therefore, the balance of 30% constitutes true bran in HB. Dry milling (as-is grain moisture) of regular starch HB in the Buhler mill gave 59% total flour and 41% bran (bran + shorts) yields, the comparative values for the waxy starch HB were 42 and 58%. On tempering HB from 9 to 16% grain moisture, the total flour yield decreased in both types of HB but to a lesser extent in the waxy starch HB due to decreases in reduction flour. On drying HB to 5 or 7% moisture, total flour yields increased due to contamination with bran and shorts. The milling study led to the conclusion that HB, at best, be dry-milled and a bran finisher be used to obtain commercial flour extraction rates. Lower total flour yields in the waxy starch HB than in the regular starch HB milled at the same grain moisture levels seemed due to higher β-glucan rather than grain hardness. Waxy starch HB flour had higher mixograph water absorption and water-holding capacity than regular starch HB or soft white wheat flour milled under identical conditions. Roller-milled HB products offer the best potential for entry into the food market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号