首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro protein digestion study, using pepsin, was carried out in uncooked and cooked sorghum and maize flour samples. The digestibility values from the uncooked samples showed that sorghum presents digestibility values similar to those of maize. In the case of the cooked samples, it was found that a wet cooking procedure promotes a decrease in sorghum protein digestibility when compared to maize. Electrophoresis was used to follow the in vitro pepsin sequential digestion procedure, and infrared spectroscopy was applied to establish its efficiency. SDS-PAGE results showed that both uncooked samples (sorghum and maize) behave in a similar way. The wet cooking procedure increases the amount of high molecular weight aggregates and promotes the appearance of two nonreducible and nondigestible 45 and 47 kDa proteins. These two protein fractions are directly related to the loss of digestibility. It was also shown that in cooked sorghum the monomers (gamma-, alpha-, and beta-) are more resistant to digestion than the corresponding uncooked samples.  相似文献   

2.
To determine the rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents in a starch sample, the addition of amyloglucosidase is often used to convert hydrolyzates from α-amylase digestion to glucose. The objectives of this study were to investigate the exact role of amyloglucosidase in determining the digestibility of starch and to understand the mechanism of enzymatic actions on starch granules. Four maize starches differing in amylose content were examined: waxy maize (0.5% amylose), normal maize (≈27% amylose), and two high-amylose starches (≈57 and ≈71% amylose). Notably, without amyloglucosidase addition, the RS content increased from 4.3 to 74.3% for waxy maize starch, 29.7 to 76.5% for normal maize starch, 65.8 to 88.0% for starch with 57% amylose, and 68.2 to 90.4% for the starch with 71% amylose. In the method without α-amylase addition, less RS was produced than without added amyloglucosidase, except in maize at 71% amylose content. Scanning electron microscopy (SEM) revealed the digestive patterns of pinholes with α-amylase and burrowing with amyloglucosidase as well as the degree of digestion between samples. To understand the roles of amyloglucosidase and α-amylase in the in vitro test, multiple analytical techniques including gel permeation chromatography, SEM, synchrotron wide-angle X-ray diffraction, and small-angle X-ray scattering were used to determine the molecular and crystalline structure before and after digestion. Amyloglucosidase has a significant impact on the SDS and RS contents of granular maize starches.  相似文献   

3.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein).  相似文献   

4.
The in vitro starch digestion rate and estimated glycemic index (GI) of oat flours and oat starches from typical and high β-glucan oat lines were evaluated along with the impact of heating on starch digestion. Flour from oat lines ('Jim', 'Paul', IA95, and N979 containing 4.0, 5.3, 7.4, and 7.7% β-glucan, respectively) was digested by pepsin and porcine pancreatin. To determine the impact of heating on starch digestion, oat slurries were prepared by mixing oat flour and water (1:8 ratio) and heating for 10 min prior to digestion. Viscosity, as measured on a Rapid Visco Analyzer, increased with increases in concentration and molecular weight of β-glucan. The in vitro starch digestion of oat flours and a control, white bread made from wheat flour, increased as the digestion time increased. Starch digestion of oat flour was slower than that of the control (p < 0.05). Heat treatment of oat-flour slurries increased the starch digestion from a range of 31-39% to a range of 52-64% measured after 180 min of in vitro digestion. There were no differences in starch digestibility among oat starches extracted from the different oat lines. The GI, estimated by starch hydrolysis of oat flours, ranged from 61 to 67, which increased to a range of 77-86 after heating. Oat-flour slurries prepared from IA95 and N979 lines with high β-glucan concentrations had lower GI values than did slurries made from Jim and Paul lines. Starch digestion was negatively correlated with β-glucan concentrations in heated oat-flour slurries (R(2) = 0.92). These results illustrate that the oat soluble fiber, β-glucan, slowed the rate of starch digestion. This finding will help to develop new food products with low GI by using oat β-glucan.  相似文献   

5.
Grain sorghum has been documented to have low protein digestibility relative to other cereal grains. Low protein digestibility of sorghum is most pronounced in cooked foods and is ranked slightly lower than corn as a feed grain. In this article, sorghum germ plasm is identified that has substantially higher uncooked and cooked flour in vitro protein digestibility than normal cultivars. Sorghum lines were found within a high-lysine opulation derived from the mutant P721Q that have ≈10–15% higher uncooked and ≈25% higher cooked protein digestibilities using a pepsin assay. Highly digestible sorghum grain showed little reduction in digestibility after cooking, compared to the large reduction that is typical of normal sorghum cultivars. Using the three-enzyme pH-stat method, we showed that the highly digestible lines had the same degree of peptide bond hydrolysis in ≈5 min, as was found in 60 min in the normal cultivar, P721N. Differences in protein digestibility were related to enyzme susceptibility of the major storage prolamin, α-kafirin, that comprises ≈50–60% of the total sorghum grain protein. Using the enzyme-linked immunosorbent assay (ELISA) technique to track the pepsin digestion of α-kafirin, the highly digestible lines had ≈90–95% α-kafirin digested in 60 min compared to 45–60% for two normal cultivars. γ-Kafirin, a minor structural prolamin found mainly at the periphery of protein bodies, was also somewhat more digestible in the highly digestible sorghums. Highly digestible grain was of a floury kernel type, though recently this trait has been found in a modified background. More digestible protein from sorghum grain, that additionally is high in lysine content and has a fairly hard endosperm, could be of important benefit to populations who lack adequate protein in their diets, and may, pending further studies, prove to increase the value of sorghum as a feed grain.  相似文献   

6.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

7.
To understand the influence of the sorghum and maize endosperm protein matrix honeycomb structure on starch hydrolysis in flours, three‐dimensional fluorescence microscopy was applied to floury and vitreous endosperm flours cooked under various conditions. Cooking caused the collapse and matting of the sorghum and maize vitreous endosperm matrices, with the effect being greater in sorghum. The effect of cooking was rather different in the floury endosperm in that the protein matrices expanded and broke up to some extent. These effects were a consequence of expansion of the starch granules through water uptake during gelatinization. Cooking in the presence of 2‐mercaptoethanol caused an expansion of the vitreous endosperm matrix mesh due to breakage of disulfide bonds in the protein matrix. Mercaptoethanol also caused an increase in the proportion of β‐sheet structure relative to α‐helical structure of the endosperm proteins. Increased energy of cooking caused collapse of the sorghum matrix. Disulfide bonding and an increase in β‐sheet structure occurred with cooking, with the increase in disulfide bonding being greatest in sorghum vitreous endosperm. The tendency for the sorghum protein matrix to collapse and mat more with cooking than the maize matrix appears to be due to greater disulfide bonding. This is responsible for the observed low starch digestibility of cooked sorghum flour as a result of the more disulfide‐bonded protein matrix limiting the expansion of the starch granules and hence amylase access.  相似文献   

8.
The effect of amylose content of starch on processing and textural properties of instant noodles was determined using waxy, partial waxy, and regular wheat flours and reconstituted flours with starches of various amylose content (3.0–26.5). Optimum water absorption of instant noodle dough increased with the decrease of amylose content. Instant noodles prepared from waxy and reconstituted wheat flours with ≤12.4% amylose content exhibited thicker strands and higher free lipids content than wheat flours with ≥17.1% amylose content. Instant noodles of ≤12.4% amylose content of starch exhibited numerous bubbles on the surface and stuck together during frying. Lightness of instant noodles increased from 77.3 to 81.4 with the increase of amylose content of starch in reconstituted flours. Cooking time of instant noodles was 4.0–8.0 min in wheat flours and 6.0–12.0 min in reconstituted flours, and constantly increased with the increase in amylose content of starch. Hardness of cooked instant noodles positively correlated with amylose content of starch. Reconstituted flours with ≤12.4% amylose content of starch were higher in cohesiveness than those of wheat flours of wild‐type and partial waxy starches and reconstituted flours with ≥17.1% amylose content. Instant fried noodles prepared from double null partial waxy wheat flour exhibited shorter cooking time, softer texture, and higher fat absorption (1.2%) but similar color and appearance compared with noodles prepared from wheat flour of wild‐type starch.  相似文献   

9.
《Cereal Chemistry》2017,94(3):443-450
Heat stress during the grain‐filling stage is a major limiting factor for improving Chinese wheat production, and its effect on functional properties of flours and starches in 10 leading cultivars from the Yellow and Huai Valleys grown under normal and heat‐stress environments was investigated. Heat stress during the grain‐filling stage decreased total starch content but increased protein and lipid contents of wheat grains. Amylose content of wheat starch was little altered under a heat‐stress environment. Heat stress did not significantly change swelling power and starch solubility of wheat starches but significantly decreased swelling power of wheat flours. Pasting viscosities of wheat starches and flours were affected differentially by heat stress. Heat stress had a significant effect on gelatinization and retrogradation properties of starches. The in vitro enzymatic digestibility of wheat starches was affected slightly by heat stress. Analysis of variance indicated that heat stress had a significant effect on some functional properties of starch and flour, although the largest source of variability in these properties was cultivar.  相似文献   

10.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

11.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

12.
The effect of starch–protein–lipid interaction on the in vitro starch digestibility and expected glycemic index (eGI) of kodo millet flour (MF) was investigated. Debranned MF and the flour with lipid removed, protein removed, or both lipid and protein removed (MF‐L‐P) were subjected to digestion assays. The in vitro starch digestibility and eGI of the millet samples and millet starch were compared with rice or wheat flour. Rapidly digestible starch, slowly digestible starch, and resistant starch (RS) of the samples were also calculated. Protease treatment and defatting resulted in significant reduction (P < 0.05) in protein and lipid contents of samples. Significant increases in the in vitro starch digestibility and eGI of samples were observed after removal of protein, lipid, or both. The effect of lipid removal on in vitro starch digestibility of kodo millet was found to be more significant, compared with when proteins were removed. The eGI increased from 49.4 for cooked MF to 62.5 for MF‐L‐P. The eGI of cooked kodo millet starch was significantly lower than that of cooked rice flour. The RS (1.61%) of cooked rice was the least among the samples. The in vitro starch digestibility and eGI of rice were significantly higher than those of MF. Processes applied to kodo millet, such as decortication, that result in the removal of proteins, lipids, or both (especially lipids) would result in an increase in its in vitro starch digestibility and eGI. We therefore advocate for the development of acceptable products from whole millets to maintain its hypoglycemic property.  相似文献   

13.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

14.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

15.
Thermal and physicochemical properties of rice grain, flour and starch   总被引:4,自引:0,他引:4  
Three types of rices, namely, Thailand rice (Indica), Nipponbare (Japonica), and Himenomochi (Japonica waxy), in grain, flour, and starch forms have been studied for their thermal and physicochemical properties. In grain form, Indica was slender and Japonica rices were bold and thick. Indica had the highest protein and amylose equivalent. Protein contents in isolated starches varied from 0.2 to 0.9%. Cooked Indica grain was hardest and waxy rice was softest; stickiness was highest in Japonica rice. Glass transition temperature (T(g)) was highest in Indica rice flour (approximately 222 degrees C) and almost the same in Japonica rice flours. Melting point was highest for Japonica (approximately 264 degrees C) and almost the same for Japonica waxy and Indica rice flours. T(g) values of starches were almost the same in Indica and Japonica waxy (approximately 237 degrees C); defatting caused reduction in this property in all of the starches. Highest melting point was shown by Indica starch (approximately 276 degrees C) and was almost the same for the other two starches. Protein and fats play a critical role in glass transition and melting points of rice flours and their respective starches. Viscosities of the cooked pastes of flour and starch during cooking in an RVA instrument and their gel and other properties have been discussed.  相似文献   

16.
The functional properties and enzymatic digestibility of cationic and cross-linked cationic ae, wx, and normal maize starches were studied. Cationization reduced the endothermic transition temperatures (T(o), T(p), and T(c)), however, it increased peak viscosity, swelling power, solubility, clarity, and digestibility of all the starches compared to the corresponding native starch. After cationization, the enthalpy of waxy and normal starches was little changed but ae starch showed a decrease. For gel texture, cationization increased the hardness, adhesiveness, and springiness of all the starches, except for the hardness and adhesiveness of normal starch which showed a decrease, and the springiness of waxy starch did not show much change compared to the corresponding control starch. Cross-linking of cationic starch increased the endothermic transition temperatures, as well as peak viscosity. However, it reduced the swelling power and solubility, clarity, and enzymatic digestibility of all the cationic starches.  相似文献   

17.
Nixtamalized and extruded flours from quality protein maize (QPM, V‐537C) and tortillas made from them were evaluated for some technological and nutritional properties and compared with the commercial brand MASECA. Both QPM flours showed higher (P < 0.05) protein content, total color difference, pH, available lysine, and lower (P < 0.05) total starch content, Hunter L value, water absorption index, gelatinization enthalpy, resistant starch, and retrograded resistant starch than nixtamalized MASECA flour. Tortillas from nixtamalized and extruded QPM flours had higher contents of essential amino acids than tortillas from MASECA flour, except for leucine. Tortillas from processed QPM flours also showed higher (P < 0.05) values of the nutritional indicators calculated protein efficiency ratio (C‐PER 1.80–1.85 vs. 1.04), apparent and true in vivo protein digestibility (78.4‐79.1 vs. 75.6% and 76.4–77.4 vs. 74.2%, respectively), PER (2.30–2.43 vs. 1.31), net protein retention (NPR; 2.88–2.89 vs. 2.11), and protein digestibility corrected amino acid score (PDCAAS; 54–55 vs. 29% based on preschool children and 100 vs. 85% based on adults) than MASECA flour. The use of QPM for flour and tortilla preparation may have a positive effect on the nutritional status of people from countries where these products are widely consumed.  相似文献   

18.
The digestibility and hydration properties of wet‐ground submicron‐scale rice flour were compared with those of dry‐ground coarser microscale flours. The submicron flour (mean size 0.6 µm) was produced in a wet‐media mill with 0.3 mm zirconia beads by continuous 24 h pulverization. The solubility, water absorption index, and swelling power increased as the mean particle size decreased, reaching maximum values in the submicron flour. Starch damage was high in the submicron flour, with the absence of intact starch granules. The digestibility also increased as the particle size decreased, and it was highest in the submicron flour. These results show that wet‐ground submicron rice flour has different functional properties from dry‐ground coarser flour. The digestibility was more strongly influenced by starch damage and the water absorption index than by the mean particle size.  相似文献   

19.
Water‐soluble β‐glucan from native and extrusion‐cooked barley flours of two barley cultivars, Candle (a waxy starch barley) and Phoenix (a regular starch barley), was isolated and purified. The purity of β‐glucan samples was 85–93% (w/w, dry weight basis) for Candle and 77–86% (w/w, dry weight basis) for Phoenix. The water solubility of β‐glucan (at room temperature, 25°C) in the native and extruded flours (primary solubility) was different from that of the purified β‐glucan samples (secondary solubility). The solubility of β‐glucan in the native and extruded Candle flour was substantially higher than that of β‐glucan in Phoenix. For both cultivars, β‐glucan in the extruded flours had solubility (primary solubility) values higher than in their native counterparts. The solubility of β‐glucan in the purified β‐glucan samples differed depending on the barley cultivar and the extrusion conditions employed. The glycosidic linkage profiles of purified soluble β‐glucan from native and extruded barley flours were determined in order to understand the changes in the primary structure of β‐glucan and the effect of extrusion on the β‐glucan structure‐solubility relationship.  相似文献   

20.
We studied the effect of sorghum decortication and protease treatment on starch hydrolysis before liquefaction with thermoresistant α-amylase and the generation of free amino nitrogen (FAN) in preparation for subsequent steps of ethanol production. A bifactorial experiment with a level of confidence of P < 0.05 was designed to study differences among maize, whole sorghum, and decorticated sorghum and the effectiveness of the protease treatment before starch liquefaction. Sorghum was decorticated 9.7% to remove most of the pericarp and part of the germ and increase starch concentration. Starch concentration increased in decorticated kernels, whereas total phenols, fiber, and fat decreased. The decorticated sorghum had significantly higher starch and protein hydrolysis compared with the whole kernel. Protease treatment before liquefaction improved the rate of starch hydrolysis, especially in mashes from whole and decorticated sorghums. Whole and decorticated sorghum hydrolyzates treated with protease contained ≈50% more reducing sugars than the untreated counterparts. Maize yielded hydrolyzates with the the highest amount of FAN, followed by decorticated and whole sorghums. The maize and both sorghum hydrolyzates treated with protease contained ≈60 and 30% more FAN compared with the untreated counterparts. Both sorghum decortication and protease treatments before hydrolysis with α-amylase are recommended to increase ethanol yields, save processing time (and therefore energy), and to produce mashes with higher FAN content, which is considered as an important yeast substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号