首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve corn gluten meal samples obtained from six wet-milling plants were processed into zein. Zein was extracted using 88% aqueous isopropyl alcohol at pH 12.5, followed by chilling. Protein recovery ranged from 21.3 to 32.0%, and protein purity ranged from 82.1 to 87.6%. Protein recovery increased as the protein purity increased (r = 0.76) (P < 0.01). One of the major factors influencing extraction yield was protein composition; especially α-zein content, which ranged from 53.4 to 64% of the total protein in the corn gluten meal samples. The intensity of red color of the corn gluten meal was negatively correlated with protein recovery and zein purity (r = -0.66 and -0.72, respectively) (P < 0.02).  相似文献   

2.
The effect of adding lactic acid and sulfur dioxide at different times from the start of batch steeping on corn starch yields was studied. Five commercial hybrids were steeped with 0.5% lactic acid or 0.2% sulfur dioxide added over the first 15 hr of steeping and wet-milled following a 100-g corn wet-milling procedure. No significant differences were observed in starch yields when lactic acid was added to the steep solution (SO2 and water) from 0 hr (start of steeping) to 15 hr. Addition of SO2 to the steep solution (lactic acid and water) resulted in significantly higher average starch yields when SO2 was added between 5 and 15 hr compared with addition at 0 hr (SO2 and lactic acid for full 24 hr of steeping). Based on the results of the first experiment, a second experiment was done in which one of five original hybrids was steeped for 24 hr, during which lactic acid or SO2 was added until 23.9 hr (i.e., 5 min before milling) after the start of steeping. Similar results were found in the second experiment. Residual protein in starch samples did not exceed 0.85%. Steepwater protein content decreased with delays (16–20 hr) in adding either chemical to the steep solution. A significant effect on starch pasting properties of chemicals and duration of chemicals in steep-water was observed. Testing these findings using a larger scale (1,000 g) corn wet-milling procedure produced results similar to those obtained with the 100-g corn wet-milling procedure.  相似文献   

3.
A procedure based on the resistance and capacitance (RC) properties of corn to calculate a displacement value (DV) was evaluated for detection of corn that had reduced wet-milling quality. In 1991 and 1992, three hybrids were dried at air temperatures between ambient and 115°C in batch dryers. Additional samples, obtained from commercial elevators in 1992, had been dried with air temperatures ranging from 52 to 136°C. A baseline reference relationship was developed between log10-resistance and capacitance with data from ambient-dried samples. A DV was defined as the horizontal distance along the capacitance axis from a sample RC data point to the baseline reference. RC properties of samples dried at air temperatures >50°C were compared to the baseline and the DV determined. Selected drying treatments were wet-milled by a laboratory-scale procedure to verify milling quality and correlation with DV. The effects attributed to hybrid and harvest moisture content on the RC properties of ambient-dried samples were small, allowing the baseline reference to be applied to a wide range of corn samples. In 1992, the baseline shifted upward from the 1991 baseline by 0.5 units on the log10-resistance axis. DV increased significantly at drying air temperatures >50°C for batchdried samples. While DV correlated with drying temperature in batchdried samples (r = 0.66), it did not correlate with starch yield or recovery of commercial samples (r ≤0.10). Although the specific causes could not be determined, the shift in the baseline indicates the method would be difficult to implement on a practical scale. Although not indicated by DV, starch recovery decreased significantly for samples batch-dried at air temperatures ≥70°C. All samples dried at 115–136° had significantly lower starch recoveries.  相似文献   

4.
A corn wet-milling process in which alkali was used was studied as an alternative to the conventional corn wet-milling procedure. In the alkali wet-milling process, corn was soaked in 2% NaOH at 85°C for 5 min and then debranned mechanically to obtain pericarp as a coproduct. Debranned corn was cracked in a roller mill, and the cracked corn was steeped with agitation for 1 hr in 0.5% NaOH at 45°C. The cracked and steeped corn was then processed to separate germ, fiber, and gluten by steps similar to those in conventional wet-milling. Alkali wet-milling yielded soakwater solids, pericarp, germ, starch, gluten, and fine fiber. The protein content of the starch and the starch content of the fiber from the alkali process were lower than those from the conventional process.  相似文献   

5.
One waxy and three regular yellow dent corn hybrids were wet milled by using two scales of laboratory procedures (modified 100-g and 1-kg) and a pilot-plant procedure (10-kg). The modified 100-g and 1-kg laboratory procedures gave similar yields of wet-milling fractions. Starch yields and recoveries were significantly lower for the pilot-plant procedure, whereas gluten and fiber yields were greater because of their high contents of unrecovered starch. Protein contents of the starches obtained by all three procedures were within commercially acceptable limits (<0.50% db for normal dent corn and <0.30% for waxy corn). Rankings for starch yields and starch recoveries for the four hybrids, having very different physical and compositional properties, were the same for all three procedures. The harder the grain, the lower the yield and recovery of starch. Least significant differences (P < 0.05) for starch yield were 0.8% for the modified 100-g procedure, 1.2% for the 1-kg procedure, and 2.0% for the pilot-plant procedure.  相似文献   

6.
An alkali corn wet-milling process was developed to evaluate the process as a method to produce high purity corn starch and coproducts with added value. Using a single hybrid (R1064 × LH59), the effects of alkali concentration (0.18–0.82% NaOH), time (29–61 min), and temperature (36–75°C) were investigated. Starch yield was not affected by steep time or temperature. Starch yield was optimal at 65.2% using 0.5% alkali. Increasing the concentration of alkali to 0.82% or decreasing it to 0.18% caused a decrease in starch yield of 8–10 percentage points. Other wet-milling products (fiber, germ, and gluten) also were affected. Steep conditions of 0.5% NaOH, 60 min, and 45°C gave optimal starch yield. Comparisons between alkali and sulfur dioxide wet-milling processes, using 1-kg sample size, were performed on 10 commercial yellow dent corn hybrids. The alkali process averaged 1.7 percentage points more starch than the sulfur dioxide process. Each hybrid had a higher starch yield when wet-milled with the alkali method. Alkali wet-milling produced pure corn starch with <0.30% protein (db).  相似文献   

7.
The effect of four growing environments (two at Ames, IA; one at Clinton, IL; and one at Columbia, MO) on the thermal properties of starch from five exotic‐by‐adapted corn inbred lines (Chis37, Cuba34, Cuba38, Dk8, Dk10) and two control lines (B73 and Mo17) were studied using differential scanning calorimetry (DSC). The variations in thermal properties within environments were similar for the exotic‐by‐adapted lines and control lines. Missouri was the warmest environment and generally produced starch with the greatest gelatinization onset temperature (ToG), the narrowest range of gelatinization (RG), and the greatest enthalpy of gelatinization (ΔHG). Illinois was the coolest environment and generally resulted in starch with the lowest ToG, widest RG, and lowest ΔHG. These differences were attributed to higher temperatures in Missouri during grain‐filling months either increasing the amount of longer branches of amylopectin or perfecting amylopectin crystalline structure. The Ames 1 environment produced starch with thermal properties most similar to those of Illinois, whereas the Ames 2 environment produced starch with thermal properties most similar to those of Missouri. Ames 2, located near a river bottom where temperatures tend to be warmer, likely had temperatures most similar to those found in Missouri during grain filling.  相似文献   

8.
Ten parent corn lines, including four mutants (dull sugary2, amylose‐extender sugary2, amylose‐extender dull, and an amylose‐extender with introgressed Guatemalen germplasm [GUAT ae]) and six lines with introgressed exotic germplasm backgrounds, were crossed with each other to create 20 progeny crosses to increase resistant starch (RS) as a dietary fiber in corn starch and to provide materials for thermal evaluation. The resistant starch 2 (RS2) values from the 10 parent lines were 18.3–52.2% and the values from the 20 progeny crosses were 16.6–34.0%. The %RS2 of parents was not additive in the offspring but greater RS2 in parents was correlated to greater RS2 in the progeny crosses (r = 0.63). Differential scanning calorimetry (DSC) measured starch thermal characteristics, revealing positive correlations of peak gelatinization temperature and change in enthalpy with %RS2 (r = 0.65 and r = 0.67, P ≤ 0.05); however, % retrogradation (a measure of RS3) and retrogradation parameters did not correlate with %RS2. The %RS2 and onset temperature increased with the addition of the ae gene, likely because RS delays gelatinization.  相似文献   

9.
Breadmaking quality in wheat is one of several considerations that plant breeders face when developing new cultivars. In routine breeding programs, quality is assessed by small-scale dough-handling and bake tests, and to some extent, by biochemical analysis of gluten proteins. An alternative, not yet fully examined, method for wheat flour quality assessment is near-infrared reflectance (NIR) spectrophotometry. The present study was performed on 30 genotypes of hard red winter wheat grown during two crop years at eight to nine locations in the Great Plains area of the United States. Biochemical testing consisted of measuring protein fractions from size-exclusion HPLC (M r > 100k, M r 25–100k, and M r < 25k designated as glutenin, gliadins, and albumin and globulins, respectively), pentosan content, and SDS sedimentation volume. Dough-handling properties were measured on a mixograph and recorded as the time to peak dough development, the peak resistance, the width of the mixing curve, and the width of the curve at 2 min past peak. Partial least squares analyses on diffuse NIR spectra (1,100–2,498 nm) were developed for each constituent or property. When applied to a separate validation set, NIR models for glutenin content, gliadin content, SDS sedimentation volume, and mixograph peak resistance demonstrated reference vs. predicted correlations ranging from r = 0.87 to r = 0.94. Such models were considered sufficiently accurate for screening purposes in breeding programs. NIR spectra were responsive to each constituent or property at a level higher than expected from a correlation between the constituent or property and protein content (recognizing that protein content is modeled by NIR with high accuracy).  相似文献   

10.
The increasing demand for triticale as food, feed, and fuel has resulted in the availability of cultivars with different grain quality characteristics. Analyses of triticale composition can ensure that the most appropriate cultivars are obtained and used for the most suitable applications. Near‐infrared (NIR) spectroscopy is often used for rapid measurements during quality control and has consequently been investigated as a method for the measurement of protein, moisture, and ash contents, as well as kernel hardness (particle size index [PSI]) and sodium dodecyl sulfate (SDS) sedimentation from both whole grain and ground triticale samples. NIR spectroscopy prediction models calculated using ground samples were generally superior to whole grain models. Protein content was the most effectively modeled quality property; the best ground grain calibration had a ratio of the standard error of test set validation to the standard deviation of the reference data of the test set (RPDtest) of 4.81, standard error of prediction (SEP) of 0.52% (w/w), and r2 of 0.95. Whole grain protein calibrations were less accurate, with optimum RPDtest of 3.54, SEP of 0.67% (w/w), and r2 of 0.92. NIR spectroscopy calibrations based on direct chemical reference measurements (protein and moisture contents) were better than those based on indirect measurements (PSI, ash content, and SDS sedimentation). Calibrations based on indirect measurements would, however, still be useful to identify extreme samples.  相似文献   

11.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

12.
The influence of the physicochemical properties of heat‐moisturetreated and untreated starches from various plant sources on the quality of tempura fried batter was examined. Batter of each starch plus wheat protein (92:8, w/w) was fried. Quality of the resulting fried batter was determined from crispness score, water evaporation, and breaking strength. The crispness score correlated with water evaporation (r = 0.95) and breaking strength (r = 0.97), indicating that water evaporation was a reliable index for evaluation of crispness of fried batter. Determination of water evaporation was easy and simple. The crispness (favorable eating texture) of tempura coating depended largely on starch origin. Among the pasting properties of starch, temperature at maximum viscosity (r = 0.77) and breakdown/maximum viscosity (% breakdown, r = ‐0.82) correlated with water evaporation, suggesting that starch resistant to gelatinization and granule disintegration produced crispy fried batter. This observation was supported by SEM. Water evaporation (r = ‐0.82) and % breakdown (r = 0.95) correlated with degree of amylose gelatinization, indicating that amylose was one of the determinants that controls crispness of fried batter by restraining disintegration of the starch granule structure.  相似文献   

13.
Starch was extracted from 10 sorghum genotypes and physicochemical properties (amylose content and pasting, textural, and thermal properties) were evaluated. The amylose content was 24–30%. DC‐75 starch had the highest peak viscosity (380 Rapid Visco Analyser units). Gelatinization peak temperature occurred over a narrow range (67–69°C). Genotypes Kasvikisire and SV2 produced white starches. Starches from other genotypes were different shades of pink. The starch noodles prepared were, accordingly, either white or pink. Cooking enhanced the pink coloration of noodles. Cooking loss, noodle rehydration, and elasticity were evaluated. Cooking loss was low (mean 2.4%). Noodle elasticity was highly correlated with starch pasting properties of hot paste viscosity (HPV) (r = 0.81, P < 0.01) and cold paste viscosity (CPV) (r = 0.75, P < 0.01). Noodle rehydration was significantly correlated to the initial swelling temperature of starch (Ti) (r = ‐0.91, P < 0.001) and gelatinization peak temperature (Tp) (r = 0.69, P < 0.05). The findings suggest a potential area of food application for sorghum genotypes of different grain colors. Evaluation of starch properties could be a good starting point for selecting sorghum genotypes with superior noodle‐making properties.  相似文献   

14.
Protein and protein fractions were measured in 49 hard winter wheat flours to investigate their relationship to breadmaking properties, particularly loaf volume, which varied from 760 to 1,055 cm3 and crumb grain score of 1.0–5.0 from 100 g of flour straight‐dough bread. Protein composition varied with flour protein content because total soluble protein (SP) and gliadin levels increased proportionally to increased protein content, but albumins and globulins (AG), soluble polymeric proteins (SPP), and insoluble polymeric protein (IPP) levels did not. Flour protein content was positively correlated with loaf volume and bake water absorption (r = 0.80, P < 0.0001 and r = 0.45, P < 0.01, respectively). The percent SP based on flour showed the highest correlation with loaf volume (r = 0.85) and low but significant correlation with crumb grain score (r = 0.35, P < 0.05). Percent gliadins based on flour and on protein content were positively correlated to loaf volume (r = 0.73, P < 0.0001 and r = 0.46, P < 0.001, respectively). The percent IPP based on flour was the only protein fraction that was highly correlated (r = 0.62, P < 0.0001) with bake water absorption followed by AG in flour (r = 0.30, P < 0.05). Bake mix time was correlated positively with percent IPP based on protein (r = 0.86) but negatively with percent SPP based on protein (r = ‐0.56, P < 0.0001).  相似文献   

15.
The effect of lactic acid on starch yields of different corn hybrids was determined by wet-milling 18 commercial corn hybrids at three levels of lactic acid. All 18 hybrid samples tested had higher starch yields when lactic acid was added to the steep solution, although the magnitude of the increased starch yields varied between 2.9 and 12.0%. The optimal lactic acid concentration for maximum starch recovery was found to be between 0.55 and 1.67% lactic acid, by wet-milling nine of the same 18 corn hybrids with seven levels of added lactic acid. Between 0.83 and 1.67% lactic acid, the starch yields of eight of the nine hybrids were constant (within ±0.5%). Results showed that the average starch yield across all hybrids decreased with a lactic acid concentration <0.55% and a lactic acid concentration >1.67%.  相似文献   

16.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

17.
Studies on samples of 20 hard-grained wheat cultivars and a commercial flour that varied in starch and protein quality showed that both characteristics influenced the texture of Japanese alkaline noodles (ramen). Flour swelling volume (FSV) and flour pasting characteristics (peak viscosity and breakdown) determined with a Rapid-Visco Analyser (RVA) assessed independently of α-amylase effects, were negatively correlated with total texture score. Protein quality, as indicated by farinograph stability, was positively correlated with total texture score. RVA pasting characteristics were substantially affected by small levels of α-amylase, and inactivation by means of 1 mM AgNO3 was a critical requirement in characterizing the quality of the starch component of flour.  相似文献   

18.
A water‐soluble starch fraction isolated from corn masa and identified by HPSEC as predominantly fragmented amylopectin was highly correlated in amount to both masa adhesiveness (r = 0.890, P < 0.01) and cook time (r = 0.957, P < 0.01). The molecular weight of the component ranged from approximately 6.4 × 105 to 1.2 × 106, based on HPSEC column calibration with pullulan standards. Debranching with isoamylase illustrated that the structure of the soluble masa starch component was highly branched with a similar debranched profile to native amylopectin. Further analysis revealed that a minor amount of amylose was present in the second half of the broad HPSEC peak containing the fragmented amylopectin component. There was a high second‐order correlation (r = 0.998, P < 0.01) between the absorbance at the wavelength of maximum absorbance (λmax) of the soluble fraction from masa (527–532 nm) and masa adhesiveness, indicating that a rapid assay for masa adhesiveness could easily be developed. Increasing the shear at the stone mill by reducing the gap setting between the stones, increased the amount of fragmented amylopectin. The high correlation between the amount of fragmented amylopectin and masa adhesiveness suggests that this fraction is the main determinant of masa adhesiveness. The amount of fragmented amylopectin can be controlled by cook time and gap between the stone plates of the mill.  相似文献   

19.
Correlations among grain sorghum quality factors (proximate composition, physical properties, and water absorption properties) were evaluated. Samples of 46 commercial hybrids (24 and 22 from crop years 1993 and 1994) were analyzed for starch, protein, crude free fat, test weight, absolute density, 1,000 kernel weight, percent kernel abraded, water absorption index, initial water absorption rate, and moisture saturation point. Test weight, absolute density, and percent kernel abraded were positively correlated among themselves (r > 0.5). Protein was negatively correlated with both test weight and absolute density (r < -0.5), while moisture saturation point showed negative correlations with test weight, absolute density, 1,000 kernel weight, and percent kernel abraded (r < -0.4). Principal component factor analysis through the covariance matrix explained 95% of the total variation of quality factors among hybrids (two factors), and, through the correlation matrix, 85% of the total variation (five factors). Water absorption rate decreased with increasing starch content of grain sorghum kernels as water absorption rate increased and amount of water for saturation decreased with softening of kernels.  相似文献   

20.
Nixtamalization involves cooking and steeping corn in a lime solution, washing the corn (nixtamal), and stone grinding nixtamal to form a corn dough or masa. Masa is used to produce nixtamalized products (corn tortillas, tortilla chips, corn chips, taco shells, etc.) by forming and baking or deepfat frying. The degree of corn kernel cook determines the quality and texture of masa. Response surface methodology (RSM) was used as an experimental design to study the impact of process variables (cook temperature, cook time, initial steep temperature, and steep time) on the degree of cook measured using a Rapid Visco Analyser (RVA) and differential scanning calorimetry (DSC). RSM data exhibited significant (P < 0.005), although not predictive, linear models for RVA peak viscosity (r2 = 0.63), setback (r2 = 0.61), final viscosity (r2 = 0.61), and peak time (r2 = 0.57), indicating a dependence of these parameters on nixtamalization conditions. Peak viscosity, setback, and final viscosity increased linearly with steep time. DSC enthalpy (r2 = 0.83) and peak temperature (r2 = 0.89) of freezedried masa also exhibited significant (P < 0.0001) linear regression models with processing variables. DSC enthalpy increased with an increase in steep time, suggesting that starch is annealed during steeping. This study demonstrated that fundamental starch properties were altered on extended steeping during nixtamalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号