共查询到16条相似文献,搜索用时 131 毫秒
1.
CO2浓度升高和氮输入影响下湿地生态系统CO2排放研究 总被引:1,自引:0,他引:1
为了研究CO2浓度升高和氮输入影响下湿地生态系统CO2排放通量变化,选择三江平原典型草甸化小叶章(Calamagrostis angustifolia)湿地系统为对象,利用开顶箱进行CO2浓度升高模拟试验。试验结果表明,CO2浓度升高促进了湿地生态系统CO2排放量,不施氮、常氮和高氮处理分别增加23.78%、23.14%和34.18%.CO2浓度升高增加了小叶章地上、地下生物量的积累,且当氮素供应充足时增加显著。土壤微生物量碳和水溶性有机碳在CO2浓度升高条件下有增加的趋势。回归分析表明小叶章生物量、土壤活性有机碳与湿地生态系统CO2排放量显著相关。CO2浓度升高和施氮通过影响植物生物量和土壤微生物活性进而影响湿地生态系统CO2排放量,这对于重新估算未来环境变化条件下湿地生态系统碳平衡具有重要意义。 相似文献
2.
大气CO2浓度升高对长白赤松幼苗土壤酶活性的影响 总被引:1,自引:0,他引:1
【目的】探讨长白赤松土壤酶活性对大气CO2浓度升高的响应规律。【方法】采用1.2m×0.9m×0.9m的开顶箱控制CO2浓度,试验设高浓度CO2处理(CO2浓度分别为700,500μmol/mol)及开顶箱对照(CK)和裸地对照(B),2个对照处理的CO2浓度均为大气CO2浓度(370μmol/mol)。采用多点混合法于7,8,9月的中旬采集各处理0~10cm土层土壤样品,分析土壤水解酶和氧化还原酶活性的变化规律。【结果】与2个对照处理相比,高浓度CO2条件下,土壤脲酶、淀粉酶、转化酶、过氧化氢酶、多酚氧化酶以及脱氢酶活性均升高,而土壤蛋白酶和磷酸酶活性总体上表现出降低,且不同高浓度CO2处理对土壤蛋白酶和磷酸酶活性的影响差异不显著。【结论】高浓度CO2处理下,长白赤松土壤脲酶、转化酶、淀粉酶、过氧化氢酶、多酚氧化酶以及脱氢酶活性明显增加,而土壤蛋白酶和磷酸酶的活性明显降低;各土壤酶活性的月动态规律在不同程度上受到了高浓度CO2的影响。 相似文献
3.
大气CO2浓度和温度升高对水稻体内微量元素累积的影响 总被引:1,自引:2,他引:1
为明确水稻体内微量元素对未来气候变化的响应,应用T-FACE(Temperature and CO_2Free Air Controlled Enrichment)试验平台,以常规粳稻武运粳23为试材,研究大气CO_2浓度升高(对照+200μL·L~(-1))和增温(对照+1℃)对收获期水稻体内微量元素累积的影响。结果显示,高浓度CO_2促进了稻穗中微量元素的累积,2013年穗中Fe和2014年穗中Zn的累积量分别显著增加16.7%和30.8%;增温降低了水稻器官中元素的累积量,2013年穗中Fe以及叶中Mn和Zn的累积量显著下降,降幅分别为30.2%、40.2%和57.3%;CO_2+温度整体降低了营养器官中Fe、Mn和Zn的累积量,2013年叶中Zn累积量显著减少40.0%。另外,高浓度CO_2降低了籽粒中Fe的累积量,2013年Fe累积量显著下降47.5%,同时提高了Mn与Zn的累积量,2014年Zn累积量显著增加43.4%;增温明显降低了籽粒中Fe、Mn和Zn的累积量;CO_2+温度有降低籽粒中元素累积量的趋势,其中2013年降幅大于2014年。以上结果表明未来CO_2浓度升高可在一定程度上缓解增温导致的水稻体内微量元素累积下降的状况。 相似文献
4.
【目的】阐明大气CO2浓度升高对黑土有机碳稳定性的影响,为黑土碳中和应对气候变化提供理论依据。【方法】以黑土为研究对象,依托中国科学院海伦农业生态试验站长期定位模拟气候变化开顶箱(OTC)试验平台,设2个处理,分别为对照处理(CK,CO2浓度400μmol/mol)和CO2浓度升高处理(eCO2,CO2浓度700μmol/mol),采用13C同位素示踪法,研究大气CO2浓度升高对黑土及不同粒级团聚体有机碳稳定性的影响,并对土壤有机碳含量与更新率和半衰期进行相关分析。【结果】与CK相比,eCO2处理使>0.25 mm粒级团聚体含量显著增加11.09%(P<0.05,下同),0.25~0.053 mm粒级团聚体含量显著减少23.85%,提升团聚体的平均重量直径(MWD)和几何平均直径(GMD);大气CO2浓度升高使>0.25 mm粒级团聚体有机碳显著增加11.61%,0.25~... 相似文献
5.
大气CO2浓度和温度升高对麦田土壤呼吸和酶活性的影响 总被引:2,自引:2,他引:2
以同步模拟大气CO_2浓度和温度升高的田间开放式气候变化平台为依托,研究大气CO_2浓度和温度的对照处理(CK)、CO_2浓度升高(CE)、试验增温(WA)以及两者同时升高(CW)对小麦土壤呼吸、脲酶和转化酶的影响。结果表明:与对照相比,CE处理的小麦季土壤呼吸速率没有显著变化,而升温处理(WA和CW)的土壤呼吸速率显著提高;在分蘖期土壤脲酶和转化酶活性没有明显变化,在抽穗和成熟期,升温处理显著提高了转化酶活性,而CE处理显著提高了抽穗期转化酶活性;与对照相比,CE处理土壤脲酶活性没有变化,而WA处理显著提高了抽穗期的土壤脲酶活性。可见,大气CO_2浓度和温度升高对不同生育期的土壤呼吸和酶活性影响存在差异,而且土壤呼吸、脲酶和转化酶活性对温度升高的响应比较敏感。 相似文献
6.
森林碳平衡及碳氮耦合对大气CO2浓度升高的响应存在着诸多不确定性,现有研究主要集中在温带地区,并体现在光合作用、生产力及分配、枯落物分解以及土壤碳库等各个方面,研究结果表明:CO2浓度升高(1)短期内增强了森林的光合能力,长期条件下由于氮供应与叶氮含量的下降,就会产生光合下调与适应现象;(2)提高了森林净初级生产力(NPP)并影响其在各组分之间的分配,但却没有促进土壤氮矿化作用,土壤氮有效性降低,限制了森林NPP的持续上升;(3)增加了森林枯落物的数量,刺激了微生物的氮吸收与同化以及植物对有效氮的利用,从而影响分解过程;(4)增强了森林土壤的碳汇功能,但同样会受到氮有效性的直接限制与支持氮固定的其它养分的间接限制。由于热带、亚热带地区的环境因素与温带地区存在较大差异,未来应加强这些区域的相关研究,进一步揭示森林生态系统对CO2浓度升高的响应机制。 相似文献
7.
大气CO2浓度升高对大型海藻孔石莼生长和色素含量的影响 总被引:1,自引:0,他引:1
在实验室模拟研究了大气CO2浓度升高对海洋中大型绿藻孔石莼Ulva pertusa的生长和色素含量的影响。设置4个独立试验,每个试验的CO2浓度分别为387、500、600、800 mg/L。每个试验设6个海水培养系统,其中3个通入一定浓度的CO2作为试验系统,另外3个通入大气作为对照系统。在每个海水培养系统中,分别装入25 L过滤海水(滤膜孔径为0.22μm),放入(50.0±1.0)g的孔石莼进行培养,试验进行7 d。结果表明:高浓度CO2对孔石莼生长无显著影响(P>0.05),但降低了孔石莼中叶绿素a和类胡萝卜素的含量;试验结束时,CO2浓度为387、500、600、800 mg/L时,试验系统中孔石莼的叶绿素a含量分别为(855.9±31.6)、(780.8±6.2)、(677.3±22.1)、(585.1±16.9)μg/g(鲜质量),分别为对照系统的98.3%、91.8%、78.4%和71.7%,试验系统中孔石莼的类胡萝卜素含量分别为(185.6±5.0)、(167.8±2.4)、(150.6±2.3)、(128.3±4.3)μg/g(鲜质量),分别为对照系统的97.7%、91.5%、80.4%和69.4%;而对照系统中试验开始时和试验结束时,孔石莼的叶绿素a含量和类胡萝卜素含量均无显著性差异(P>0.05)。 相似文献
8.
以常规粳稻、杂交籼稻、常规籼稻共6个品种为供试材料,研究FACE(大气CO2浓度增加200 μmol·mol-1)条件对不同品种类型水稻产量及磷素吸收、分配、运转、利用的影响。结果表明:FACE处理使水稻产量显著增加24.17%,常规粳稻、杂交籼稻、常规籼稻分别增加19.38%、24.02%和29.10%,常规籼稻增幅最大;FACE处理使抽穗期、成熟期植株含磷率分别增加2.51%、6.07%,抽穗期常规籼稻增幅最大,成熟期常规粳稻增幅最大,处理间无显著差异;FACE处理使抽穗期、成熟期植株吸磷量增加25.42%、32.51%,抽穗期以常规籼稻增幅最大,成熟期以常规粳稻增幅最大。成熟期吸磷量与水稻产量呈极显著线性正相关(r=0.457**);FACE处理对抽穗期、成熟期各器官磷素占比无明显影响,但品种间差异较大;FACE处理使结实期茎鞘叶磷素运转量和穗部磷素增加量分别提高了25.77%、36.18%,两个性状均以常规籼稻增幅最大,促进磷素向穗部运转有利于水稻产量的提高(r=0.410**);FACE处理降低常规粳稻和常规籼稻的磷素籽粒生产效率、干物质生产效率,增加了杂交籼稻磷素干物质和籽粒生产效率;FACE处理使磷肥偏生产力显著增加24.17%,常规籼稻增幅最大。研究表明,FACE处理显著提高了各类水稻的产量、植株吸磷量、磷素运转量、磷肥偏生产力,品种间差异较大。 相似文献
9.
自工业革命以来,由人类活动引起的大气CO_2浓度([CO_2])不断攀升,正驱动着全球气候变化,对全球农业产生重大影响。本文归纳总结了目前作物对高[CO_2]响应的主要研究技术手段,以及作物对高[CO_2]响应的机理研究,并进一步梳理了当前全球关于[CO_2]升高对作物产量和营养品质影响的研究。结果表明:相比封闭式或半封闭式环境控制试验系统,开放式试验系统(如开放式CO_2控制系统FACE)由于其能更加真实地模拟自然条件下作物对未来高[CO_2]的响应和适应情况,被公认为是目前研究作物对高[CO_2]响应的最理想手段。[CO_2]增高会增加C3作物光合速率、生物量和产量,在一定程度上缓解气候变化对农作物产生的负面影响,但是作物对大气[CO_2]的升高存在光合适应现象,当作物长期暴露在高[CO_2]条件下时,高[CO_2]对作物的促进作用会逐渐减缓。近10年的FACE试验发现,对高[CO_2]出现高应答的水稻品种,其光合速率和产量在高[CO_2]下的增加幅度比早期的主要粮食作物FACE试验结果平均高出两倍。此外,高[CO_2]会明显降低大部分非豆科C3作物中蛋白质和矿物质(如锌、铁)以及部分维生素的含量,加剧目前全球约2亿人由于维生素和矿物质元素等营养缺乏导致的健康问题。如何充分利用未来高[CO_2]实现高增产的同时,减缓粮食养分下降的负面影响,是迫切需要解决的科学问题。 相似文献
10.
甲烷氧化细菌是目前已知的稻田甲烷氧化唯一生物,在减少稻田甲烷排放、降低大气甲烷浓度方面发挥着重要作用.利用中国稻/麦轮作FACE(Free Air Carbon-dioxide Enrichment)试验平台,采用实时荧光定量PCR技术,研究了大气CO2浓度升高下,典型水稻生长期根际土壤甲烷氧化细菌数量的变化规律,及其对不同施肥处理(高氮HN和常氮LN)的响应.2009和2010连续2a的观测结果表明,大气CO2浓度升高促进了2009年秧苗期和分蘖期,2010年秧苗期、拔节期和灌浆期甲烷氧化细菌的生长;并可能对2010年常氮条件下成熟期甲烷氧化细菌产生了较显著(P<0.1)抑制;进一步针对甲烷氧化细菌主要类群的分析表明,高氮条件下大气CO2浓度升高提高了稻田根际土壤中Ⅰ型甲烷氧化细菌的丰度. 相似文献
11.
利用OTC平台和青菜盆栽实验,探索[CO_2]、[O_3]或[CO_2+O_3]升高条件下,土壤理化性质、微生物量和土壤酶活性的变化,以期获得未来大气CO_2或/和O_3升高对土壤微生态系统的风险性。结果表明,[CO_2]升高不同程度地提高了土壤的可溶性有机碳(DOC)、可溶性有机氮(DON)、总磷(TP)、总碳(TC)、铵态氮(AN)、硝态氮(NN)含量和含水量(SWC),进而不同程度地提高了土壤微生物量碳(MBC)、微生物量氮(MBN)含量以及土壤蛋白酶(PRA)、蔗糖酶(SA)、脲酶(UA)、多酚氧化酶(POA)、酸性磷酸酶(APA)和中性磷酸酶(NPA)活性。相反,[O_3]升高不同程度降低了土壤DOC、TP、TK、TC、TN、AN、NN、SWC、MBC和MBN含量,提高了MBC/MBN比值,在不同程度上降低了土壤PRA、SA、UA、POA、APA和NPA酶活性。而[CO_2+O_3]在一定程度上消减了[O_3]对土壤微生物量和酶活性的抑制作用,也降低了[CO_2]升高对土壤微生物量和酶活性的刺激效应。因此,土壤微生物量和土壤酶活性的变化可用于评价未来大气CO_2或/和O_3升高对菜地土壤微生态环境的影响。 相似文献
12.
目前研究CO2浓度升高对农作物的影响主要集中在光合作用、生理生态反应和产量形成等方面,对重金属污染胁迫下CO2浓度升高对水稻生长发育和品质影响的研究甚少。本文通过详述Cu、Cd等重金属污染条件下,CO2浓度升高对水稻生长发育及稻米品质的影响,揭示重金属污染条件下CO2浓度升高影响Cu、Cd在土壤-水稻系统中的运移状况及其稻米营养品质方面的相关机制,为CO2浓度持续升高背景下复合污染农田风险评估、农产品安全调控提供科学依据,也对于预测未来气候条件下人类稻米品质变化及水稻品种的选育意义重大。 相似文献
13.
以内蒙古草原常见伴生种、感染内生真菌的天然禾草羽茅为研究对象,通过比较不同CO2浓度和不同养分供应条件下,带内生真菌和不带菌植物在种子发芽和幼苗生长等方面的差异,探讨带内生真菌的天然禾草对CO2浓度增加的响应。结果表明:CO2浓度增加对带菌种子发芽率和发芽速度均无显著影响,但CO2浓度增加显著降低了不带菌种子的发芽率和发芽速度,即CO2浓度升高加大了带菌和不带菌种子发芽率之间的差异;内生真菌感染显著提高了宿主植物的最大净光合速率和水分利用效率;羽茅的营养生长受CO2浓度和养分供应的交互影响,高CO2浓度对生长的促进作用只出现在充足养分供应条件下;CO2浓度升高和内生真菌感染对植物根系形态有显著的交互作用,在正常CO2浓度下,带菌植株根径>1.05 mm的根系比例显著高于不带菌植株,随着CO2浓度的升高,带菌植株上述根径根系所占比例无显著变化而不带菌植株所占比例显著升高,CO2浓度升高导致带菌和不带菌不同根径根系分配之间的差异缩小。 相似文献
14.
为探讨旱区覆膜玉米农田土壤酶活性对未来气候变化的响应,在田间条件下通过改进的开顶式气室(OTC)系统自动控制大气CO_2浓度,设置自然大气CO_2浓度(CK)、OTC对照(OTC)、OTC系统自动控制CO_2浓度(700μmol·mol~(-1),OTC+CO_2)3个处理,研究了旱区覆膜高产栽培春玉米播前、六叶期(V6)、十二叶期(V12)、吐丝期(R1)、乳熟期(R3)及完熟期(R6)土壤脲酶、碱性磷酸酶、蔗糖酶及过氧化氢酶活性对大气CO_2浓度升高的响应特征。研究发现:OTC处理条件下,土壤碱性磷酸酶活性相比CK在V12期降低8.80%(P0.05),而在R6期提高8.95%(P0.05);蔗糖酶活性在播前、V6、R1期降低12.65%~21.43%(P0.05),R3期升高17.50%(P0.05);过氧化氢酶活性在V12、R1、R6期均显著降低。大气CO_2浓度升高对玉米各生育期土壤脲酶活性均无显著影响;使R1、R6期碱性磷酸酶活性降低8.74%和6.39%(P0.05);使V6、R3期蔗糖酶活性升高30.18%和18.37%(P0.05);此外,增加了V12期过氧化氢酶活性,而降低了R3期过氧化氢酶活性。结果表明:当前旱作覆膜高产栽培模式下,大气CO_2浓度升高对春玉米农田土壤酶活性的影响因作物生育期和酶种类不同而异;土壤酶活性对OTC及大气CO_2浓度升高的响应程度不一,在当前试验条件下,OTC对土壤酶活性的影响较大气CO_2浓度升高更为显著。 相似文献
15.
北方冬麦区CO_2浓度增高与氮肥互作对冬小麦生理特性和产量的影响 总被引:1,自引:0,他引:1
【目的】阐明CO_2浓度增高与氮肥互作对冬小麦生理和产量的影响,为客观评估气候变化背景下冬小麦生产潜力提供理论依据。【方法】2011—2014年利用开放式CO_2富集系统(FACE)平台,采用盆栽方法,研究冬小麦"中麦175"在不同CO_2浓度及高低氮肥水平下(高浓度CO_2 550 mg·L~(-1)和大气浓度390 mg·L~(-1);高氮N1,0.16 g·kg~(-1)和低氮N0,0 g·kg~(-1))的生育进程、光合特征及产量变化。CO_2富集处理于每年返青-成熟期间进行,通气时间为每日6:30-18:30,夜间不通气。CO_2浓度通过计算机程序控制,并根据具体风向和风速控制释放管电磁阀的开合度,实现预定设置浓度。【结果】盆栽试验表明与大气CO_2浓度相比,高浓度CO_2加快了冬小麦生育进程,拔节期提前1d,开花期可提前1-2 d,全生育期可缩短3-5 d,高氮肥处理对生育进程具有延迟作用,开花期延长1-2 d,灌浆期可延长4-5 d,同步缓解高浓度CO_2对生育进程的加快作用;高浓度CO_2使叶片光合速率提高13.7%,产量平均提高16.0%,且在高氮肥下光合速率的增幅比低氮肥相对提高2.5%,蒸腾速率提高13.5%;试验中单独高氮较低氮的增产效果达到50%,高于单独高浓度CO_2较大气浓度的增产效果;高浓度CO_2对产量构成中穗粒数和千粒重提高明显,高浓度CO_2较大气浓度穗粒数增加3.69%,单独高氮处理较低氮处理平均穗粒数增加3.43%,即CO_2肥效起到了增加穗粒数的作用并略高于单独氮肥处理,高氮和高CO_2双重促进下的穗粒数最多,达到38.37粒/穗,低氮和低CO_2处理的穗粒数水平最低,可见CO_2和氮肥互作对穗粒数的促进相对更明显,各自单独施用的促进作用彼此差异不大,但低氮、大气CO_2浓度处理的穗粒数则相对较低;与大气CO_2浓度相比,高浓度CO_2的千粒重增加5.3%,高氮高浓度CO_2处理的千粒重大约提高7.3%,说明氮肥的施用促进了高浓度CO_2对千粒重的提升效果。【结论】高浓度CO_2可提高冬小麦产量,且与氮肥有明显的正向互作关系,高氮肥处理可降低CO_2浓度升高对生育期的加快作用,提高光合能力,促进CO_2肥效的发挥;CO_2对冬小麦产量的提高主要是缘于CO_2浓度升高有利于穗粒数和千粒重的增加,育种中可以做综合性考虑和应用。 相似文献
16.
大气CO_2浓度和温度升高对稻麦轮作生态系统N_2O排放的影响 总被引:3,自引:0,他引:3
【目的】研究大气CO_2浓度和温度升高条件下稻麦轮作生态系统N_2O排放的响应规律,以期科学评估未来气候变化情境下,CO_2浓度和温度升高对稻麦轮作生态系统N_2O排放的影响,为中国应对未来气候变化提供数据支持。【方法】依托同步模拟自由大气CO_2浓度升高和温度升高的T-FACE试验平台,设置本底大气CO_2浓度和温度(Ambient)、500μmol·mol~(-1) CO_2+本底大气温度(C)、本底大气CO_2浓度+温度增加2℃(T)和500μmol·mol-1 CO_2+温度增加2℃(C+T)等4个处理。采用静态暗箱-气相色谱法原位观测稻麦轮作生态系统N_2O排放通量,研究稻麦轮作生态系统N_2O排放对大气CO_2浓度和温度升高的响应规律。【结果】(1)CO_2浓度升高使水稻和小麦生物量和产量分别显著增加9.7%、11.3%和5.6%、5.7%(P0.05);温度升高使水稻和小麦生物量和产量分别显著减少21.1%、18.0%和31.6%、17.7%(P0.05);CO_2浓度和温度的同步升高使水稻和小麦生物量和产量分别显著降低13.5%、8.7%和26.0%、10.3%(P0.05)。(2)CO_2浓度和温度升高,均未改变稻麦轮作系统N_2O的季节排放模式。CO_2浓度升高条件下,水稻季和小麦季N_2O排放分别增加15.2%和39.9%,其中后者达显著水平(P0.05);温度升高未显著影响水稻季N_2O排放,但显著增加小麦季N_2O排放20.5%(P0.05);CO_2浓度和温度同步升高对水稻季N_2O排放的影响存在较大的年际差异,但总体上有促进N_2O排放的趋势;CO_2浓度和温度同步升高极显著增加小麦季N_2O排放(46.0%,P0.01)。(3)小麦季N_2O排放与小麦生物量密切相关,在CO_2浓度和温度升高条件下,小麦季N_2O排放与小麦地下部生物量和ΔSOC之间具有显著的正相关关系。(4)与对照组相比,CO_2浓度升高、温度升高以及两者的共同作用,分别导致稻麦轮作系统单位产量的N_2O排放强度(GHGI)分别增加29.1%、66.3%和81.8%,其中温度升高和CO_2浓度和温度同步升高处理达显著水平(P0.05)。【结论】CO_2浓度升高和温度升高均未改变稻麦轮作生态系统N_2O的季节排放模式。CO_2浓度升高导致稻麦轮作系统N_2O排放显著增加;温度升高显著增加小麦季N_2O排放,但未显著影响水稻季N_2O排放。CO_2浓度和温度升高导致稻麦轮作系统温室气体排放强度增加,各处理条件下温室气体排放强度的响应从大小依次为:C+TTC。可见,在未来CO_2浓度和温度升高情境下,为保证现有粮食供应水平不变,由稻麦生产所导致的N_2O排放强度变化可能会进一步加剧气候变化进程。 相似文献