首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nowak J  Friend AL 《Tree physiology》1995,15(9):605-609
To probe variation in Al sensitivity of two co-occurring pine species, seedlings from six full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were grown in solution culture containing 4.4 mM (high-Al) or 0.01 mM (low-Al) AlCl(3) at pH 4 for 58 days. On average, both pine species had 41% less total dry weight in the high-Al treatment than in the low-Al treatment. Stem volume growth of slash pine was more sensitive to the high-Al treatment than that of loblolly pine. In both species, the high-Al treatment inhibited root dry weight more than shoot dry weight. Within-species variation in Al sensitivity among families was greater in loblolly pine (24 to 52% inhibition of seedling dry weight) than in slash pine (35 to 47% inhibition of seedling dry weight). Foliar Al concentration was positively correlated with Al sensitivity in slash pine but not in loblolly pine; however, in both species, the concentration of Al in roots was 20-fold greater than in foliage.  相似文献   

2.
Nowak J  Friend AL 《Tree physiology》2005,25(2):245-250
Aluminum (Al) distribution among several cellular fractions was investigated in root tips of seedlings of one Al-resistant and one Al-sensitive family of slash pine (Pinus elliottii Engelm.) and loblolly pine (Pinus taeda L.) grown in nutrient solution containing 100 microM AlCl3 (pH 4) for 167 h. Aluminum present in 5-mm-long root tips was fractionated into cell-wall-labile (desorbed in 0.5 mM citric acid), cell-wall-bound (retained after filtering disrupted cells through 20-microm mesh) and symplasmic (filtrate following cell disruption) fractions. When averaged across both species, 12% of Al absorbed by root tips appeared in the symplasmic fraction and 88% in the apoplasmic fraction (55% as cell-wall-labile, and 33% as cell-wall-bound). On a fresh mass basis, total Al in root tips was lower in loblolly pine than in slash pine, lower in the Al-resistant slash pine family than in the Al-sensitive slash pine family, and lower in the Al-resistant families than in the Al-sensitive families across species. Although the data support the hypothesis that Al-resistant plants limit Al uptake to root apices, they do not exclude other mechanisms of Al resistance. Differential Al resistance between the species and between slash pine families may also be associated with the size of the total non-labile and cell-wall-labile Al fractions, respectively. We were unable to identify the basis for differential Al resistance in loblolly pine.  相似文献   

3.
Samuelson  L.J. 《New Forests》2000,19(1):95-107
Leaf physiology and fractional dry weight allocation were examined in four open-pollinated families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Englm. var. elliottii) in response to growth under low and high N supply for six months. Nitrogen greatly influenced dry weight allocation, total mass, leaf net photosynthesis and leaf conductance in seedlings of both species. Family variation in fine root allocation was observed under low but not high N treatment, but for the majority of physiological and growth traits, family variation was stable under varying N treatment. Family rankings based on juvenile height, diameter and biomass accretion were similar to rankings based on field performance at 22 years in slash pine but not loblolly pine. Lower leaf maintenance respiration rates were associated with families exhibiting the most rapid juvenile growth.  相似文献   

4.
We examined photosynthetic characteristics of two fast- and two slow-growing half-sib families of both loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii var. elliottii Engelm.) on two sites in northern Florida to: (1) quantify variation in light-saturated net photosynthesis (Amax) associated with vertical crown position and foliage age; (2) quantify the amount and distribution of leaf area by foliage age class; and (3) determine whether photosynthetic indices, ranging from leaf-level through whole-crown Amax, were related to growth differences among species and families. In both species, leaf-level Amax was higher in more recently formed foliage both within the same year (where Amax in the third flush averaged 10 to 30% higher than Amax in the first flush) and between years (where Amax in current-year foliage averaged 20 to 40% higher than Amax in 1-year-old foliage). When expressed on a leaf area basis, Amax of current-year foliage was higher in slash pine than in loblolly pine, but Amax expressed on a mass basis did not differ between species. Loblolly pine had higher whole-tree leaf area than slash pine, whereas whole-tree Amax did not differ between species. When the mean values for fast-growing families were compared with the mean values for slow-growing families, there were no differences in leaf-level characteristics, whereas at the whole-tree level, fast-growing families had higher leaf area and whole-tree Amax than slow-growing families in both species. When comparisons were made among the individual fast- and slow-growing families, however, results were more variable. In both species, stem volume growth was strongly correlated with whole-tree Amax, with most of the strength of the correlation deriving from the relationship between volume growth and tree leaf area.  相似文献   

5.
When combining pines and cattle on tame pasture, grazing is often delayed for several years until trees are large enough to resist injury. As an alternative approach to delayed or deferred grazing during the early years, this study in central Louisiana, USA, examined the effects of cattle grazing in subterranean clover (Trifolium subterraneum L.) pastures on slash (Pinus elliottii Engelm.) and loblolly pine (P. taeda L.) seeding survival and growth during the first 3 years of tree establishment. Pines were planted at about 1200 trees/ha in 3 rows on 0.4-ha subclover units with 1.3 m spacing within rows. Three grazing treatments included: (1) ungrazed pines, (2) limited grazing with a single-wire electric fence above the planted pines, and (3) grazed pines. Thirty Brahman crossbred cows with calves and a bull grazed the tame pasture on a controlled grazing, rotational basis from December through May each year, during the subterranean clover growing season. Pine trampling injury during the year was 8% on the grazed seedlings while essentially none occured under limited grazing. During the first 2 growing seasons, survival and height of the pines were significantly less on the grazed seedlings than on either the limited grazing or ungrazed seedlings. Pine heights from the limited grazing and ungrazed treatments were not different during the 3-year study; loblolly pine heights from the limited grazing treatment continued to be taller than the grazed treatment through the third year while the slash pine heights were similar for all treatments by the third year. Seedling mortality became more acute as severity of grazing injury increased; the greatest mortality occured when the terminal bud and needles were both browsed off.  相似文献   

6.
Cold storing bareroot pine (Pinus spp.) seedlings grown in the southern U.S. for as little as 1 week in a cooler (just above freezing) in the fall (November to mid‐December) has been shown to reduce seedling survival after outplanting. In contrast, survival of container‐grown seedling is typically not affected when stored for 4 weeks in coolers in November and December. Wounds sustained by seedlings as they are lifted from nursery beds may allow Pythium spp. to infect bareroot seedling roots. Once in the cool, moist storage environment, Pythium multiplies and may result in seedling mortality after outplanting. Bareroot loblolly pine (Pinus taeda) and container‐grown loblolly, longleaf (Pinus palustris), slash (Pinus elliottii) and shortleaf pine (Pinus echinata) seedlings were inoculated with either Pythium dimorphum or Pythium irregulare, cold stored with or without peat moss and monitored for survival after outplanting. Peat moss did not increase bareroot loblolly pine survival or reduce Pythium populations when seedlings were inoculated with Pythium prior to storage. Pythium irregulare reduced survival of longleaf and shortleaf pine grown in peat moss and perlite, respectively. Pythium did not affect loblolly or slash pine, but wounding their roots did reduce seedling survival when grown in containers.  相似文献   

7.
Crown structure, absorbed photosynthetically active radiation (APAR) and growth were analyzed in 300 replicated loblolly (Pinus taeda L.) and slash pine (Pinus elliottii Engelm. var. elliotti) clones to: (1) quantify genetic variation in crown structural traits, growth and APAR at the species, family and clonal levels; and (2) estimate within-family genetic and environmental influences on measured variables. Species and family-within-species differences were found in some growth traits, crown size, leaf area, APAR and branch angle. Loblolly pine developed larger crowns, exposed more leaf area with an acute angle, and intercepted more radiation than slash pine. Significant differences among clones within-family were found for stem volume and crown architecture. Loblolly pine and slash pine within-family, individual-tree broad-sense heritabilities ranged from 0.00 to 0.41 for growth and crown structural traits and most were between 0.10 and 0.25 when estimated from a combined analysis across families. Genetic correlations of crown size, leaf area and APAR with volume increment generally ranged from 0.60 to 0.75. This knowledge of the genetic interactions among growth and crown structural traits improves our understanding of how crown morphology affects light interception and stand development, and ultimately how these attributes can be incorporated in the selection of families or clones for the development of new crop tree ideotypes.  相似文献   

8.
Embryogenic cultures of loblolly pine (Pinus taeda L.), slash pine (Pinus elliottii Engelm.), longleaf pine (Pinus palustris Mill.) and slash pine x longleaf pine hybrids were initiated from immature seeds on an initiation medium containing 13.57 microM 2,4-dichlorophenoxyacetic acid and 2.22 microM benzylaminopurine. Embryogenic cultures proliferated and somatic embryos developed, matured and germinated following a modified protocol and media originally developed for radiata pine (Pinus radiata D. Don.) somatic seedling production. A discrete, light-sensitive pre-germination stage and a later germination (radicle emergence) stage were identified by the differential response of somatic embryos to light of different wavelengths. Different light quality treatments were applied during the pre-germination and germination steps, using cool white fluorescent bulbs or light-emitting diodes (LEDs), or both. In general, red wavelengths provided by LEDs during these steps resulted in higher frequencies of somatic embryo germination (up to 64%) and conversion (up to 50%), longer tap roots and more first-order lateral roots than the standard cool white fluorescent treatments or treatment with blue wavelengths from LEDs. In addition, exposure to red light allowed germination of somatic embryos of some clones that failed to produce germinants under fluorescent light. Germination and conversion were further enhanced by sequential application of cool white fluorescent light and red light, resulting in up to 100% germination and conversion in one experiment. Longleaf pine somatic embryos were especially responsive to the light quality treatments, resulting in the first report of somatic seedling production for this species.  相似文献   

9.
Haywood  James D.  Tiarks  Allan E.  Sword  Mary a. 《New Forests》1997,14(3):233-249
Following site preparation, three cultural treatments and three open-pollinated loblolly pine (Pinus taeda L.) families were studied on a gently sloping Beauregard silt loam in central Louisiana. The treatments were: (1) fertilization (either broadcast application of 177 kg N and 151 kg P/ha or none); (2) herbicide application (either broadcast application of herbicides during the first through third growing seasons, and felling of a few, scattered volunteer hardwood trees greater than 2.5 cm dbh during the third growing season or none); and (3) litter application (either broadcast application of 37 Mg/ha (oven-dried weight) of pine straw over the plots to form a 10 to 15 cm layer or none). The subplot treatment was planting stock, where in November 1988, 28-week-old container-grown loblolly pine seedlings from three open-pollinated families were randomly assigned to planting locations. Through five growing seasons, fertilization and weed control with herbicides resulted in the greatest loblolly pine productivity, but the use of herbicides severely reduced other vegetation. Applying litter, which was less effective than herbicides as a weed control treatment, increased the presence of blackberry (Rubus spp.) when herbicides were not applied. Applying litter resulted in a decrease and fertilization resulted in an increase in the number and length of live lateral roots. Soil temperature was reduced by litter application. Treatment responses were not influenced by loblolly pine family.  相似文献   

10.
Agroforestry research in central Louisiana, USA, examined the effects of agronomic cultural treatments (disk, chemical, hay, and hay-graze) on subterranean clover (Trifolium subterraneum L.) yields and slash pine (Pinus elliottii Engelm.) and loblolly pine (P. taeda L.) survival and growth. Cultural treatments appear necessary for successful production of subterranean clover in tame pastures, especially for early fall forage growth. Subterranean clover yields in volunteer swards during spring were highest on the disk and chemical treatments. Generally, pine survival and growth during the first 5 years following tree establishment were not affected by cultural treatments.  相似文献   

11.
Resin flow is the primary means of natural defense against southern pine beetle (Dendroctonus frontalis Zimm.), the most important insect pest of Pinus spp. in the southern United States. As a result, factors affecting resin flow are of interest to researchers and forest managers. We examined the influence of fertilization, artificial wounding and fungal inoculation on resin flow in 6- and 12-year-old stands of loblolly pine (Pinus taeda L.) and determined the extent of that influence within and above the wounded stem area and through time. Fertilization increased constitutive resin flow, but only the younger trees sustained increased resin flow after wounding and inoculation treatments. An induced resin flow response occurred between 1 and 30 days after wounding and inoculation treatments. Wounding with inoculation resulted in greater resin flow than wounding alone, but increasing amounts of inoculum did not increase resin flow. Increased resin flow (relative to controls) lasted for at least 90 days after wounding and inoculation. This increase appeared to be limited to the area of treatment, at least in younger trees. The long-lasting effects of fungal inoculation on resin flow, as well as the response to fertilization, suggest that acquired resistance through induced resin flow aids in decreasing susceptibility of loblolly pine to southern pine beetle.  相似文献   

12.
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.  相似文献   

13.
Abstract

Individual and interactive effects of simulated acidic rainfall and mycorrhizal inoculation on growth and nutrient and water relations of loblolly pine (Pinus taedaL.) and white oak (Quercus albaL.) grown in a loam soil were examined. Seedlings of each species inoculated with basidiospores of the ectomycorrhizal fungus Pisolithus tinctorius(Pers.) Coker and Couch, a known my-cobiont of both loblolly pine and white oak, and uninoculated control seedlings received two simulated rains per week of either pH 3.6, 4.2, or 4.8 for 26 weeks. Higher acidity rainfall reduced the growth but increased mycorrhizal colonization of loblolly pine, while both loblolly pine and white oak exposed to these rains exhibited greater foliar injury. Inoculation with P. tinctoriusincreased growth and reduced foliar injury of both species. Foliar concentrations of P, S, and Cu in loblolly pine and white oak, Ca in loblolly pine, and Fe and Zn in white oak decreased with increasing rain acidity while the Al concentration of both species increased. Higher rainfall acidity also reduced soil pH and Ca and Mg concentrations while increasing soil AI. Foliage of inoculated seedlings of both species had higher N and P concentrations and lower Al concentrations than control seedlings. Following the final rain applications, a drought cycle was simulated by withholding irrigation for two weeks during which seedling xylem pressure potential and soil water potential were measured. One day after cessation of irrigation, xylem pressure potential of loblolly pine that had received pH 3.6 rains was lower than that of other treatments. Thereafter, xylem pressure potential and soil water potential of the inoculated treatment decreased below those of the control treatment in both species. These results suggest that acid deposition is detrimental to juvenile loblolly pine and white oak, but the magnitude of this effect is less than the positive response to ectomycorrhizal inoculation.  相似文献   

14.
火炬松(Pinux taeda L.)和湿地松(Pinus elliottii Engelm)是我国南方重要的外引用材树种,经过多年的试验研究,已选出一批较好的种源、家系和单株,并建立了种子园。当前早期鉴定和早期选择已成为必不可少的一项研究内容,近几年来越来越多的研究者指出,林木幼龄期的某些性状或生理生化指标与成熟期性状之间存在一定的相关性,认为树木生长的早期选择是可能的,尤其从生理生化方面来探索林木早期预测的研究已引起人们的高度重视。但  相似文献   

15.
对美德维斯维克公司火炬松第3代优良种源的10个家系在福建省永安市引种3 a的生长状况进行调查,结果表明,MWV-439家系综合表现最好,引种第3年平均保存率达到87%,平均胸径为6.5 cm,平均树高为431 cm;白蚂蚁是危害火炬松第3代种源家系保存率的主要虫害。  相似文献   

16.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

17.
A study was initiated in 1994 to evaluate the effects of bedding timing and frequency and pre-plant herbicide application, with and without post-plant herbaceous weed control, on growth of three slash pine (Pinus elliottii Engelm.) plantations and one loblolly pine (Pinus taeda L.) plantation on flatwoods sites. Site preparation treatments included early bedding alone, late bedding alone, double bedding, early bedding plus banded pre-plant herbicide, and early bedding plus broadcast pre-plant herbicide. Each site preparation treatment was tested with and without a first-year post-plant herbicide application for herbaceous weed control (HC). Results ranging from age 5 to 11 are reported, depending on installation. Pine growth following late bedding alone was similar or greater than that with early bedding alone. Double bedding did not consistently increase pine growth as compared with single bedding alone. Early bedding plus either broadcast or banded pre-plant herbicide application generally exhibited greater pine growth than did bedding alone treatments or bedding plus post-plant herbaceous weed control treatments. Broadcast pre-plant herbicide application resulted in similar or greater growth than banded pre-plant herbicide application. Post-plant herbaceous weed control improved loblolly pine growth across all site preparation regimes on the one test location. For slash pine plantations evaluated, post-plant herbaceous weed control resulted in significant growth increases on some but not all sites. The differences in growth response to bedding and pre- and post-plant herbicide applications are discussed in relation to treatment efficacy in controlling woody shrub and herbaceous competing vegetation. Effective bedding and chemical site preparation reduces the need for post-plant herbicide applications for slash pine on certain sites. Good site preparation, including the application of herbicides for competition control, is essential for fast growing slash and loblolly pine plantations in the flatwoods.  相似文献   

18.
The growth response of loblolly pine (Pinus taeda L.), shortleaf pine (Pinus echinata Mill.), Virginia pine (Pinus virginiana Mill.), and white pine (Pinus strobus L.) to weed control and fertilization in the Piedmont of Virginia was assessed. Four different silvicultural treatments were evaluated: (1) check (no treatment); (2) weed control; (3) fertilization; (4) weed control plus fertilization. The weed control treatment included a series of herbicide and mechanical treatments to eliminate competing hardwoods. The fertilizer treatments added N, P, K, and S. Survival and growth was measured annually through age 5. There were significant differences in survival and growth among species. Survival was greatest for loblolly pine, lower in shortleaf and Virginia pine, and lowest in white pine. Fertilization without controlling the competing hardwoods decreased survival in all planted pines due to the increased hardwood competition. Loblolly pine was tallest through the 5-year period, shortleaf and Virginia pine were shorter and white pine was shortest. Silvicultural treatments had no impact on tree height but significantly affected DBH. Weed control increased DBH while fertilization did not. When applied in combination with weed control, there was no additional increase in growth of the pines due to fertilization beyond that from weed control only. Fertilization stimulated the growth of the competing hardwoods which were significantly taller in the fertilized plots.  相似文献   

19.
Forest landowners in the southeastern United States have the opportunity to manage their loblolly, longleaf and slash pine stands for pine straw (fresh undecomposed needles; the litter layer) for non-timber revenues. Pine straw is used primarily as mulch in landscaping and has grown in revenues paid to landowners in Georgia from $15.5 million in 1999 to $81 million in 2009. Pine straw is typically sold by the acre or by the bale. Selling pine straw by the acre may be advantageous to absentee landowners. Selling pine straw by the bale can generate more annual income, but bale counts need to be accurate and bale dimensions defined. For both methods, recent (2005–2010) pine straw multi-year revenues range from $50 to $150 per acre annually. Longleaf pine straw commands the highest price per bale, followed by slash pine, and lastly loblolly pine. Per rake yields from loblolly stands tend to be 15–30?% greater than slash and longleaf pine. Pine straw raking typically starts at canopy closure continuing to the first thinning, generating from $300 per acre to over $1000 per acre in new income. This paper summarizes pine straw yields and economics in loblolly, longleaf, and slash pine stands.  相似文献   

20.
唐巍 《林业研究》2000,11(1):1-6
IntroductionOrganogenesis and somatic embryogenesis haveben regarded as the in vitro system of choice withthe Pbtenhal for eventual mass propagation of superior and gen6tically engineering forest tree genotypesIn both conal6rous and hardwood (Gupts et al. 1991,Becwar et al. 1995). Somatic embryogenesis andorganeqenesis have been induced from more than 30ired speCies in conifers, but plant regeneration viaSOmahc embryogenesis and organogenesis remainsdffeutt cd a low rqeneration frequency (A…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号