首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

2.
Changes in soil structure and properties, plant growth and diseases and agronomic aspects were determined, after 3 years, on a Charlottetown fine sandy loam, an Orthic Podzol with a perhumid soil moisture regime, subjected to three tillage systems for spring cereals. The tillage systems consisted of direct drilling, soil loosening with a “paraplow” followed by direct drilling and mouldboard ploughing.

Rate of plant growth and other crop measurements were not changed by the tillage systems, except for the depth of seeding. Direct drilling reduced the accumulation of N and K in the plant, and reduced grain N, compared with mouldboard ploughing. Soil loosening prior to direct drilling prevented the decline in N and K accumulation, and increased grain yield and N content, in comparison with mouldboard ploughing. Direct drilling caused changes in soil macro-aggregation and reduced the evaporation rate, and increased microbial biomass C and N, total organic C and N and extractable ions at the soil surface (0–5 cm), compared with mouldboard ploughing. In addition, earthworm numbers were increased under direct drilling. Root lesion and spiral nematodes were not influenced by tillage differences.

Soil loosening prior to direct drilling alleviated the significant reductions in soil macroporosity, and prevented the increase in soil bulk density, soil strength and percentage water-filled pore space (%WFPS) associated with direct drilling alone. Although soil permeability was optimum under direct drilling alone, the relative increase in %WFPS and reduction in soil aeration were associated with a concomitant increase in common root rot.  相似文献   


3.
The effects of tillage on soil organic carbon content, carbohydrate content, monosaccharide composition, aggregate stability, compactibility and plasticity were investigated in a field experiment on a gleysol and on a cambisol under winter barley in South-East Scotland. Two long-term treatments (direct drilling and conventional mouldboard ploughing for 22 years) were compared with short-term direct drilling and broadcast sowing plus rotavation for 5 years. Carbohydrate released sequentially to cold water, hot water, 1.0 M HCl and 0.5 M NaOH was determined after hydrolysis as reducing sugar equivalent to glucose in both fresh and air-dried samples. All other measurements were made on dry soils only. About 3% of the soluble carbohydrate was extracted by cold water, 10% by hot water, 12% by HCl and 75% by NaOH from both the dry and fresh soils. The total reducing sugars of the fractions were proportional to the total organic carbon determined by dichromate oxidation or C analysis. Organic carbon and carbohydrates were concentrated near the surface of the direct drilled soil, but were more uniformly distributed with depth in the ploughed soil. The surface soil under direct drilling was more stable, less compactible and had greater plasticity limits than under ploughing. However, particle size distributions were unaffected by tillage so that differences in soil properties were attributed to differences in the quantity and quality of organic matter. Differences in compactibility, structural stability and plasticity limits between depths and tillage treatments correlated with total carbon and with total carbohydrates. The hot water extractable carbohydrate fraction correlated best with aggregate stability and the NaOH fraction correlated best with compactibility and plastic limit. Both fractions were greatest in the long-term direct drilled soil. The hot water fraction had a galactose plus mannose over arabinose plus xylose ratio of 1.0–1.6 in comparison to 0.4–0.7 in the NaOH fraction indicating that the microbial contribution within the hot water-soluble fraction was the greater. The hot-water fraction was likely to contain more exocellular microbial polysaccharides involved in the stabilizing of soil aggregates. The hot-water and NaOH carbohydrate fractions may be good indicators of soil organic matter quality relevant to the preservation of good soil physical conditions.  相似文献   

4.
Chisel ploughing is considered to be a potential conservation tillage method to replace mouldboard ploughing for annual crops in the cool-humid climate of eastern Canada. To assess possible changes in some soil physical and biological properties due to differences in annual primary tillage, a study was conducted for 9 years in Prince Edward Island on a Tignish loam, a well-drained Podzoluvisol, to characterize several mouldboard and chisel ploughing systems (at 25 cm), under conditions of similar crop productivity. The influence of primary tillage on the degree of soil loosening, soil permeability, and both organic matter distribution throughout the soil profile and organic matter content in soil particle size fractions was determined. At the time of tillage, chisel ploughing provided a coarser soil macrostructure than mouldboard ploughing. Mouldboard ploughing increased soil loosening at the lower depth of the tillage zone compared to chisel ploughing. These transient differences between primary tillage treatments had little effect on overall soil profile permeability and hydraulic properties of the tilled/non-tilled interface at the 15–30 cm soil depth. Although soil microbial biomass, on a volume basis, was increased by 30% at the 0–10 cm soil depth under chisel ploughing, no differences were evident between tillage systems over the total tillage depth. Mouldboard ploughing increased total orgainc carbon by 43% at the 20–30 cm soil depth, and the carbon and nitrogen in the organic matter fraction ≤ 53 μm by 18–44% at the 10–30 cm soil depth, compared to chisel ploughing.  相似文献   

5.
6.
A vigorous root system is essential for efficient use of plant nutrients. This paper focuses on root growth and its response to tillage changes in the most fertile soil horizon, 0–40 cm depth. The field experiment was established in 1995 on clay soil, with 45–50% clay and 5.5% organic matter in the topsoil. Three tillage treatments were mouldboard plough to a depth of 20 cm (conventional), field cultivator to a depth of 8 cm, and no primary tillage (conservation). The field had an oat (Avena sativa L.)–barley (Hordeum vulgare L.) crop rotation. In 1997–1998 and 2000, root distribution during the growing season was evaluated by a non-destructive minirhizotron (MR) and video recording method. Root length density and root diameter were also measured once a season (1997 and 1998) by destructive root sampling and image analysis of washed roots. At shoot elongation, root numbers increased more under conventional than conservation tillage, at soil depth of 10–25 cm. The effect was clear for both barley (1997) and oat (2000) with maximum root numbers of 175 and 210 per 100 cm2 by mouldboard ploughing, but 120 and 170 per 100 cm2 under unploughed conditions (in the whole 0–0.4 m region). The suboptimal condition of unploughed soil was also indicated by lower shoot nutrient contents at tillering (studied in 1997) and by higher penetrometer resistance (studied in 1998, 2000) and lower macroporosity (studied in 2000) at 10–25 cm soil depth. Root growth dynamics were similar for both plant species. Root diameter was not significantly affected by the tillage treatments. Discontinuation of mouldboard ploughing reduced root growth (P<0.05) within this clay soil 5 years after the tillage change, although conservation tillage preserved more water for plant use. The data show that a clay soil can be too dense for optimal rooting during the 3rd–6th-years after discontinuation of ploughing.  相似文献   

7.
Conservation tillage is not yet widely accepted by organic farmers because inversion tillage is considered to be necessary for weed control. Three long-term experiments were established with combinations of reduced and conventional plough tillage and stubble tillage to determine weed infestation levels in organic farming, i.e. herbicide application being excluded. Experiment 1 (with very low stocking density of perennial weeds) showed that in presence of primary tillage by mouldboard ploughing the number of annual weeds was nearly unaffected by the mode of stubble tillage. In experiment 2, however, with Canada thistle (Cirsium arvense) being artificially established, thistle density was significantly affected by stubble tillage and by a perennial grass–clover forage crop. Experiment 3 combined two levels of stubble tillage (skimmer plough, no stubble tillage = control) with four implements of primary tillage in the order of decreasing operation depth (deep mouldboard plough, double-layer plough, shallow mouldboard plough or chisel plough). Primary tillage by chisel plough resulted in significantly highest annual weed density compared to all other treatments. The natural C. arvense infestation in experiment 3 showed highest shoot density in the “skimmer plough/chisel plough” treatment compared to the lowest infestation in the “skimmer plough/double-layer plough” treatment. The poor capacity of the chisel plough for weed control was also reflected by the soil seed bank (5500 m−2 C. arvense seeds for chisel plough, <300 seeds for all other primary tillage). A reduced operation depth of the mouldboard plough (“shallow mouldboard plough”) seemed to have an insufficient effect in controlling C. arvense infestation as well. Stubble tillage by the skimmer plough in addition to nearly any primary tillage operation largely reduced both annual weeds and thistle shoots. Most effective in controlling C. arvense was also a biennial grass–clover mixture as part of the crop rotation.Double-layer ploughing is a compromise between soil inversion and soil loosening/cutting and can be regarded as a step towards conservation tillage. In terms of controlling annual weeds and C. arvense, the double-layer plough was not inferior to a deep mouldboard plough and seems to be suitable for weed control in organic farming. Tilling the stubble shallowly after harvest can support weed control in organic farming remarkably, particularly in reducing C. arvense. If no noxious, perennial weeds occur and primary tillage is done by soil inversion, an omission of stubble tillage can be taken into consideration.  相似文献   

8.
Although many studies suggest that no-tillage (NT) increases soil organic carbon (SOC) within the soil profile relative to mouldboard ploughing, other studies indicate that no net change occurs. The latter studies suggest that NT only stratifies the SOC, where a near-surface increase in SOC is offset by a concomitant decrease in the subsurface. We examined the SOC distribution and stocks in a cool, humid Brookston clay (Typic Argiaquoll) soil under four soil management systems with a corn–soybean rotation. The objectives of this study were to compare the profile distribution and total amount of SOC under long-term (21 years) NT and mouldboard plough (MP) tillage with the changes that occur over 8 years when 13-years continuous NT is converted to MP, and when 13-years continuous MP is converted to NT. In the top 5 cm of soil, the long-term NT management accumulated greater SOC compared with the long-term MP treatment. However, this near-surface increase was offset by lower SOC concentrations in the 10–20 cm depth, resulting in similar total amounts of SOC stored in 0–20 cm for both long-term NT and MP. The SOC stratification that existed after 13 years of NT management was eliminated with one mouldboard ploughing operation, however the total SOC content in the plough layer of the new-MP treatment remained relatively constant over the subsequent 8 years. Soil organic carbon stratification was evident in the new no-tillage treatment 3 years after the cessation of tillage. The continuous build-up of SOC in the surface of new-NT soils was associated with no change in the total amount of SOC in the plough layer relative to long-term NT. This implies that the diminution of SOC in the 10–20 cm depth was at the same rate as the accumulation of SOC in the 0–5 cm depth. Although there was no net effect of tillage on total carbon stocks in this fine-textured soil, SOC stratification required several years to build-up after adoption of NT, but only a single year to destroy under MP.  相似文献   

9.
Mechanically loosened subsoil has been shown to be prone to recompaction. We addressed a sandy loam that had been mechanically loosened by a subsoiler to a depth of 35 cm in 1997 and again in 1998. Perennial grass/clover was grown with limited traffic intensity in 1999 and 2000. A recompaction experiment was conducted in 2001 and 2002 when the soil was grown with oat and winter wheat, respectively. Using the formerly loosened plots, on-land ploughing was compared with traditional mouldboard ploughing with the tractor wheels in the furrow. In addition, the loosened plots were either light-trafficked (<6 Mg axle load and <100 kPa inflation pressure) or heavy-trafficked (10–18 Mg axle load and 200 kPa inflation pressure), respectively. Finally, the soil loosened by non-inversion deep tillage was referenced with a conventional ploughing–harrowing tillage system that never received the subsoil treatment. The conventional treatment was also grown with the grass/clover in 1999 and 2000. On-land ploughing and light traffic was applied in 2001 and 2002 instead of traditional ploughing and traffic for the conventional treatment. Penetration resistance and bulk density was recorded in the field. Undisturbed soil cores were taken in 1998, 1999 and 2002 from the 7–14, 18–27 and 25–30 cm layer and used for measuring total porosity, pores >30 μm and air permeability at −100 hPa matric potential. The results showed that on-land ploughing mitigated recompaction of the upper part of the formerly loosened subsoil. In contrast, only small differences in recompaction between heavy and light traffic were observed. The mitigation of subsoil recompaction was needed for the loosened soil to provide an upper subsoil with similar—not better—pore characteristics than the non-loosened soil in the conventional treatment. The structural conditions in the plough pan improved for the conventional treatment from 1998 to 2002 as indicated by an almost doubling in air permeability. This was interpreted as being related to the growing of grass/clover ley in 1999 and 2000 combined with a shift from traditional tillage and traffic to on-land ploughing and light traffic when growing cereals in 2001 and 2002. Results on root growth and crop yield are reported in an adjoining paper.  相似文献   

10.
Organic matter influences soil structure and compactibility by binding soil mineral particles, reducing aggregate wettability, and influencing the mechanical strength of soil aggregates, which is the measure of coherence of inter-particle bonds. This work was carried out to examine how differences in water-stable aggregates influence the distribution of soil organic carbon and soil organic nitrogen under two tillage techniques [minimum tillage (only planting holes were opened) and conventional tillage (raised beds, 30 cm high, prepared manually with traditional hoes)] in soils of a Fluvisol in Owerri, southeastern Nigeria. Three pedons were dug and studied for each of the tillage technique along a soil sequence. Soil organic carbon and soil organic nitrogen distribution in whole soil and in water-stable aggregates under minimum tillage and conventional tillage were determined for the soils. Soil organic carbon contents in water-stable aggregates (WSA) of the pedons varied according to method of tillage. The highest mean values of soil organic carbon were obtained from minimum tillage and in water-stable aggregates 4.75–2.00 mm (16.03 Mg C ha−1), 1.00–0.50 mm (14.06 Mg C ha−1) and water-stable aggregates 2.00–1.00 mm (13.99 Mg C ha−1) whereas under conventional tillage, water-stable aggregates 1.00–0.50 mm with soil organic carbon of 24.6 Mg C ha−1 had the highest soil organic carbon content. Soil organic carbon correlated significantly with mean weight diameter (r = 0.48; P = 0.05; n = 15), water-stable aggregates 4.75–2.00 mm (r = 0.73; P = 0.05; n = 15), water-stable aggregates 2.00–1.00 mm (r = 0.55; P = 0.05, n = 15), water-stable aggregates 1.00–0.50 mm (r = 0.44; P = 0.05; n = 15) whereas no relationship was found between soil organic carbon and water-stable aggregates 0.50–0.25 mm (r = 0.15; P = 0.05; n = 15) and water-stable aggregates <0.25 mm (r = 0.17; P = 0.05; n = 15) in soils under minimum tillage. There was a significant correlation (r = 0.45–0.58; P = 0.05; n = 14) between all water-stable aggregates classes studied and soil organic carbon in soils under conventional tillage. Mean values of soil organic nitrogen were higher in soils under minimum tillage with 4.75–2.00 mm and 2.00–1.00 mm aggregate classes having 1.64 Mg N ha−1 and 1.57 Mg N ha−1 soil organic nitrogen when compared to 1.01 Mg N ha−1 and 1.00 Mg N ha−1 in conventionally tilled soils of the same aggregate classes, respectively. Larger water-stable aggregate classes (4.75–2.00; 2.00–1.00) had slightly more soil organic nitrogen (22–26%) than smaller aggregate classes (1.00–0.50; 0.50–0.25; >0.25) with 14–24% soil organic nitrogen in minimum tilled soils. In soils under conventional tillage, 1.00–0.50 mm, 0.50–0.25 mm and <0.25 mm aggregate classes contributed more soil organic nitrogen (19.66–22.40%) to the soil whereas larger water-stable aggregate classes contributed 19.22% soil organic nitrogen. The proportion of soil organic carbon and total nitrogen retained in soils with higher percentage of water-stable aggregates are less likely to be lost through soil and wind erosion. The higher values of SOC in the whole soil and WSA classes less than 2.00 mm are indications of positive influence of SOC on the stability of these peds.  相似文献   

11.
To take advantage of conservation tillage systems (including direct drilling and non-inversion) in central Iran, it is important to study the effects of different cultivation practices on soil structural stability as a physical indicator. A four-year study was conducted to investigate the effects of seven tillage systems on aggregate properties of a clay-loam soil (Calcic Cambisol) with continuous wheat (Triticum aestivum L.) production. Crop productivity was also evaluated. Tillage treatments were moldboard plowing+disking (MD) as conventional tillage; chisel plowing +disking (CD); chisel plowing+rotary tilling (CR); chisel plowing (twice)+disking (2CD); plowing with Khishchi (a regional rigid cultivator)+disking (KD) as non-inversion methods; and till-planting with cultivator combined drill (TP); and no-till (NT) as direct drilling methods. A randomized complete block design consisting of four replications was used. Samples were taken from three different soil depths. A wet sieving method was used to determine aggregate size distribution (ASD), and mean weight diameter (MWD) as indices of soil aggregate stability. Soil organic carbon was also determined. For the first three years of the experiment, ASD and MWD at 0–15 cm were similar in different tillage treatments, except for direct drilling which had a significantly higher amount of aggregate greater than 2 mm and 2–1 mm diameter compared to the conventional method. At the second and third sampling depths all treatments had similar influence on ASD and MWD. Tillage treatments showed a significant effect on ASD and MWD in the fourth year of the experiment in all three depths. Almost 70% of the aggregates in the MD system were less than 0.25 mm, while only 55% of the aggregates in the direct drilling methods were less than 0.25 mm diameter. The four-year yield average for conventional and non-inversion tillage systems was 7264 and 6815 kg ha−1, respectively. Although, direct drilling improved soil structural stability, its lower yield (5608 and 4731 kg ha−1 for TP and NT, respectively) potential would indicate that reduced tillage systems (i.e. CD) appear to be the accepted alternative management compared to conventional practice (MD).  相似文献   

12.
Soil porosity and organic matter content influence the hydrology, thermal status and productivity of agricultural soils. Shape, size and continuity of soil pores are determined by tillage practices. Thus appropriate tillage and mulch management can conserve residual soil moisture during the post rainy season. This can play a key role in enhancing productivity under the rainfed ecosystem of subhumid region in eastern India. A field study was carried out on a fine loamy soil from 1993–1994 to 1995–1996. Two tillage treatments were conventional ploughing (150 mm depth) and shallow ploughing (90 mm) depth. Each tillage practice was tested with three mulch management viz., no mulch, soil dust mulch and rice (Oryza sativa L.) straw mulch. Soil organic carbon, bulk density, moisture retentivity, soil temperature with productivity and water use pattern of barley (Hordium vulgare L.) were measured.Reduction in ploughing depth resulted in nominal increase in profile (0.0–1.2 m) moisture status, yield, and soil thermal status at 14:00 and water use efficiency (WUE). However, it decreased the magnitude of soil temperature in the morning (07:00). Straw mulch conserved 19–21 mm of moisture in the profile (1.2 m) over the unmulched condition. Both soil dust and rice straw mulching elevated soil thermal status at 07:00 as compared to unmulched condition, but this trend was reversed at 14:00. Straw mulching significantly increased grain yield and WUE over soil dust mulch and unmulched condition. Impact of straw mulch was more pronounced under shallow ploughing depth. Shallow tillage with rice straw mulching is recommended to the farmers to obtain higher level of yield and water use efficiency.  相似文献   

13.
Tillage trials were established on a poorly drained silty loam overlying silty clay loam and on a freely drained sandy loam overlying medium sand, in 1988 and 1989, respectively. Autumn and spring ploughing and two ploughless systems were compared for 12–13 years, with three replications at each site. The ploughless treatments comprised deep versus shallow spring harrowing until 1999, and thereafter autumn plus spring harrowing versus spring harrowing only. In 6 years, treatments with and without fungal spraying of the cereal crops were included. In other years, fungicides were not used. Perennial weeds were controlled by herbicides as necessary, on nine occasions up until 2001. Average spring barley (Hordeum vulgare L.) and spring oat (Avena sativa L.) yields were similar with spring ploughing as with autumn ploughing at both sites. In treatments without ploughing, average yields on the silty loam over clay were 93% of those obtained with ploughing, and on the sandy loam over sand they were 81%. Smaller and non-significant yield differences were found between spring harrowing versus deep spring harrowing, and between autumn plus spring harrowing versus spring harrowing only. Fungal spraying increased yields markedly at both sites (25%), but there was no significant interaction between this treatment and tillage system. Oat was compared with barley in 2 years, with oat performing better under ploughless tillage. At both sites increases in penetrometer resistance occurred in the topsoil of unploughed treatments. These were considered particularly limiting on the sandy loam. On the silty loam there was an increase in surface horizon porosity in the absence of ploughing, which was associated with an increase in topsoil organic matter content. On this soil there was also a tendency toward lower penetrometer resistance at >30 cm depth on autumn plus spring harrowed soil than on ploughed soil, indicating that the plough pan may have diminished. This was supported by observations of greater earthworm activity on unploughed soil. Soil chemical analyses revealed that mineral N and plant-available P and K accumulated in the upper horizon under ploughless tillage. The percentage yields obtained in individual years with autumn as opposed to spring ploughing, were positively correlated with air temperature during 0–4 weeks after planting on the silty loam, and with precipitation during 0–12 weeks after planting on the sandy loam. In the case of yields obtained with spring harrowing only, relative to spring ploughing, positive correlations were found with 0–4 week temperature on both soil types, suggesting that low early season temperatures may limit yields under ploughless tillage.  相似文献   

14.
The soil porespace was studied in two long-term tillage experiments on two clayey stagnogleys in Southern England. The soils differed in respect of mineral and organic composition and previous management history. In both soils the total volume of pores and the volume fraction of macropores in the topsoil horizon declined with direct drilling compared with annual ploughing. This difference between tillage treatments appeared to develop more slowly in the soil that was formerly under continuous arable cultivation than in the soil that was previously in long-term grassland. Fluid transport coefficients were greater in ploughed topsoil in both soils; however, at the boundaries between topsoil and subsoil, and in the upper subsoil, permeability and gaseous diffusivity were greater after direct drilling. At a long-term arable site, soil was more consolidated below the depth of ploughing or shallow tillage, whereas in a former grassland soil ploughing disrupted the continuity of channel-type macropores.  相似文献   

15.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

16.
In Brazil, no tillage (NT) is a soil conservation practice now widely adopted by farmers, including smallholders. The effect of NT and conventional tillage (disc ploughing followed by two light disc harrowings, CT) was investigated on the aggregation properties of a clayey Rhodic Ferralsol from southern Brazil under different crop rotations. The same soil type under secondary forest was used as reference. Macro- and microaggregate classes were separated by wet sieving using a series of eight sieves (8, 4, 2, 1, 0.5, 0.25, 0.125, 0.053 mm) at four sampling layers (0–5, 5–10, 10–20, 20–30 cm). The soil in general had high structural stability. At 0–5 cm, meanweight diameter (MWD, 11.1 mm) and total organic C in macroaggregates (TOC, 39 g kg−1 soil) were highest for the forest soil. Soil under NT had a more similar distribution of aggregate size classes and TOC to the forest soil than CT. The most pronounced difference between tillage systems was observed in the surface soil layer (0–5 cm). In this layer, NT had higher aggregate stability (ASNT: 96%; ASCT: 89%), had higher values of aggregate size distribution (MWDNT: 7.9 mm, MWDCT: 4.3 mm), and had on average 28% greater TOC in all aggregate size classes than CT. Soil under NT had greater TOC in macroaggregates (NT: 22 g kg−1; CT: 13 g kg−1). Crop rotation did not have a significant effect on soil aggregate distribution and TOC. By increasing macroaggregation NT increased organic carbon accumulation in soil.  相似文献   

17.
The temporal variability of soil porosity, especially macropores (> 50 μm), and associated porosity factors such as pore continuity, percent water-filled pore space (%WFPS), and earthworm numbers and biomass were determined over 3 years under direct-drilling and mouldboard ploughing. The study was conducted on a Charlottetown fine sandy loam, an Orthic Podzol with a humid to perhumid soil-moisture regime.Differences in soil porosity between tillage systems were mainly confined to the surface 0–8-cm soil depth. Fissures (> 300 μm), or large pores, were reduced under direct drilling compared with mouldboard ploughing, but subject to regeneration over the winter period. The absence of soil loosening caused the volume of macropores to fall below 10% during the growing season. Tillage had a residual effect on soil porosity, maintaining the volume of macropores between 11 and 18%. Differences between tillage and ice-induced porosity influenced the degree of macropore regeneration. In general, water-storage pores were similar between tillage systems. A close relationship (r2 = 0.832) was observed between dry bulk density and macroporosity under both tillage systems. The relationship between macroporosity and pore continuity (Ksat), which differed between tillage systems, indicated that a macroporosity of between 8 to 10% (v/v) would maintain adequate soil permeability. In contrast, the %WFPS, which was closely related (R2 = 0.952) to macroporosity and soil water content, indicated that the volume of macropores should exceed 14% to provide an optimum level of air-filled pore space.Under humid soil-moisture regimes, the use of macroporosity as an index of critical soil structure or limiting density needs to be based both on adequate soil permeability and on water-filled pore space. Although direct drilling maintained adequate functional porosity, the need for an optimum aerobic environment may necessitate loosening of the surface soil on an annual basis.  相似文献   

18.
The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. Changes in the soil organic carbon (SOC) as influenced by tillage, is more noticeable under long-term rather than short-term tillage practices. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 25 years of five tillage treatments in a silt loam soil. Zero tillage (ZT) treatment was compared to conventional tillage practices of mouldboard and chisel plow operations conducted either during the fall or spring season in a randomized complete block design with four replications. The SOC was calculated on depth and equivalent soil mass bases. Contrast analysis showed a significantly (5%) higher soil bulk density for zero versus fall and zero versus chisel tillage operations at 5–10 cm soil depth. The SOC concentration was dependent on the depth of tillage operation and followed the trend of higher SOC for zero, chisel, and mouldboard tillage at 0–5, 5–10, and 20–40 cm depth, respectively. There were more significant differences in the SOC storage when expressed on depth compared to an equivalent soil mass basis. SOC storage was significantly higher for ZT at the 0–5 cm soil depth compared to conventional tillage practices. Contrast analysis on an equivalent mass basis showed that SOC storage was significantly higher for spring tillage compared to fall tillage at 0–60 cm depth. In conclusion, ZT practices increased SOC concentration and storage compared to conventional tillage operations only for the surface layer but not for the entire soil profile.  相似文献   

19.
The effects of mouldboard ploughing, shallow tined cultivation and direct drilling on yields of winter wheat, barley, oats and oilseed rape were compared over 10 years. Three field experiments were conducted on two non-calcareous clays (stagnogleys) and a weakly structured silty soil (argillic brown earth). Two spring N levels were applied to the winter wheat plots on the clay soil in three years and to the winter barley plots on the silty soil in one year. This paper reports the soil bulk density and water content at sowing and the crop growth, yield components and yields obtained during the later years of the study: 1979–1984 on the clayey soils and 1981–1984 on the silty soil.

In the years when cereals were grown, differences in yield between cultivation treatments were small and inconsistent. Oilseed rape yielded significantly more after direct drilling than ploughing because of better establishment and uniformity of growth.

The success of continuous reduced tillage depended on both burning crop residues and good weed control.  相似文献   


20.
Soils from fifteen field experiments in the United Kingdom and one in France that compared direct drilling with mouldboard ploughing were examined with respect to their composition and physical properties. Indices of the stability and shrinkage of soil aggregates were obtained by measurement and an index of compactability was derived from an established relationship. It was hypothesized that these properties were possible determinants of soil responses to zero-tillage.Aggregate stability and shrinkage were correlated with organic carbon and clay content, respectively. Organic matter contents were greater at the surface of direct-drilled soils than in the complete topsoil layer after direct drilling or ploughing. In some cases the increase in organic matter significantly improved the physical properties of the soils.The three indices, of stability, shrinkage and compactability, were each ranked in high intermediate or low groups, and the soils classified according to their ratings in these groups. The resulting classification broadly agreed with a previous one of soil suitability for sequential direct drilling mainly based on experimental agronomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号