首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We estimated the amount of nitrogen (N) remobilized from 1-year-old leaves at various positions in the crowns of mature Quercus glauca Thunb. ex Murray trees and related this to the production of new shoots. Leaf N concentration on an area basis (Na) and total N (Nt= Na x lamina area of all leaves on a shoot) were related to photosynthetic photon flux (PPF) on the leaves of current-year and 1-year-old shoots. When new shoots (S02 shoots; flushed in 2002) flushed, only a portion of the leaves on the previous year's shoots (S01 shoots; flushed in 2001) were shed. After the S02 shoots flushed, S01 shoots were defined as 1-year-old shoots (S01* shoots). Both Na and Nt were positively correlated with PPF for S01 shoots, but not for S01* shoots. The fraction of remobilized N (% of the maximum Na in S01 leaves) from remaining leaves was 5-35%, with the fraction size being positively correlated with the number of S02 shoots on an S01* shoot (new shoot number). However, the mean fraction of remobilized N from fallen leaves was 45% and was unrelated to new shoot number. The total amount of N remobilized from both fallen and remaining leaves was 1-20 mg per S01* shoot. Total remobilized N was positively correlated with new shoot number. There was a statistically significant positive relationship between the light-saturated net photosynthetic rate on a leaf area basis (Amax) and Na for both S01* and S02 leaves. However, when we compared leaves with similar Na, Amax of S01* leaves was only half that of S02 leaves, indicating that 1-year-old leaves had lower instantaneous N-use efficiency (Amax per unit Na) than current-year leaves. Ratios of chlorophyll a:b and Rubisco:chlorophyll were lower in S01* leaves than in S02 leaves, indicating that 1-year-old leaves were acclimatized to lower light environments. Thus, in Q. glauca, the N allocation theory (i.e., that N is distributed according to local PPF) applied only to the current-year shoots. Although the amount of foliar N in 1-year-old shoots was not strongly affected by the PPF on 1-year-old leaves, it was affected by interactions with current-year shoots.  相似文献   

2.
Data were collected from two branches from each whorl of nine open-grown Abies balsamea (L.) Miller trees to test the hypothesis that specific leaf area (SLA, m(2) projected fresh leaf area kg(-1) oven-dry foliage) is constant among five foliage age classes (current-year, 1-year-old, 2-year-old, 3-year-old and 4-year-old-plus). Between-tree variation in SLA was greater than within-tree variation. Differences in SLA among the foliage age classes were small, but statistically significant, showing a trend of decreasing SLA with increasing foliage age. Using data from two previous biomass studies, we found that three different methods of calculating SLA of individual trees produced the same projected leaf area estimates. To test the hypothesis that foliage mass increases with foliage age as a result of secondary xylem or phloem development, we examined the secondary vascular development of foliage collected from five age classes and three crown sections in an open-grown A. balsamea. The number of rows of xylem cells was not constant among foliage age classes, but the differences were small and showed no consistent pattern of change with foliage age. Total number of rows of phloem cells increased, number of living rows of phloem cells decreased, and the number of rows of nonliving crushed phloem cells increased with foliage age.  相似文献   

3.
Grassi G  Minotta G 《Tree physiology》2000,20(10):645-652
Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly.  相似文献   

4.
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in approximately 20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO(2)]) for 9 years. Duke Forest free-air CO(2) enrichment (FACE) plots were split and half of each ring fertilized with 112 kg ha(-1) elemental N applied in two applications in March and April 2005. Measurements of needle length (L), mass per unit area (LMA), N concentration (N(l)) on a mass and an area basis, light-saturated net photosynthesis per unit leaf area (A(a)) and per unit mass (A(m)), and leaf conductance (g(L)) began after the second fertilizer application in existing 1-year-old foliage (F(O)) and later in developing current-year first-flush (F(C1)) and current-year second-flush (F(C2)) foliage. Elevated [CO(2)] increased A(a) by 43 and 52% in F(O) and F(C1) foliage, respectively, but generally had no significant effect on any other parameter. Fertilization had little or no significant effect on L, LMA, A or g(L) in F(O) foliage; although N(l) was significantly higher in fertilized trees by midsummer. In contrast, fertilization resulted in large increases in L, N(l), and A in F(C1) and F(C2) foliage, increasing A(a) by about 20%. These results suggest that, although both needle age classes accumulate N following fertilization, they use it differently-current-year foliage incorporates N into photosynthetic machinery, whereas 1-year-old foliage serves as an N store. There were no significant interaction effects of elevated [CO(2)] and fertilization on A. Elevated [CO(2)] increased the intercept of the A:N(l) relationship but did not significantly affect the slope of the relationship in either foliage age class.  相似文献   

5.
To assess the spatial distribution of photosynthetic capacity within an isolated 20-year-old walnut tree (Juglans regia L.) crown, the distribution of relevant leaf characteristics was measured. Variations in leaf dry weight per area (W(a)), and nitrogen content on a weight (N(w)) and area basis (N(a)) were studied along two horizontal and one vertical gradients of leaf irradiance, at two dates (July 30 and September 3). In addition, the content of total nonstructural carbon on a weight (TNC(w)) and area basis (TNC(a)) was measured on July 30. Concurrently, the spatial distribution of daily integrated leaf irradiance within the crown was simulated by a three-dimensional radiation transfer model over a one week period before sampling at each date. High spatial heterogeneity was observed for W(a) (from 50 to 140 g m(-2)), TNC(a) (from 4 to 17 g m(-2)) and N(a) (from 1.2 to 3.6 g m(-2)) among the foliage. Although TNC(w) and N(w) were not correlated and only weakly correlated to daily leaf irradiance, respectively, W(a), TNC(a) and N(a) were strongly correlated to daily leaf irradiance. The relationship between observed N(a) and simulated daily leaf irradiance was used to assess the spatial distribution of N(a) within the crown at each date. Total leaf nitrogen in the foliage was estimated to be 339 g in late July and 317g in early September. For the whole crown (i.e., 1729 current-year shoots), N(a) increased strongly with basal shoot diameter (an index of "shoot vigor"), highlighting the fact that large shoots were mainly located in sunlit locations and exhibited high photosynthetic capacity.  相似文献   

6.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

7.
Cai ZQ  Chen YJ  Bongers F 《Tree physiology》2007,27(6):827-836
We hypothesized that photosynthesis and growth of tropical vegetation at its most northern distribution in Asia (Xishuangbanna, SW China) is adversely affected by seasonal drought and chilling temperatures. To test this hypothesis, we measured photosynthetic and growth characteristics of Zizyphus attopensis Pierre seedlings grown in three contrasting forest microhabitats: the understory, a small gap and a large gap. Photosynthetic capacity (light-saturated photosynthetic rate (A(max)), maximum rate of carboxylation and electron transport rate) and partitioning of leaf nitrogen (N) into carboxylation and electron transport differed significantly among seasons and microhabitats. Specific leaf area (SLA) did not change seasonally, but differed significantly among microhabitats and showed a negative linear relationship with daily integrated photon flux (PPF(i)). In contrast, leaf N concentration per unit area (N(a)) changed seasonally but did not differ among microhabitats. Measurements of maximum PSII photochemical efficiency (F(v)/F(m)) indicated that chronic photoinhibition did not occur in seedlings in any of the microhabitats during the study. Photosynthetic capacity was greatest in the wet season and lowest in the cool season. During the cool and dry seasons, the reduction in A(max) was greater in seedlings grown in the large gap than in in the understory and the small gap. Close logarithmic relationships were detected between PPF(i), leaf N(a) and photosynthetic capacity. Stem mass ratio decreased, and root mass ratio increased, in the dry season. We conclude that seasonal acclimation in growth and photosynthesis of the seedlings was associated with changes in biochemical features (particularly N(a) and partitioning of total leaf N between the different photosynthetic pools) and biomass allocation, rather than with changes in leaf morphological features (such as SLA). Local irradiance is the main factor driving seasonal variations in growth and photosynthesis in the study area, where the presence of heavy fog during the cool and dry seasons limits irradiance, but supplies water to the soil surface layers.  相似文献   

8.
We investigated mature dwarf Abies mariesii trees growing in conifer thicket–meadow parklands on a snowy subalpine plateau, where these dwarf trees are buried in the accumulated snow in winter. We focused on structural variation in the needles, shoots, and branchlets within different crown positions (leader crown vs lower crown) of the dwarf trees. In the leader crown, which appears above the snow surface earlier than the lower crown, current-year shoots and branchlets had greater total biomass, and foliage was more closely packed along the stem axis than in the lower crown, whereas current-year shoots in the leader crown had a lower needle mass ratio than in the lower crown. These results suggest that current-year shoots and branchlets in the leader crown have a specific structure that allows them to harvest more light, although construction and maintenance costs would be higher. In contrast, the structural characteristics of current-year shoots and branchlets in the lower crown efficiently concentrate incoming light by avoiding mutual shading within foliage, thus leading to increased biomass of photosynthetic needles within shoot and branchlet biomass. Such within-crown variability at various hierarchical levels from needles to branches in mature, but very dwarf, A. mariesii trees maintains the crown and allows survival within conifer clumps in areas of subalpine parklands that receive heavy snowfall.  相似文献   

9.
We examined photosynthetic characteristics of two fast- and two slow-growing half-sib families of both loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii var. elliottii Engelm.) on two sites in northern Florida to: (1) quantify variation in light-saturated net photosynthesis (Amax) associated with vertical crown position and foliage age; (2) quantify the amount and distribution of leaf area by foliage age class; and (3) determine whether photosynthetic indices, ranging from leaf-level through whole-crown Amax, were related to growth differences among species and families. In both species, leaf-level Amax was higher in more recently formed foliage both within the same year (where Amax in the third flush averaged 10 to 30% higher than Amax in the first flush) and between years (where Amax in current-year foliage averaged 20 to 40% higher than Amax in 1-year-old foliage). When expressed on a leaf area basis, Amax of current-year foliage was higher in slash pine than in loblolly pine, but Amax expressed on a mass basis did not differ between species. Loblolly pine had higher whole-tree leaf area than slash pine, whereas whole-tree Amax did not differ between species. When the mean values for fast-growing families were compared with the mean values for slow-growing families, there were no differences in leaf-level characteristics, whereas at the whole-tree level, fast-growing families had higher leaf area and whole-tree Amax than slow-growing families in both species. When comparisons were made among the individual fast- and slow-growing families, however, results were more variable. In both species, stem volume growth was strongly correlated with whole-tree Amax, with most of the strength of the correlation deriving from the relationship between volume growth and tree leaf area.  相似文献   

10.
Early season leaf growth depends largely on nitrogen (N) provided by remobilization from storage, and many studies have tested the effect of N availability to roots on the amount of N provided for new leaf development by remobilization. Although it is well known that the light regime experienced by a leaf influences the amount of N per unit leaf area (LA), the effect of the local light regime on the amount of N derived either directly from root uptake or from remobilization for early season leaf growth has never been tested at an intra- canopy scale. The objective of this study was to quantify the relative importance of (1) N availability to roots, (2) local light regime experienced by the foliage (at the shoot scale) and (3) leaf rank along the shoot, on the total amount of N allocated to leaves and on the proportions of N provided by remobilization and root uptake. To quantify the importance of N uptake and remobilization as sources of leaf N, potted hybrid walnut trees (Juglans nigra L. x regia L.) were grown outdoors in sand and fed with a labeled ((15)N) nutrient solution. By removing the apical bud, the trees were manipulated to produce only two shoots. The experimental design had two factors: (1) high (HN; 8 mol N m(-3)) and low (LN; 2 mol N m(-3)) N availability; and (2) high (HL; 90% of incident photosynthetically active photon flux (PPF)) and low (LL; 10% of incident PPF) light. Total leaf N per tree was unaffected by either N availability or irradiance. The HN treatment increased the amount of leaf N derived from root uptake at the whole-tree scale (typically around 8 and 2% in the HN and LN treatments, respectively). Nitrogen allocation within foliage of individual trees was controlled by the local light regime, which strongly affected individual leaf characteristics as leaf mass per unit LA and area- based amount of leaf (N(a)). Decreasing the light availability to a branch decreased the amount of N allocated to it, benefiting the less shaded branches. In contrast, shading of the lower branch did not affect the fraction of total leaf N remobilized for either the lower, shaded branch or the upper, unshaded branch. The relevance of these findings for tree growth modeling is discussed.  相似文献   

11.
Exploring the response differences of leaf physiology parameters to enhanced nitrogen deposition between saplings and trees is vital for predicting the variations of terrestrial ecosystem structure and function under future global climate change. In this study, the ecophysiological parameters of saplings and trees of Fraxinus mandshurica Rupr. were measured at different levels of nitrogen addition in a temperate forest. The results show that ecophysiological parameters maximum net photosynthetic rate(P_(max)), apparent quantum efficiency(a), dark respiration(R_d), light saturation point(L_(sp)), photosynthetic nitrogen use efficiency(PNUE),specific leaf area(SLA)and stomatal conductance under saturated light intensity(G_(smax)) were higher in saplings than in trees. These physiological parameters and not N_(leaf)(leaf nitrogen content)led to relatively lower P_(max) and R_d in trees. For both saplings and trees, low and median nitrogen addition(23 and 46 kg ha~(-1)a~(-1)) resulted in significant increases in Pmax, Rd, Lsp, Chl, PNUE, SLA and Gsmax. These parameters tended to decline under high additions of nitrogen(69 kg ha~(-1)a~(-1)),whereas Nleaf was always enhanced with increasing nitrogen. Variations in Pmax and Rd with increasing nitrogen were attributed to variations in the strongly related parameters of, Lsp, Chl, PNUE, SLA and Gsmax. Overall, the response sensitivity of physiological parameters to enhanced nitrogen levels was lower in trees compared with saplings.  相似文献   

12.
Photoprotective responses during photosynthetic acclimation in Daphniphyllum humile Maxim, an evergreen understory shrub that grows in temperate deciduous forests, were examined in relation to changes in light availability and temperature caused by the seasonal dynamics of canopy leaf phenology. Gradual increases in irradiance in the understory from summer to autumn as overstory foliage senesced were accompanied by increased concentrations of xanthophyll cycle pigments (VAZ) in understory leaves. The chlorophyll (Chl) a/b ratio in understory leaves also increased from summer to autumn, reflecting the change in ratio of the light-harvesting antenna to the reaction center. However, low temperatures following overstory leaf fall reduced Rubisco activity. In contrast, the photosynthetic capactiy of leaves of D. humile growing at the forest border, which was higher in summer than that of leaves of understory plants, decreased in autumn. In autumn, Fv/Fm ratios decreased and concentrations of zeaxanthin (Z) and especially antheraxanthin (A) increased in leaves of both forest-border and understory plants. Although VAZ was twice as high in leaves of forest-border than of understory plants, NPQ was similar in both. We conclude that leaves of understory plants are able to acclimate to seasonal changes in light and temperature by varying their photosynthetic and photoprotective functions, thereby taking advantage of the favorable light conditions caused by overstory leaf fall.  相似文献   

13.
14.
We measured horizontal and vertical gradients of light (rPPFD) along four first-order branches of a Pinus densiflora Sieb. & Zucc. crown, and compared variations in specific leaf area (SLA), needle nitrogen concentration (N), chlorophyll concentration (Chl) and photosynthetic capacity (i.e., maximum rate of carboxylation (V(cmax))) along the two axes. The horizontal gradient of rPPFD along first-order branches was similar in magnitude to the vertical gradient of rPPFD from the upper to the lower crown. None of the measured parameters (i.e., SLA, N, Chl and Vcmax) were strictly proportional to rPPFD, although they were more or less correlated with light when data obtained for all of the crown were pooled (r(2) = 0.31-0.80). The slope of rPPFD against N on an area basis (Narea) for a branch in the middle of the crown orientated northward was significantly greater than the slope for a similar branch orientated southward. Horizontal variations were unrelated to age effects because measurements were all on 1-year-old needles. We conclude that factors other than light (i.e., orientation) may influence N allocation within branches. There was considerably less variation in the relationship of Vcmax to Narea (r2 = 0.58) than in the relationship of Vcmax to rPPFD (r2 = 0.41). Fractional N distribution among components of the photosynthetic machinery was constant within the crown. Together with the relationships between rPPFD and N on a mass basis (r2 = 0.80) and SLA and Vcmax (r2 = 0.60), these findings suggest that most light acclimation in P. densiflora occurs through changes in needle morphology (e.g., SLA) during development.  相似文献   

15.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

16.
The canopy structure and within-stand light conditions of several young birch (Betula pendula Roth. and B. pubescens Ehrh.) stands were studied. In addition, 2-year-old silver birch seedlings were subjected to varying degrees of artificial shading for one growing season in order to interpret the results of the former experiments. The shading increased the specific leaf area and the thickness of leaf mesophyll was reduced by increased shading. Similarly, the maximum photosynthetic rate and the light intensity for photosynthetic saturation were decreased in shading. Both phenomena seemed to be associated with the increase in specific leaf area and the decrease in the amount of chlorophyll per unit of leaf area.  相似文献   

17.
To examine the effects of different solar irradiances on leaf characteristics at the leaf primordium and expansion stages, we shaded parts of branches in the upper canopies of two adult beech trees, Fagus crenata Blume and Fagus japonica Maxim., for 4 years. The treatments during the leaf primordium and leaf expansion stages, respectively, were: (1) high light and high light (H, control), (2) high light and low light (HL), (3) low light and low light (LL), and (4) low light and high light (LH). Both number of cell layers in palisade tissue and individual leaf area were affected by the previous-year irradiance, whereas cell length of palisade tissue was larger in LH leaves than in LL leaves, suggesting determination by current-year irradiance. Lamina chlorophyll/nitrogen ratio was higher in HL and LL leaves than in LH leaves, suggesting determination by current-year irradiance. Diurnal minimum values of leaf water potential measured under sunlit conditions were lower in H and LH leaves than in HL and LL leaves. Effective osmotic adjustment was found in H and LH leaves, suggesting that leaf water relations were affected by current-year irradiance. Net photosynthetic rate and stomatal conductance measured under sunlight conditions were higher in H and LH leaves than in HL and LL leaves. Thus, effects of current-year irradiance had a greater effect on leaf-area-based daily carbon gain than previous-year irradiance.  相似文献   

18.
Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoots were unrelated to tree height. However, shoot structure changed with tree height. Compared with short trees, tall trees produced current shoots of the same mass but with thicker and shorter stems. Current shoots with thin and long stems enhanced height growth in short trees, whereas in tall trees, thick and short current shoots may reduce mechanical and hydraulic stresses. Furthermore, compared with short trees, tall trees produced current shoots with more leaves of lower dry mass, smaller area, and smaller specific leaf area (SLA). Short trees adapted to low light flux density by reducing mutual shading with large leaves having a large SLA. In contrast, tall trees reduced mutual shading within a shoot by producing more small leaves in distal than in proximal parts of the shoot stem. The production of a large number of small leaves promoted light penetration into the dense crowns of tall trees. All of these characteristics suggest that the change in current shoot structure with increasing tree height is adaptive in E. tapos, enabling short trees to maximize height growth and tall trees to maximize light capture.  相似文献   

19.
以不同遮荫条件(50%、25%和自然光)下适应生长1 a后的珙桐幼苗为研究对象,测定分析了珙桐幼苗的生理生化指标和生长的变化特征,结果表明:(1)不同的遮荫处理下,珙桐幼苗的净光合速率日变化曲线均为双峰型,有"午休"现象。但不同光强下出现峰值的大小和时间有差异。不同的光强下蒸腾速率日变化趋势也是不一致的,全天蒸腾速率大小顺序为一层遮荫(50%)两层遮荫(25%)全光照。(2)遮荫下珙桐的单叶面积、比叶面积和叶柄长均大于全光照下,表明珙桐利用弱光的能力很强,提高了对有限光资源的吸收。遮荫试验结果说明:适度的遮荫(50%透光率)有利于珙桐幼苗生长。  相似文献   

20.
以2 a生金蒲桃(Xanthostemon chrysanthus)幼苗为材料,研究了全光照,50%遮阴,70%遮阴,90%遮阴4种遮阴处理对金蒲桃生长特性、生物量分配、光合生理变化的影响,结果表明:与自然光全处理对比,遮光极显著(P<0.01)地抑制了金蒲桃幼苗生物量的积累,遮光处理组叶片数量减少,叶生物量比下降,茎生物量比增加;光补偿点、光饱和点、暗呼吸速率和最大光合速率降低,光能利用效率低于全光照叶,强光下遮阴叶的净光合速率保持稳定.上述结果说明:遮阴处理后,金蒲桃在生长特性、生物量分配和光合参数上表现出对遮阴弱光的适应,表明金蒲桃是一种能广泛应用于各种光照条件的优良景观树种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号