首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium culmorum is one of the most important Fusarium species causing head blight infections in wheat, rye, and triticale. It is known as a potent mycotoxin producer with deoxynivalenol (DON), 3‐acetyl deoxynivalenol (3‐ADON), and nivalenol (NIV) being the most prevalent toxins. In this study, the effect of winter cereal species, host genotype, and environment on DON accumulation and Fusarium head blight (FHB) was analysed by inoculating 12 rye, eight wheat, and six triticale genotypes of different resistance levels with a DON‐producing isolate at three locations in 2 years (six environments). Seven resistance traits were assessed, including head blight rating and relative plot yield. In addition, ergosterol, DON and 3‐ADON contents in the grain were determined. A growth‐chamber experiment with an artificially synchronized flowering date was also conducted with a subset of two rye, wheat and triticale genotypes. Although rye genotypes were, on average, affected by Fusarium infections much the same as wheat genotypes, wheat accumulated twice as much DON as rye. Triticale was least affected and the grain contained slightly more DON than rye. In the growth‐chamber experiment, wheat and rye again showed similar head blight ratings, but rye had a somewhat lower relative head weight and a DON content nine times lower than wheat (3.9 vs. 35.3 mg/kg). Triticale was least susceptible with a five times lower DON content than wheat. Significant (P = 0.01) genotypic variation for DON accumulation existed in wheat and rye. The differences between and within cereal species in the field experiments were highly influenced by environment for resistance traits and mycotoxin contents. Nevertheless, mean mycotoxin content of the grain could not be associated with general weather conditions in the individual environments. Strong genotype‐environment interactions were found for all cereal species. This was mainly due to three wheat varieties and one rye genotype being environmentally extremely unstable. The more resistant entries, however, showed a higher environmental stability of FHB resistance and tolerance to DON accumulation. Correlations between resistance traits and DON content were high in wheat (P = 0.01), with the most resistant varieties also accumulating less DON, but with variability in rye. In conclusion, the medium to large genotypic variation in wheat and rye offers good possibilities for reducing DON content in the grains by resistance selection. Large confounding effects caused by the environment will require multiple locations and/or years to evaluate FHB resistance and mycotoxin accumulation.  相似文献   

2.
Summary Head blight caused by Fusarium culmorum and F. graminearum is damaging in all winter rye (Secale cereale L.) growing areas. For hybrid breeding, the relative magnitude of general (GCA) and specific combining ability (SCA) is a crucial parameter for developing appropriate selection procedures. Forty single-cross hybrids were produced by crossing six and seven inbred lines of the Petkus and Carsten gene pool, respectively, in a factorial design. Hybrids were evaluated in two years with artificial F. culmorum inoculation. Resistance traits were head blight rating and grain weight relative to the non-inoculated control. Both resistance traits were closely correlated across both years (r-0.8, P=0.01). Significant genotypic variation was found for both traits with medium to high estimates of heritability (h2=0.6-0.8). Components of variance for GCA were, across years, 10 and 6 times larger than those for SCA for head blight rating and relative grain weight, respectively. Significant SCA effects were found for 15 to 20% of all cross combinations across both traits in each year. SCA effects were, however, inconsistent over years leading to a high SCA-year interaction. In conclusion, resistance to Fusarium head blight among the interpool hybrids tested was conditioned mainly by additive gene action that could be utilized by recurrent selection in multi-environment trials.Abbreviations GCA general combining ability - SCA specific combining ability  相似文献   

3.
Summary Fusarium head blight infection causes severe yield losses and contamination of the grain with mycotoxins in triticale (× Triticosecale Wittmack) grown in temperate and semihumid areas. In a two-year experiment thirty-six genotypes were inoculated separately with two isolates of Fusarium graminearum differing fivefold in their in vitro deoxynivalenol (DON) production and the effect on various traits was studied. All traits were significantly affected by head blight. The two isolates differed considerably in their aggressiveness resulting in a mean reduction of grain weight per spike of almost 25% and 50%, respectively. Inter-annual correlation was high for average disease rating (r=0.63, P<-0.01) and low for the other traits. Therefore, disease rating, averaged from two to three records, was regarded a suitable criterion for screening purposes. The effect of isolates on genotypes was not stable over years. The mean DON content of five genotypes with diverse resistance levels was 68 mg kg-1. In vitro DON production of the two isolates used for inoculation did not correspond to their aggressiveness and DON contamination of the grain.  相似文献   

4.
G. Oettler  G. Wahle   《Plant Breeding》2001,120(4):297-300
Fusarium head blight (FHB) is a widespread disease of small‐grain cereals and can cause substantial losses in grain yield. To assess quantitative genetic parameters as a basis for an efficient breeding programme for resistance, 100 triticale (×Triticosecale Wittm.) genotypes were tested in various environments and artificially inoculated at anthesis with an aggressive isolate of Fusarium culmorum. A visual rating (1–9 scale) was used to assess head blight infection. Five grain yield traits relative to an uninoculated control were also measured. The mean value of the average rating, calculated from four or five readings, was 4.4. It ranged from 3.0 to 5.9 and showed continuous variation. Infection caused a 48% reduction of mean kernel weight per spike, which was the result of 26% fewer kernels per spike and a 32% lower 1000‐kernel weight. The 50‐ml kernel weight was affected by only 20%. The range and genotypic variation was highest for relative kernel weight per spike. For all relative grain yield traits, the most important source of variation was the environment, followed by genotype‐environment interaction, with genotype generally coming last. In contrast, genotypic variation was the most important factor for the disease rating, which also had the highest heritability (h2= 0.89). Phenotypic correlations between the average head blight rating and relative grain yield traits were moderate (r = 0.42–0.57). In conclusion, an average disease rating provides a quantitative assessment of resistance and is suitable for screening large numbers of genotypes. Relative kernel weight per spike gives a ranking of the genotypes that is very similar to the visual score.  相似文献   

5.
Fusarium head blight (FHB) in wheat and triticale leads to contamination of the grain with the mycotoxin deoxynivalenol (DON) that is harmful to animal and man. A fast, low-cost, and reliable method for quantification of the DON content in the grain is essential for selection. We analysed 113 wheat and 55 triticale genotypes for their symptom development on spikes, Fusarium exoantigen (ExAg) and DON content in the grain after artificial inoculation with a highly aggressive isolate of F. culmorum in three (wheat) and six (triticale) location-by-year combinations. Additionally, in triticale the amount of Fusarium damaged kernels (FDK) was assessed. ExAg content was analysed by a newly developed Fusarium-specific plate-trapped antigen enzyme-linked immunosorbent assay (PTA-ELISA) and DON content by an immunoassay. A moderate disease severity resulted in an ExAg content of 0.87 optical density (OD) units in wheat and 1.02 OD in triticale. DON content ranged from 12.0 to 105.2 mg kg–1 in wheat and from 24.2 to 74.0 mg kg–1 in triticale. Genotypic and genotype-by-environment interaction variances were significant (P < 0.01). Coefficient of phenotypic correlation between DON content analysed by the immunoassay and ExAg content was r = 0.86 for wheat and r = 0.60 for triticale. The highest correlation between DON content and symptom rating was found by FHB rating in wheat (r = 0.77) and by FDK rating in triticale (r = 0.71). In conclusion, selection for reduced FHB symptoms should lead to a correlated selection response in low fungal biomass and low DON content in the grain.  相似文献   

6.
The amount of genetic variation among inbred lines and testcrosses, and covariation between both genetic materials, are of crucial importance for selection efficiency in hybrid breeding. To estimate these quantitative genetic parameters for resistance of winter rye (Secale cereale) to head blight caused by Fusarium culmorum, 88 three-way cross hybrids, produced by crossing each of 44 S2 Carsten inbred lines with two unrelated Petkus single-cross testers, were evaluated along with the parental lines over 2 years. Resistance traits were head-blight rating and grain weight per spike relative to the non-inoculated control. Significant genotypic variation occurred among lines and in both testcross series. S2 lines displayed considerably more variation than testcross series. Genotype × environment interaction was more marked among the inbred lines, while estimates of heritability were similar for both genetic materials. Testcrosses showed heterosis for head-blight resistance. No relationship existed between S2 lines and the two testcross series for any resistance trait. This might be caused by an association between inbreeding and Fusarium-head-blight susceptibility and different inbreeding depression among the S2 population. The phenotypic correlations between the testcross series were moderate for both traits (r = 0.58, P < 0.01). In conclusion, Fusarium-head-blight resistance has to be selected at the respective heterozygosity levels.  相似文献   

7.
F. Wilde    T. Miedaner 《Plant Breeding》2006,125(1):96-98
Fusarium head blight (FHB) results in yield losses and contamination of kernels by mycotoxins, particularly deoxynivalenol (DON). For minimizing DON content in grain, indirect selection methods would increase gains from selection compared to the costly and time‐consuming DON analysis. The aim of this study was to examine whether an early selection for fewer FHB symptoms would lead to a reduced DON content in grain after inoculation with Fusarium culmorum. Starting with a double‐cross derived population of about 1,100 genotypes, 30 F1:3 genotypes were selected for FHB rating in a two‐step selection in spring wheat with the non‐adapted resistance sources CM82036 and ‘Frontana’. In winter wheat, 30 F1:2 genotypes were selected out of a double‐cross derived population of about 600 F1 plants from crosses with German resistance sources (‘Dream’, G16‐92). Selected genotypes were grouped in three categories according to their FHB rating (low, moderate and high) and analysed afterwards for grain DON content. The three groups differed in their DON content illustrating that indirect selection should already be feasible in the earliest generations. Because of the wide genotypic ranges for DON contents within one grouping, a final DON analysis for selected materials is advisable to achieve full selection gain.  相似文献   

8.
Small-grain winter cereal crops can be infected with Fusarium head blight (FHB) leading to mycotoxin contamination and reduction in grain weight and quality. Although a number of studies have investigated the genetic variation of genotypes within each small-grain cereal, a systematic comparison of the winter crops rye, triticale, durum and bread wheat for their FHB resistance, Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) contamination across species is still missing. We have therefore evaluated twelve genotypes each of four crops widely varying in their FHB resistance under artificial infection with one DON-producing F. culmorum isolate at constant spore concentrations and additionally at crop-specific concentrations in two environments. Rye and triticale were the most resistant crops to FHB followed by bread and durum wheat at constant and crop-specific spore concentrations. On average, rye accumulated the lowest amount of DON (10.08 mg/kg) in the grains, followed by triticale (15.18 mg/kg) and bread wheat (16.59 mg/kg), while durum wheat had the highest amount (30.68 mg/kg). Genotypic variances within crops were significant (p ≤ .001) in most instances. These results underline the differing importance of breeding for FHB resistance in the different crops.  相似文献   

9.
Summary For genetic analysis of head blight in winter rye (Secale cereale) caused by Fusarium culmorum, six homozygous inbred lines from the Petkus gene pool were crossed in all combinations to obtain 15 diallel F1 crosses and the corresponding 15 F2 crosses. These materials and 10 additional inbreds were artificially inoculated in a 2-year field experiment. The inbreds were also tested with F. graminearum in a separate sub-experiment.Single disease rating, average disease rating, and yield components (grain-weight per spike, 1000-grain weight, kernel number per spike) relative to the non-inoculated treatment were significantly affected by Fusarium head blight in all material groups. The relative grain weight per spike ranged from 26% to 88%. Significant genotypic and genotype x year interaction variances were found throughout. Heritabilities were highest for homogeneous inbreds (h2=0.6–0.8) and lowest for heterogeneous F2 crosses (h2=0.4–0.6). Disease rating and relative grain-weight per spike were highly correlated for the inbreds and F2 crosses (r0.7, P0.01), but lower for the F1 crosses (r0.6, P0.05). Inter-annual correlation coefficients for disease ratings and relative grain-weight per spike ranged from r0.7 (inbreds) to r0.5 (F2 crosses). The diallel analysis showed significant GCA effects only for relative 1000-grain weight in 1990, but significant SCA and SCAx year interaction variances for most traits. The resistances of 16 inbreds to F. culmorum and F. graminearum were tightly associated for all traits (r=0.96–0.97, P0.01).In conclusion, only slow progress can be expected from selecting for Fusarium head blight resistance in rye due to the limited amount of additive genetic variance and the great improtance of environmental factors.  相似文献   

10.
Breeding wheat and rye for resistance to Fusarium diseases   总被引:6,自引:1,他引:6  
T. Miedaner 《Plant Breeding》1997,116(3):201-220
Fusarium culmorum and F. graminearum Groups 1 and 2 cause seedling blight, crown rot, foot rot and head blight in wheat and rye that may affect grain yield and quality for baking and feeding. This review starts with an analysis of Fusarium populations with regard to their genetic variation for aggressiveness, mycotoxin production, and isolate-by-host genotype interaction. To assess resistance in the different host growth stages, quantitative inoculation and disease assessment techniques are necessary. Based on estimated population parameters, breeding strategies are reviewed to improve Fusarium resistance in wheat and rye. Epidemiological and toxicological aspects of Fusarium resistance that are important for resistance breeding are discussed. F. culmorum and F. graminearum display large genetic variation for aggressiveness in isolate collections and in naturally occurring populations. The production of mycotoxins, especially deoxynivalenol and its derivatives, is a common trait in these populations. Significant isolate-by-host genotype interactions were not found across environments in wheat and rye. Artificial infections in the field are indispensable for improving Fusarium crown rot, foot rot and head blight resistance in wheat and rye. For a reliable disease assessment of large populations, disease severity ratings were found to be the most convenient. The differentiation of host resistance is greatly influenced by an array of nongenetic factors (macro-environment, microclimate, host growth stage, host organ) that show significant interactions with host genotype. Selection for environmentally stable resistance has to be performed in several environments under a maximum array of different infection levels. Selection in early growth stages or on one plant organ does not in most cases allow prediction of resistance in adult-plant stages or another plant organ. Significant genetic variation for resistance exists for all Fusarium-incited diseases in breeding populations of wheat and rye. The patho-systems studied displayed a prevalence of additive gene action with no consistent specific combining ability effects and thus rapid progress can be expected from recurrent selection. In wheat, intensive testing of parental genotypes allows good prediction of the mean head blight resistance after crossing. Subsequent selection during selfing generations enables the use of transgression towards resistance. In hybrid breeding of winter rye, the close correlation between foot rot resistance of inbred lines and their GCA effects implies that selection based on the lines per se should be highly effective. This is not valid for F. culmorum head blight of winter rye caused by a greater susceptibility of the inbred lines compared to their crosses. For both foot rot and head blight resistance, a high correlation between the resistance to F. graminearum and F. culmorum was found in wheat and rye. Mycotoxin accumulation occurs to a great extent in naturally and artificially infected plant stands. The correlation between resistance traits and mycotoxin contents are medium and highly dependent on the environment. Further experiments are needed to clarify whether greater resistance will lead to a correlated reduction of the mycotoxin content of the grains under natural infection.  相似文献   

11.
Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat   总被引:10,自引:0,他引:10  
Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (telomorph =Gibberella zeae (Schw.)), is an important wheat disease world‐wide. Production of deoxynivalenol (DON) by F. graminearum in infected wheat grain is detrimental to livestock and is also a safety concern in human foods. An international collection of 116 wheat lines was evaluated for FHB resistance and concentration of DON in grain. Plants were inoculated with mixed isolates of F. graminearum in the greenhouse by injecting conidia into a single spikelet of each spike and in the field by scattering F. graminearum‐infected wheat kernels on the soil surface. FHB symptoms were evaluated by visual inspection in both the greenhouse and field, and DON was analysed by HPLC. Significant differences in FHB ratings and DON levels were observed among cultivars. In the greenhouse test, visual symptoms varied from no spread of FHB from the inoculated spikelet to spread throughout the spike, and DON levels ranged from trace levels to 283 mg/kg. In the field test, DON ranged from 2.8 to 52 mg/kg. The greenhouse test identified 16 wheat lines from various origins that accumulated less than 2 mg/kg DON. These lines may be useful as sources for breeding wheat cultivars with lower DON levels. Correlation coefficients were significant between FHB symptom ratings, seed quality traits, and DON levels. Thus, the percentage of scabbed spikelets and kernels can be generally used to predict DON levels in harvested wheat grain. In breeding programmes, selection for plants having few scabbed spikelets and scabbed kernels is most likely to result in low DON levels.  相似文献   

12.
张荣  袁杭 《中国农学通报》2008,24(10):419-426
Abstract:Fusariam head blight(FHB)is a worldwide destructive disease of wheat in the warm,semi-humid or humid regions,especially serious in China.The disease not only causes significant losses in yield and re duces grain quanlity,but also induces toxin to contaminated seeds,which is harmful to the healthy of human and livestocks,So it is important to control it.There are several methods to control Fusarium head blight (FHB).Such as using Crop rotation,Soil cultivation and Fertiliser,biological control,Fungicides control, transgenes,resistance to control Fusarium head blight(FHB).All of these methods gain some effect,but also exist their deficiency.Sometimes crop rotation had no significant effect on DON contamination of wheat grain,subsequent reductions in DON contamination were inconsistent when using Soil cultivation and Fer tiliser,Unfortunately,under field conditions,the biological control achieved has been shown to be variable and in some tests has failed to give any control,The use of fungicides,however,have not been consistently effective in controlling FHB and in reducing DON formation,transgene-silencing at different generations is a problem to use transgenes,Information on location of QTL for FHB resistance should improve dramatically in the near future on resistance to control Fusarium head blight(FHB).Therefore,it is pressing to improve control methods,especially to DON.  相似文献   

13.
Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.  相似文献   

14.
Twenty (1990-93) and 25 (1994-96) wheat genotypes with different degrees of resistance and origins were tested with seven and eight isolates, respectively, of Fusarium graminearum and four Fusarium culmorum isolates of diverse origin in Europe. Infection severity depended largely on the genotypes and the isolates used. Head blight values, yield response and kernel infection values revealed close but varying relationships with deoxynivalenol (DON) content. This variability is explained by the presence of tolerance mechanisms which affect the relationship between Fusarium head blight severity and yield response. Kernel infection resistance accounted for decreasing Fusarium head blight values. Genotypes were found with lower infection severity and higher DON contamination and vice versa. Evidently, the cultivar has a significant influence on DON production in the infected tissue, i.e. highly susceptible genotypes may have moderate or low accumulation of DON. However, in the most resistant genotypes showing no infection to any of the isolates or only sporadic symptom development, no or very low accumulation of DON was detected. Resistant genotypes gave a stable reaction with b-values close to zero for all traits tested. Susceptible genotypes were unstable under different epidemic conditions and their stability was different for the traits investigated. Therefore, the mean of b-values is suggested to better describe the stability of the wheat genotypes. Significant positive relationships were found between aggressiveness of the isolates and their production of DON in the infected grain. The correlation improved significantly for the nivalenol-producing isolate (F89.4 from France) when the sum of DON and nivalenol contents were considered. This indicates that the total trichothecene toxin-producing capacity of the isolates may be a decisive component of pathogenicity. Since the tests included isolates from different European countries the results provide further proof that no host specificity exists within these pathogens in Europe. This was also valid for kernel infection, yield response and DON accumulation. Therefore, the nature of resistance is horizontal. The results also support the view that there is no difference between the resistance of the host plant to F. graminearum and to F. culmorum.  相似文献   

15.
The genetic background of Fusarium head blight (FHB) resistance in the moderately resistant wheat variety Frontana was investigated in the GK Mini Manó/Frontana DH population (n = 168). The plant material was evaluated across seven epidemic environments for FHB, Fusarium-damaged kernel (FDK) and deoxynivalenol (DON) contents caused by two Fusarium species (F. culmorum and F. graminearum). The effects of phenotypic traits such as plant height and heading date were also considered in the experiments. In the population, 527 polymorph markers (DArT, SSR) within a distance of 1,381 cM distance were mapped. The quantitative trait locus/loci (QTL) on chromosomes 4A and 4B demonstrated a significant linkage only with FHB, while QTL on chromosomes 3A, 4B, 7A and 7B were linked to DON accumulation alone. Regions determining all the investigated Fusarium resistance traits were identified on chromosomes 1B, 2D, 3B, 5A, 5B and 6B. The markers in these regions are of the greatest significance from the aspect of resistance breeding. Our results indicate that the genetic background of resistance against FHB, FDK and DON accumulation can differ, and all these traits should be taken under consideration during resistance tests. Moreover, this is the first report on the mapping of Frontana-derived QTL that influence DON accumulation, which is important since the level of DON contamination determines the actions of the food and feed industries. Selection should therefore also focus on this trait by using molecular markers linked to DON content.  相似文献   

16.
Fusarium head blight (FHB) in triticale (× Triticosecale Wittmack) results in yield losses and mycotoxin contamination, for example, by deoxynivalenol (DON). This study aimed to analyse the correlation between FHB severity and DON content in a DH population of 146 entries across environments. Additionally, Fusarium damaged kernel (FDK) rating, heading stage and plant height were recorded. Highly significant (P < 0.001) genotypic variances were found throughout, but also significant (P < 0.001) genotype–environment interaction variances occurred. Correlation between FHB severity and heading stage or plant height was low (r = 0.144 and r = ?0.153, P < 0.10). A prediction of DON content from FHB severity or FDK rating is not possible caused by low correlations (r = 0.315 and 0.572, respectively, P < 0.001). A common quantitative trait locus (QTL) for all FHB‐related traits was found on wheat chromosome 2A being of minor importance for FHB severity, but of high importance for DON content and FDK rating. Another QTL on rye chromosome 5R was more important for FHB severity. In conclusion, DON content has to be measured in triticale after selection for FHB severity to gain for healthy and mycotoxin‐reduced feed.  相似文献   

17.
为探究秸秆还田后采取何种耕作方式可以显著降低小麦赤霉病的危害,2016-2021年在河南省漯河市临颍县杜曲镇前韩村开展秸秆还田+耕作方式的定位试验,设置秸秆不还田、耕深25cm(T1),秸秆全量还田、耕深15(T2)、20(T3)、25(T4)和30cm(T5)处理,研究秸秆还田状态下微调的耕作方式对小麦赤霉病病穗率、病小穗率、病粒率、千粒重、病情指数和脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)含量的影响。结果表明,T5处理的病穗率、病小穗率、病粒率、千粒重、病情指数和DON含量均是最优值(除T1外),各处理对小麦赤霉病的影响从优到劣为T1>T5>T4>T3>T2,秸秆不还田T1处理表现最优,秸秆还田下T5处理表现最优,且T1和T5处理的差异不显著。秸秆还田后T5处理的耕作方式最有利于降低小麦赤霉病的危害,高质量连年秸秆还田不会造成赤霉病流行。相关性分析结果显示,病穗率、病小穗率、病粒率、病情指数与DON含量呈极显著正相关,千粒重与DON含量呈极显著负相关。4月份平均气温与小麦赤霉病病情指数呈极显著正相关;秸秆还田可以提高小麦产量,但效果不明显。  相似文献   

18.
为了选育抗赤霉病且籽粒毒素含量低的小麦品种以减轻赤霉病危害,在对我国南方麦区地方品种进行赤霉病抗性鉴定的基础上,选用8个籽粒中脱氧雪腐镰刀菌烯醇(deoxynivalenol, DON)含量水平不同的小麦品种作亲本,按8×8半双列杂交配制28个杂交组合,以接种后成熟籽粒中DON含量、病小穗数、病小穗率和病粒率为指标,进行赤霉病抗性、一般配合力(GCA)和特殊配合力(SCA)遗传分析,以及不同鉴定指标间比较和相关性分析。结果表明,8个品种中籽粒DON含量以苏麦3号最低(0.5715 mg kg-1),Alondra’s最高(13.5560 mg kg-1),各组合F1的籽粒DON含量均低于感病品种Alondra’s。品种间GCA和SCA存在显著差异,籽粒DON含量以加性效应为主,存在部分显性效应。苏麦3号、望水白和翻山小麦表现出较好的一般配合力效应。以苏麦3号为亲本的5个组合、望水白为亲本的4个组合特殊配合力效应较大。扬麦158一般配合力效应较小,但有4个组合表现较好的特殊配合力效应。籽粒DON含量和病小穗数、病小穗率、病粒率呈极显著的正相关关系。感病品种Alondra’s和绵阳8545的各个抗性鉴定指标的一般配合力在8个品种的排序中表现一致,抗病品种各个抗性指标的一般配合力在8个参试材料间的排序有所差异。DON含量的狭义遗传力为74.54%,因此以抗DON积累为指标的赤霉病抗性育种,可以在早期世代进行选择。  相似文献   

19.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

20.
Rye is a multi-purpose cereal crop grown in Central and Eastern Europe as well as in Western Canada. Fusarium head blight (FHB) is one of the diseases that have a severe negative impact on rye, but knowledge about FHB resistance at the genomic level is totally missing in rye. The objective of this study was to elucidate the genetic architecture of FHB resistance in winter rye using genome-wide association (GWA) mapping complemented by genomic prediction (GP) in comparison with marker-assisted selection (MAS). Additionally, plant height and heading stage were analysed. A panel of 465 S1-inbred lines of winter rye was phenotyped in three environments (location–year combinations) for FHB resistance by inoculation with Fusarium culmorum and genotyped with a 15k SNP array. Significant genotypic variation and high heritabilities were found for FHB resistance, heading stage and plant height. FHB did not correlate with heading stage, but was moderately correlated with plant height (r = −.52, p < .001) caused by some susceptible short inbred lines. The GWA scan identified 15 QTL for FHB resistance that jointly explained 74% of the genotypic variance. In addition, we detected 11 QTL for heading stage and 8 QTL for plant height, explaining 26% and 14% of the genotypic variance, respectively. A genome-wide prediction approach resulted in 44% higher prediction abilities than marker-assisted selection for FHB resistance. In conclusion, genomic approaches appear promising to improve and accelerate breeding for complex traits in winter rye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号