首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this project was to characterize changes in growth, carcass yield, and meat quality traits in castrates and gilts in response to divergent selection for testosterone production. In generation 21, endogenous testosterone concentrations in Duroc boars of the high (HTL) and low (LTL) testosterone lines averaged 49.0 and 27.8 ng/mL (P < 0.01), respectively. Eight LTL and 10 HTL boars were used to sire 29 LTL and 33 HTL litters. To remove the effects of inbreeding, these same boars were mated to females of a Large White x Landrace composite (WC) to generate 11 WC by LTL litters (WLT) and 23 WC by HTL litters (WHT). Castrates and gilts were then allotted to LTL (n = 53), HTL (n = 61), WLT (n = 102), and WHT (n = 101) for testing. Growth and carcass traits analyzed included days to 114 kg (D114), ADG, backfat adjusted to 114 kg (ABF), LM area adjusted to 114 kg and predicted percent lean (PPL). Fat-O-Meater data collected were adjusted fat depth (AFD), adjusted loin depth, and percent lean. Meat quality traits characterized at 24 h postmortem included marbling score, percent lipid, pH, drip loss, color score, and Minolta L*, a*, and b*. Data were analyzed with a mixed model including fixed effects of line, mating type (purebred or crossbred), sex, and the random effect of sire nested within line. All possible interactions among fixed effects were tested. The HTL had fewer D114 (P < 0.05), greater ADG (P < 0.01), greater ABF (P < 0.01), and lower PPL (P < 0.01) than LTL. The WHT and WLT did not differ for D114, ADG, or ABF. The WHT had smaller LM area adjusted to 114 kg (P < 0.05) and greater drip loss (P < 0.05) than WLT. The WLT had lower adjusted loin depth (P < 0.05) than LTL and HTL. The LTL and HTL had greater subjective scores for marbling (P < 0.05) compared with WLT and WHT. The least squares mean for percent lipid for HTL and LTL was 4.00. The WHT had greater means for L*, a*, and b* (P < 0.05) than WLT. Pigs selected for increased testosterone production grew faster and produced fatter carcasses than pigs selected for decreased testosterone. Changes in growth, carcass yield, and meat quality traits were detected in castrates and gilts in response to divergent selection for testosterone production.  相似文献   

2.
Angus bulls (n = 20) from three pure-bred herds in Georgia were acquired to determine the impact of selecting sires based on phenotypic yearling ultrasound intramuscular fat percentage (UIMF) or UIMF EPD on marbling score of steer progeny. Each year in each herd, pairs of bulls were selected to create large differences based on their age adjusted phenotypic yearling UIMF measurements. The average UIMF, weighted by number of progeny per sire, was 3.75% (SD = 1.10%) and 1.70% (SD = 0.53%) for high UIMF (HU) and low UIMF (LU) bulls, respectively. All available ultrasound measurements collected in the purebred co-operator herds were combined with other ultrasound records collected by the American Angus Association for the computation of genetic values for ultrasound fat thickness, ribeye area, and intramuscular fat percentage. Each year bulls were randomly mated to 14 to 30 commercial Angus females. Carcass weight, fat thickness at the 12th rib, ribeye area at the 12th rib, marbling score, yield grade, and quality-grade measurements were collected on 188 steer progeny. Carcass data were linearly adjusted to 480 d of age at slaughter. Steer progeny sired by HU bulls had higher age-adjusted marbling score and quality grade (P < 0.05), and smaller age-adjusted ribeye area (P < 0.05) than steer progeny sired by LU bulls. No significant differences between phenotypic UIMF lines were found for age-adjusted fat thickness (P = 0.84) and yield grade (P = 0.33) in the steer progeny. The regression of age-adjusted carcass marbling score and quality grade of the steer progeny on ultrasound intramuscular fat percentage EPD of the sires produced highly significant regression coefficients of 90.50 and 49.20, respectively. Thus, yearling Angus bulls selected for high-phenotypic UIMF and UIMF EPD can be expected to produce steer progeny with significantly higher amounts of marbling and quality grade. It also appears that marbling can be increased without corresponding increases in external fat thickness and yield grade.  相似文献   

3.
Mass selection for an index of increased postweaning average daily gain and decreased backfat thickness was practiced for five generations. Litter size and weight for 221 gilt litters, birth weight and nipple number for 2,242 piglets and weaning weight at 42 d of age for 2,111 pigs were recorded. Carcass measurements were taken on 331 pigs. Differences between means of the lines (select control) were regressed on cumulative selection differential of the index. These regression coefficients were negative (P greater than .10) for total number born, number born alive, number weaned per litter, nipple number and carcass backfat thickness. Coefficients were positive (P greater than .10) for individual pig and litter weights at birth and weaning and for the carcass traits of length, longissimus muscle area and percentage of ham and loin. Absolute values of realized genetic correlations of index with traits evaluated were all .35 or less except the correlation with carcass backfat, which was -.84. None of these was significant; therefore, index selection for lean growth should have little effect on litter size and weight but may have a beneficial effect on carcass backfat.  相似文献   

4.
Correlated responses in reproductive and carcass traits were studied in 181 litters and 218 pigs from a line of Landrace pigs selected six generations for increased weight at 70 d of age and a contemporaneous, randomly selected control line. The reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th-rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle, and lean gain per day. Total weighted cumulative selection differential for 70-d weight was 30.2 kg. The realized heritability for 70-d weight was .13 +/- .06, and the change in 70-d weight was .65 +/- .29 kg per generation. The regression coefficient of litter size at 21 d on generation was .24 +/- .10 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Carcass length, specific gravity, and ham weight decreased (P less than .10) -.075 +/- .036 cm, -.00054 +/- .00027, and -.102 +/- .048 kg, respectively, per generation. Color score and lean gain per day increased .046 +/- .021 points and .0032 +/- .0013 kg/d, respectively, each generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Correlated responses in reproductive and carcass traits from a line of Duroc pigs selected for increased 200-d weight along with a randomly selected control line were studied in 189 litters (116 select, 73 control) and 191 pigs (106 select, 85 control), respectively. Reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle and lean gain per day. Total weighted cumulative selection differential for 200-d weight was 81.7 kg. The realized heritability for 200-d weight was .18 +/- .08, and the change in 200-d weight was 2.5 +/- 1.2 kg per generation. The regression coefficient of litter size born on generation was -.29 +/- .12 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Average backfat thickness, 10th rib backfat thickness, and belly weight increased by .093 +/- .016 cm, .122 +/- .029 cm, and .089 +/- .040 kg, respectively, per generation. Specific gravity, ham weight, shoulder weight, color score, and percentage of muscle decreased -.00086 +/- .00024, -.165 +/- .013 kg, -.104 +/- .011 kg, -.035 +/- .015 points, and -.47 +/- .12%, respectively, per generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

7.
Growth rates and weights at weaning, 365 d, and at slaughter were obtained on 616 bulls in a nonselected Hereford herd over a 10-yr period beginning in 1978. Carcass data were obtained for 401 of these bulls at 16 mo of age and on 101 that were sires or alternates and slaughtered at 30 mo of age. Fifty-five bulls slaughtered at 30 mo of age sired 301 male offspring on which growth data were obtained and 30 sired 169 male offspring on which carcass data were obtained. Bulls gained an average of .75 kg/d preweaning and 1.16 kg/d postweaning on a 168-d feed test. Rate of daily gain from the end of feed test to slaughter ranged from .7 to 1.2 kg/d. Time from the end of the feed test to slaughter ranged from 48 to 140 d. Slaughter weight, marbling score (Small = 12, Traces = 6), longissimus muscle area, fat covering over the 12th rib, percentage of kidney, pelvic and heart fat (KPH), and dressing percentage for bulls slaughtered as yearlings were 470 kg, 7.6 score, 82.5 cm, 8.2 mm, 1.0%, and 58.8%, respectively. The 30-mo-old bulls were slaughtered directly from range pastures. Marbling was devoid or practically devoid and fat covering over the 12th rib and KPH fat were insufficient to measure or estimate accurately. Sufficient variation was not available for statistical analyses of these traits. Slaughter weight, longissimus muscle area, and dressing percentage of 30-mo-old bulls were 583 kg, 91.8 cm, and 54.0%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
日粮精粗比对山羊生长性能和屠宰性能的影响   总被引:2,自引:0,他引:2  
本试验旨在研究日粮精粗比对山羊生长发育和屠宰性能的影响。18只青年关中奶山羊随机等分为3组;分别饲喂精粗比为31∶69(低)、54∶46(中)和65∶35(高)的3种日粮,各日粮粗蛋白含量相同。结果表明,日增重随精粗比的增加而提高(P<0.05﹚,高精粗比日粮显著提高饲料利用效率(P<0.05﹚,精粗比不影响胃黏膜总重﹑瘤胃和小肠黏膜重量以及胴体重和屠宰率(P>0.05﹚,中等精粗比日粮显著提高皱胃重量(P<0.05﹚。  相似文献   

9.
A 2(3) factorial arrangement of treatments was utilized to determine effects of postweaning zeranol implantation, breed (Angus vs Limousin) and castration (bull vs steer) on growth, behavior and carcass traits. An initial slaughter group was used to account for breed differences in composition and to determine fat and lean growth in the 9-10-11th rib section (NTE). The remaining cattle were fed a finishing diet to a fat end point of .76 cm, as determined by a backfat probe. Control bulls outgained (P less than .01) control steers both to the first kill date and over the entire test and did not require significantly more time to reach the fat end point. The implant did not influence gain in bulls but did increase gain in steers. Angus and Limousins were similar in growth rate for the first 126 d before the first slaughter date. Limousins required more (P less than .01) time to reach the fat end point. Bulls and Limousins produced heavier (P less than .01) carcasses and larger rib eyes (P less than .05; bulls; P less than .01; Limousins). Steers and Angus had higher (P less than .01) marbling scores and lower bone maturity. Implanting decreased (P less than .05) marbling and increased carcass maturity. Small but significant shifts in carcass wholesale cut weight distribution were found between breed and sex condition groups. Bulls and Limousins had greater lean growth in the NTE. Bulls and steers were similar in fat growth, but Angus exceeded Limousin in this trait. Zeranol reduced scrotal circumference (P less than .01) and testicle weight at slaughter (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Carcasses of 342 steers of known genetic backgrounds from four fundamentally different growth types were developed either on pasture or feedlot regimens to study differences in carcass traits. Growth types were large framed-late maturing (LL), intermediate framed-intermediate maturing (II), intermediate framed-early maturing (IE), and small framed-early maturing (SE). Five calves from each growth type were assigned to each regimen in each year of a 9-yr study. Eighteen steers were removed from the study because of accident or illness. Data collected were preslaughter shrunk BW (SBW); hot carcass weight (HCW); chilled carcass weight (CCW); dressing percentage (DRESS); fat thickness at the 12th and 13th-rib interface (FAT); percentage kidney, pelvic, and heart fat (KPH); longissimus muscle area (LMA); marbling score (MARB); quality grade (QG); and yield grade (YG). Differences in carcass traits reflected genetic differences among growth types. The LL steers had heavier BW, HCW, and CCW and larger LMA (P < .05) than steers of other growth types, regardless of development regimen. Among pasture-developed steer carcasses, IE and SE steers had higher (P < .05) MARB and QG than either LL or II steers. Carcasses of large framed-late maturing steers had the lowest (P < .05) MARB and QG of the growth types. Carcasses of the II, IE, and SE steers had a higher (P < .05) numerical value for YG than carcasses of the LL steers. Among the carcasses of the feedlot-developed steers, IE and SE steers had the highest (P < .05) MARB and QG. Carcasses from the IE and SE steers were fatter (P < .05) than those from LL or II steers. Carcasses of the LL steers had the lowest percentage of KPH of growth types developed in the feedlot. No difference was observed in KPH for carcasses of II, IE, and SE steers. The LL steer carcasses had the lowest numerical value for YG of all growth types. These data indicate that variation existed among carcass traits for the four growth types and that carcass traits influenced by fatness were greater and more attainable in the feedlot-developed steers using current methods of evaluation.  相似文献   

11.
Effects of recombinant porcine somatotropin (rpST) on growth, feed intake, feed conversion, back-fat thickness and lean percentage were examined in growing Meishan pigs. The experiment comprised 42 barrows of which 20 were administered 14 mg rpST twice a week i.m., starting at 40 kg, the others received a placebo. Pigs were fed ad libitum a diet containing 9.2 MJ net energy and 156 g crude protein kg−1 and were slaughtered at 90 kg liveweight. From 40 to 90 kg liveweight, rpST effects were: daily gain +17.9%; feed intake −5.1%; feed conversion −17.5%; backfat thickness −29.8%; lean percentage +16.0%. The effects of rpST in Meishan are much larger than in a similar experiment with leaner western pigs. Development of synthetic breeds with Meishan in combination with the use of rpST in cross-bred fattening pigs may be a way to economically exploit the high fertility of Meishan.  相似文献   

12.
This study was designed to investigate the effects of dietary supplementation with N6, 2′-O-dibutyryl adenosine 3′,5′-cyclic monophosphate (dbcAMP) on growth performance, carcass traits, histochemical characteristics and serum constituents in finishing pigs. Seventy-two Duroc × (Landrace × Large White) barrows (57.3 ± 0.6 kg) were randomly allotted to 3 treatments with 6 replicate pens/treatment (4 pigs/pen). The pigs were fed diets containing 0, 10 and 20 mg dbcAMP/kg, respectively, until the final slaughter weight of approximately 90 kg. There were no differences in growth performance among dietary treatments. Leaf fat proportion and first rib backfat thickness were reduced (P < 0.05), whereas tenth rib backfat thickness tended to decrease (P = 0.10), in pigs fed 10 mg dbcAMP/kg. Lean percentage was greater (P < 0.05) and longissimus muscle area tended to increase (P = 0.10) in pigs fed 10 mg dbcAMP/kg when compared to the control group, but hot carcass weight was not affected by dbcAMP. Growth rate of fat-free lean tissues tended to increase (P = 0.09) in dbcAMP-supplemented pigs. Dietary dbcAMP decreased (P < 0.05) adipocytes diameter in subcutaneous fat, whereas longissimus muscle fiber diameter tended to increase (P = 0.06) with dbcAMP supplementation; however, no difference in longissimus muscle cell density was detected among treatments. Serum concentrations of total protein and 3′,5′-cyclic adenosine monophosphate increased (P < 0.05) in response to dbcAMP, but concentrations of triglycerides, total cholesterol, glucose and urea in serum did not differ among dietary treatments. These results indicate that dbcAMP had a positive effect on carcass traits. Addition of 10 mg dbcAMP/kg to the diet was beneficial for growth performance and lean percentage, as well as improving protein and fat metabolism.  相似文献   

13.
The ability of zeranol and trenbolone acetate (trenbolone) to alter testis function, weight gain and carcass traits of young bulls was studied. In Exp. 1, the effects of age at initial zeranol implantation was determined. After a 235-d experimental period, sequential implantation (56-d intervals) beginning at 100 or 150 d of age had reduced testis growth (P less than .01), sperm production (P less than .01) and serum testosterone concentration in response to gonadotropin releasing hormone (GnRH; P less than .01). The 200-d age group was partially suppressed, while the 250-d age group was not affected. Body weights were similar to controls in all groups. In Exp. 2, bulls previously implanted with zeranol at 175 and 231 d of age received single implants of zeranol, trenbolone or trenbolone plus zeranol at approximately 300 d of age. At slaughter (135 d later), body weight and carcass characteristics in all treatments were similar to controls. However, trenbolone reduced sperm production (P less than .05), zeranol reduced sperm production and testes weight (P less than .05), but trenbolone plus zeranol was similar to controls. Mean testosterone response to GnRH was suppressed in all implant groups on d 65 (P less than .01), but only in trenbolone or trenbolone plus zeranol groups on d 112 (P less than .05). Results indicate that zeranol suppresses spermatogenesis and testosterone production if implanted before approximately 200 d of age. Reduction of endogenous testosterone without alteration of weight gain or carcass characteristics may be of benefit if behavioral or masculinity traits of bulls are altered. Also, it appears that no benefit is derived from implanting bulls with both trenbolone and zeranol.  相似文献   

14.
Genetic parameters for feed efficiency traits of 740 Wagyu bulls and growth and carcass traits of 591 of their progeny, and the genetic relationship between the traits of bulls and their progeny were estimated with the residual maximum likelihood procedure. The estimations were made for the test periods of 140 days (77 bulls), 112 days (663 bulls) and 364 days (591 steer progeny). Feed efficiency traits of bulls included feed conversion ratio (FCR), phenotypic residual feed intake (RFIphe) and genetic residual feed intake (RFIgen). Progeny traits were bodyweight at the start of the test (BWS), bodyweight at finish (BWF), average daily gain (ADG), rib eye area (REA), marbling score (MSR), dressing percentage (DRS) and subcutaneous fat thickness (SFT). The estimated heritability for MSR (0.52) was high and for BWS (0.35), BWF (0.40) and ADG (0.30) were moderate, whereas REA, DRS and SFT were low. Positive genetic correlations among BWS, BWF, ADG and SFT and negative genetic correlations between MSR and DRS and between REA and SFT were found. The genetic correlations between residual feed intake (RFIphe and RFIgen) of bulls and bodyweights (BWS and BWF) of their progeny ranged from ?0.27 to ?0.61. Residual feed intake was positively correlated with REA and DRS and negatively correlated with MSR and SFT. No responses in ADG and weakly correlated responses in REA and DRS of progeny were found to select against feed efficiency traits of bulls. The present experiment provides evidence that selection against lower RFI (higher feed efficiency) would be better than selection against lower FCR for getting better correlated responses in bodyweights.  相似文献   

15.
The objectives were to conduct a genetic evaluation of residual feed intake (RFI) and residual feed intake adjusted for fat (RFIFat) and to analyse the effect of selection for these traits on growth, carcass and reproductive traits. Data from 945 Nellore bulls in seven feed efficiency tests in a feedlot were analysed. Genetic evaluation was performed using an animal model in which the feed efficiency test and age of the animal at the beginning of the test were considered as a systematic effect. Direct additive genetic and residual effects were considered as random effects. Correlations and genetic gains were estimated by two‐trait analysis between feed efficiency measures (RFI and RFIFat) and other traits. Feed conversion showed low heritability (0.06), but dry matter intake (DMI), average daily gain, RFI, RFIFat, metabolic body weight and scrotal circumference measured at 450 days of age (SC450) showed moderate to high heritability (0.49, 0.28, 0.33, 0.36, 0.38 and 0.80, respectively). Similarly, ribeye area, backfat thickness, rump cap fat thickness, marbling score and subcutaneous fat thickness also had high heritability values (0.46, 0.37, 0.57, 0.51 and 0.47, respectively). Genetic correlations between RFI and SC450 were null, and between RFIFat and SC450 were strongly positive. Genetic and phenotypic correlations of RFI and RFIFat with carcass traits were not different from zero, as correlated responses for carcass traits were also not different from zero. The Nellore selection for feed efficiency by RFI or RFIFat allows the recognition of feed efficient animals, with DMI reduction and without significant changes in growth and carcass traits. However, because of the observed results between RFIFat and SC450, selection of animals should be analysed with caution and a preselection for reproductive traits is necessary to avoid reproductive impairments in the herd.  相似文献   

16.
Genetic evaluations for carcass traits of young bulls in Normande and Montbeliarde breeds are currently being developed in France. In order to determine a suitable genomic evaluation for three carcass traits of young bulls, genomic breeding values were estimated for young candidates to selection using different approaches. Records of 111,789 Normande and 118,183 Montbeliarde were used. Average progeny pre-adjusted performances (DYD) were calculated for sires. Evaluation approaches were compared based on an assessment of their accuracy (correlation between DYD and estimated breeding values [EBVs]) and bias (regression coefficient of DYD on EBVs) on the 20% youngest AI sires. All genomic approaches were generally more accurate than BLUP (+.045 to +.116 correlation points), except for age at slaughter where single-step GBLUP (SSGBLUP) was the only genomic method leading to a greater accuracy (+.038 to +.126 points). The best setting of the SSGBLUP relationship matrix was characterized by a weight of 30% for pedigree information in the genomic relationship matrix. SSGBLUP was the most valuable evaluation approach for the evaluation of carcass traits of Normande and Montbeliarde young bulls.  相似文献   

17.
The effect of selection for growth rate on carcass and meat quality was assessed by comparing selected and control populations of rabbits measured at the same stage of maturity and slaughtered at 9 and 13 wk of age. Embryos belonging to Generation 7 were frozen, thawed, and implanted in does to produce the control group. The control group was formed from the offspring of the embryos belonging to the Generation 7. Selected animals belonging to Generation 18 (S) were compared with contemporary animals of the control group (C). Carcasses were dissected and measured according to World Rabbit Science Association recommended practices. When animals were compared at similar degrees of maturity, selection for growth rate did not produce a negative effect on carcass and meat quality. There was no increase in fat content of the carcass, and there was an improvement of the meat:bone ratio with selection, with a difference between C and S groups of -0.42. However, the carcasses of S animals have 1.45% lower water-holding capacity. Carcass quality changed markedly with animal age. Heavy rabbit carcasses had lower organ percents and a higher loin percent. Dissectible and i.m. fat content were higher in older rabbits, with older animals having 0.97 and 0.79% more dissectible and i.m. fat content, respectively. Meat quality traits improved with age of slaughter, although there was an increase in glycolytic metabolism. Results from this study indicate that selection for growth rate has little effect in carcass and meat quality when rabbits are measured at the same stage of maturity.  相似文献   

18.
Residual energy intake, defined as actual minus predicted energy intake during a production period, was estimated for each of 650 bull calves of 31 Holstein Friesian or Brown Swiss sires. Residual energy intake, measured under ad libitum feeding, had heritabilities similar to those of growth rate and energy conversion ratio with an estimate of approximately .3. Residual energy intake was related to average daily energy intake both phenotypically and genetically such that selection for decreased residual energy intake would lead to a decrease in daily feed intake. Such selection would also tend to increase carcass fatness (i.e., genetically fat animals are the most efficient). Residual energy intake estimated with and without correction for carcass composition were closely correlated. Thus, residual energy intake may be estimated without the knowledge of carcass composition in growing bulls of dual-purpose breeds.  相似文献   

19.
The objectives of this study were to characterize feed efficiency traits and to examine phenotypic correlations between performance and feeding behavior traits, and ultrasound measurements of carcass composition in growing bulls. Individual DMI and feeding behavior traits were measured in Angus bulls (n=341; initial BW=371.1+/-50.8 kg) fed a corn silage-based diet (ME=2.77 Mcal/kg of DM) for 84 d in trials 1 and 2 and for 70 d in trials 3 and 4 by using a GrowSafe feeding system. Meal duration (min/d) and meal frequency (events/d) were calculated for each bull from feeding behavior recorded by the GrowSafe system. Ultrasound measures of carcass 12th-rib fat thickness (BF) and LM area (LMA) were obtained at the start and end of each trial. Residual feed intake (RFIp) was computed from the linear regression of DMI on ADG and midtest BW(0.75) (metabolic BW, MBW), with trial, trial by ADG, and trial by midtest BW(0.75) as random effects (base model). Overall ADG, DMI, and RFIp were 1.44 (SD=0.29), 9.46 (SD=1.31), and 0.00 (SD=0.78) kg/d, respectively. Stepwise regression analysis revealed that inclusion of BW gain in BF and LMA in the base model increased R(2) (0.76 vs. 0.78) and accounted for 9% of the variation in DMI not explained by MBW and ADG (RFIp). Residual feed intake and carcass-adjusted residual feed intake (RFIc) were moderately correlated with DMI (0.60 and 0.55, respectively) and feed conversion ratio (FCR; 0.49 and 0.45, respectively), and strongly correlated with partial efficiency of growth (PEG; -0.84 and -0.78, respectively), but not with ADG or MBW. Gain in BF was weakly correlated with RFIp (0.30), FCR (-0.15), and PEG (-0.11), but not with RFIc. Gain in LMA was weakly correlated with RFIp (0.17) and FCR (-0.19), but not with PEG or RFIc. The Spearman rank correlation between RFIp and RFIc was high (0.91). Meal duration (0.41), head-down duration (0.38), and meal frequency (0.26) were correlated with RFIp and accounted for 35% of the variation in DMI not explained by MBW, ADG, and ultrasound traits (RFIc). These results suggest that adjusting residual feed intake for carcass composition will facilitate selection to reduce feed intake in cattle without affecting rate or composition of gain.  相似文献   

20.
Variance components (VC) were estimated for the semen production trait ejaculate volume, sperm concentration and sperm motility in the Swiss cattle breeds Brown Swiss (BS), Original Braunvieh (OB), Holstein (HO), Red‐Factor‐Carrier (RF), Red Holstein (RH), Swiss Fleckvieh (SF) and Simmental (SI). For this purpose, semen production traits from 2,617 bulls with 124,492 records were used. The data were collected in the years 2000–2012. The model for genetic parameter estimation across all breeds included the fixed effects age of bull at collection, year of collection, month of collection, number of collection per bull and day, interval between consecutive collections, semen collector, bull breed as well as a random additive genetic component and a permanent environmental effect. The same model without a fixed breed effect was used to estimate VC and repeatabilities separately for each of the breeds BS, HO, RH, SF and SI. Estimated heritabilities across all breeds were 0.42, 0.25 and 0.09 for ejaculate volume, sperm concentration and sperm motility, respectively. Different heritabilities were estimated for ejaculate volume (0.42; 0.45; 0.49; 0.40; 0.10), sperm concentration (0.34; 0.30; 0.20; 0.07; 0.23) and number of semen portions (0.18; 0.30; 0.04; 0.14; 0.04) in BS, HO, RH, SF and SI breed, respectively. The phenotypic and genetic correlations across all breeds between ejaculate volume and sperm concentration were negative (?0.28; ?0.56). The other correlations across all breeds were positive. The phenotypic and genetic correlations were 0.01 and 0.19 between sperm motility and ejaculate volume, respectively. Between sperm motility and sperm concentration, the phenotypic and genetic correlations were 0.20 and 0.36, respectively. The results are consistent with other analyses and show that genetic improvement through selection is possible in bull semen production traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号