首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of sunflower (Helianthus annuus L.) to 14 irrigation treatments in a sub-humid environment (Bursa, Turkey) was studied in the field for two seasons. A rainfed (non-irrigated) treatment as the control and 13 irrigation treatments with full and 12 different deficit irrigations were applied to the hybrid Sanbro (Novartis Seed Company) planted on clay soil, at three critical development stages: heading (H), flowering (F) and milk ripening (M). The yield increased with irrigation water amount, and the highest seed yield (3.95 t ha−1) and oil yield (1.78 t ha−1) were obtained from the HFM treatment (full irrigation at three stages); 82.9 and 85.4% increases, respectively, compared to the control. Evapotranspiration (ET) increased with increased amounts of irrigation water supplied. The highest seasonal ET (average of 652 mm) was estimated at the HFM treatment. Additionally, yield response factor (k y) was separately calculated for each, two and total growth stages, and k y was found to be 0.8382, 0.9159 (the highest value) and 0.7708 (the lowest value) for the total growing season, heading, and flowering-milk ripening combination stages, respectively. It is concluded that HFM irrigation is the best choice for maximum yield under the local conditions, but these irrigation schemes must be re-considered in areas where water resources are more limited. In the case of more restricted irrigation, the limitation of irrigation water at the flowering period should be avoided; as the highest water use efficiency (WUE) (7.80 kg ha−1 mm−1) and irrigation water use efficiency (IWUE) (10.19 kg ha−1 mm−1) were obtained from the F treatment.  相似文献   

2.
The field experiments were carried out in 2007 and 2008 to study the effects and strategies of drip irrigation with saline water for oleic sunflower. Five treatments of irrigation water with average salinity levels of 1.6, 3.9, 6.3, 8.6, and 10.9 dS/m were designed. For each treatment, 7 mm water was applied when the soil matric potential (SMP) 0.2 m directly underneath the drip emitters was below −20 kPa, except during the seedling stage. To ensure the seedling survival, 28 mm water was applied after sowing during the seedling stage. Results indicate that amount of applied water decreases as salinity level of irrigation water increases. The emergence will be delayed when the salinity level of irrigation water is higher than 6.3 dS/m, but these differences will be alleviated if there is rainfall during emergence period. The final emergence percentage is not changed when salinity level of irrigation is less than 6.3 dS/m, and the percentage decreases by 2.0% for every 1 dS/m increase when the salinity level of irrigation water is above 6.3 dS/m, but the decreasing rate will be reduced if there is rainfall. The plant height and yield decrease with the increase of salinity of irrigation water. The height of plants decreases by 0.6-1.0% for every 1 dS/m increase in salinity level of irrigation water. The yield decreases by 1.8% for every 1 dS/m increase in salinity level of irrigation water, and irrigation water use efficiency (IWUE) increases with increase in salinity of irrigation water. The soil salinity increases as the salinity of irrigation water increasing after drip irrigation with saline water in the beginning, but the soil salinity in soil profile from 0 to 120 cm depths can be maintained in a stable level in subsequent year irrigation with saline water. From the view points of yield and soil salt balance, it can be recognized even as the salinity level of irrigation water is as high as 10.9 dS/m, saline water can be applied to irrigate oleic sunflower using drip irrigation when the soil matric potential 0.2 m directly under drip emitter is kept above −20 kPa and the beds are mulched in semi-humid area.  相似文献   

3.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss.  相似文献   

4.
For sustainable sunflower production in semi-arid sub-tropical regions, it is essential to increase its water use efficiency. Field studies were conducted for three years on deep alluvial loamy sand (Typic Ustipsamment) and sandy loam (Typic Ustochrept) soils at Punjab Agricultural University, Ludhiana, India, to evaluate the interactive effects of three irrigation regimes (irrigation water to net open pan evaporation ratios, I1, I2, I3) on sunflower yield in relation to tillage (conventional tillage, CT, and deep-tillage, DT) and mulching (no mulch, M0, and residue mulch, M1).Both deep tillage and mulch significantly increased crop yield irrespective of soil type and year. Increase in mean achene yield across soils during three years with DT over CT varied between 10 and 16% and that with mulch over no mulch by 8 to 17%.Deep tillage and/or mulching helped the crop in efficient utilization of water by increasing leaf area index (LAI) and the depth and density of rooting. Irrigation and tillage interacted for their effects on yield on loamy sand, as the crop responded to higher level of irrigation with CT than with DT. On loamy sand, mean achene yield increased with increase in water supply up to IW/PE = 1.5 in a dry year and upto IW/PE = 1.2 in relatively wetter years. On sandy loam, mean yield response to irrigations was observed upto IW/PE = 1.0 in all the three years.Regression analysis of relative yield against water supply during the three years on both the soils, showed that for 80% relative yield the crop required 105 cm water in CTM0, 90 cm in CTM or DTM0 and only 80 cm in DTM. The study suggests that deep tillage or straw mulch may be used to achieve higher water use efficiency in sunflower on coarse textured soils in semi-arid, sub-tropical regions.  相似文献   

5.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

6.
Potato evapotranspiration and yield under different drip irrigation regimes   总被引:1,自引:0,他引:1  
A field experiment comparing different irrigation frequencies and soil matric potential thresholds on potato evapotranspiration (ET), yield (Y) and water-use efficiency (WUE) was carried out in a loam soil. The experiment included five treatments for soil matric potential: F1 (-15 kPa), F2 (-25 kPa), F3 (-35 kPa), F4 (-45 kPa) and F5 (-55 kPa) and six treatments for irrigation frequency: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days). Results indicate that both soil matric potential and drip irrigation frequency influenced potato ET, Y and WUE. Potato ET increased as irrigation frequency and soil matric potential increased. Comparing soil water potential, the highest ET was 63.4 mm (32.1%) more than the lowest value. Based on irrigation frequency treatments, the highest ET was 36.7 mm (19.2%) more than the lowest value. Potato Y and WUE were also found to increase as irrigation frequency increased. Potato Y increased with an increase in soil water potential then started to decrease. The highest Y and WUE values were achieved with a soil matric potential threshold of -25 kPa and an irrigation frequency of once a day.Communicated by J. Ayars  相似文献   

7.
Deficit irrigation occurrence while maintaining acceptable yield represents a useful trait for sunflower production wherever irrigation water is limited. A 2-year experiment (2003–2004) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to investigate sunflower response to deficit irrigation. In the plots, irrigation was held at early flowering (stage F1), at mid flowering (stage F3.2) and at early seed formation (stage M0) until physiological maturity. Deficit-irrigated treatments were referred to as WS1, WS2 and WS3, respectively, and were compared to a well-irrigated control (C). Reference evapotranspiration (ETrye-grass) and crop evapotranspiration (ETcrop) were measured each in a set of two drainage lysimeters of 2 m × 2 m × 1 m size cultivated with rye grass (Lolium perenne) and sunflower (Helianthus annuus L., cv. Arena). Crop coefficients (Kc) in the different crop growth stages were derived as the ratio (ETcrop/ETrye-grass).

Lysimeter measured crop evapotranspiration (ETcrop) totaled 765 mm in 2003 and 882 mm in 2004 for total irrigation periods of 139 and 131 days, respectively. Daily ETcrop achieved a peak value of 13.0 mm day−1 at flowering time (stage F3.2; 80–90 days after sowing) when LAI was >6.0 m2 m−2. Then ETcrop declined to 6.0 mm day−1 during seed maturity phase. Average Kc values varied from 0.3 at crop establishment (sowing to four-leaf stage), to 0.9 at late crop development (four-leaf stage to terminal bud), to >1.0 at flowering stage (terminal bud to inflorescence visible), then to values <1.0 at seed maturity phase (head pale to physiological maturity). Measured Kc values were close to those reported by the FAO.

Average across years, seed yield at dry basis on the well-irrigated treatment was 5.36 t ha−1. Deficit irrigation at early (WS1) and mid (WS2) flowering stages reduced seed yield by 25% and 14% (P < 0.05), respectively, in comparison with the control. However, deficit irrigation at early seed formation was found to increase slightly seed yield in WS3 treatment (5.50 t ha−1). We concluded that deficit irrigation at early seed formation (stage M0) increased the fraction of assimilate allocation to the head, compensating thus the lower number of seeds per m2 through increased seed weight. In this experiment, while deficit irrigation did not result in any remarkable increase in harvest index (HI), water use efficiency (WUE) was found to vary significantly (P < 0.05) among treatments, where the highest (0.83 kg m−3) and the lowest (0.71 kg m−3) values were obtained from WS3 and WS1 treatments, respectively. Finally, results indicate that irrigation limitation at early flowering (stage F1) and mid flowering (stage F3.2) should be avoided while it can be acceptable at seed formation (stage M0).  相似文献   


8.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

9.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

10.
Effects on water use, green bean yield, irrigation water-use efficiency (IWUE), water-use efficiency (WUE), plant dry weight and crop water relationship were investigated for two-drip irrigation techniques and four irrigation water levels in the Mediterranean region of Turkey. The treatments were conventional (SDI) and alternating subsurface drip irrigation (SPRD). At each irrigation event, half of the volume of water applied to the SDI was applied to one side of the crop, representing the partial rootzone-drying treatment. All treatments received 295 mm of irrigation during crop establishment, prior to beginning the different irrigation regimes. Differing irrigation amounts corresponded to four crop-pan coefficients (Kcp1 = 0.6, Kcp2 = 0.8, Kcp3 = 1.0 and Kcp4 = 1.2), appropriate to pan data. Total water applied to the SDI and SPRD treatments ranged from 366 to 437 mm and from 331 to 366 mm, respectively, depending on Kcp values, with water uptake varying from 396 to 470 mm and 364 to 409 mm, respectively. While differences of green bean yield and dry plant weights were not significantly affected by the SDI and SPRD irrigation techniques, the overall irrigation water saving was found to be 16% for the SPRD irrigation treatment compared with the SDI treatment. SPRD irrigation techniques increased IWUE, WUE, and slopes of yield water relationships. Increase in slopes of the yield–irrigation water and yield–water-use function of SPRD according to the equivalent slopes of the SDI were 215.8 and 151.4%, respectively. SPRD increased the green bean yield response factor (ky) with value of 128.4% according to the equivalent slopes of the SDI. In conclusion, irrigation scheduling based on a 0.8 crop-pan coefficient is recommended for conventional SDI, with 1.0 being more appropriate for partial rootzone-drying practice.  相似文献   

11.
A common irrigation-scheduling problem in orchards is the proper location of instruments for monitoring soil water content within the active root zone. Given the high spatial variability of soils in the field, and seasonal changes in root distribution and frequency, both within the orchard and around the trees, the accuracy and representativeness of soil water measurements can be strongly affected. Adequate soil water monitoring in orchards thus requires assessment of the variability and location of the active roots in a given location over an extended period of time. We examined the root systems of 12-year-old ‘Hass’ avocado (Persea americana Mill.) trees grafted on ‘Mexicola’ seedling rootstocks, growing in fine or coarse-textured soils, under either drip or microsprinkler irrigation systems in Central Chile. We dug 3 m long and 0.75 m deep trenches within the tree rows in spring, summer and autumn, and counted the active roots (white, diameter ≤2 mm) found on the walls. Over the three growing seasons of our study, season had the most significant effect on root distribution, as autumn root frequencies accounted for about half of the cumulative average. Also, the location of the highest concentration of roots under microsprinklers in autumn clearly differed between the fine soils, at about 200 cm from the trunk and 50–60 cm deep, and coarse soils, where they were found within 30 cm from the trunk, and within the first 25 cm of soil. Trees in fine soil had 25% more roots than those in coarse soil, and drip irrigation produced about 30% more roots than microsprinkler, although both of these figures are mainly due to the high number of roots found in the fine soil-drip irrigation combination. Overall, we found the highest root frequency within the first meter from the tree trunk, for all combinations, with some differences between irrigation types. Throughout the growing season in semi-arid regions, some changes in both the quantity of tree roots and the location of the zones of the greatest root activity should be expected, which will vary according to the seasonal soil temperatures, soil texture, and type of irrigation used.  相似文献   

12.
为探究不同灌溉时段及水温对膜下滴灌棉花生理特性及产量的影响,设置4个灌溉水温梯度分别为15.00(正常灌溉水温),20.00,25.00,30.00℃,2个灌溉时段分别为日间、夜间(分别记为DW,NW)进行完全组合设计,共计8个处理.结果表明,增温灌溉提前了棉花生育进程,促进了棉花株高、茎粗、叶面积增长,有利于棉花光合作用的进行,且在夜间进行增温灌溉效果更显著.增温灌溉使棉花产量显著提高2.95%~14.13%,夜间灌溉较日间灌溉棉花产量平均提高3.34%.基于回归分析确定提高棉花产量的最佳灌溉时段为夜间,最佳灌溉水温为26.38℃,对应的产量为7 482.96 kg/hm2.该研究可为北疆膜下滴灌棉花实施增温灌溉技术提供理论依据和技术参考.  相似文献   

13.
A field experiment was conducted to investigate the effects of different levels of drip irrigation and planting methods on yield and yield components (number of fruits per plant, number of primary and secondary branches per plant, and plant height) of green pepper (Capsicum annuum, L.) in Bako, Ethiopia. Three irrigation levels (50, 75 and 100% of ETc) and two planting methods (normal and paired-row planting) were applied. The experiment was laid out in a split plot design, with irrigation levels as main plots and planting methods as sub-plots, in three replications. It was found that the effects of both treatments on yield, number of fruits per plant and plant height of green pepper were highly significant (p < 0.01) whereas the number of primary and secondary branches per plant was affected significantly (p < 0.05). The maximum and minimum values of the yield and yield components were recorded from treatment plots I100P (full irrigation level with paired-row planting method) and I50P (50% of ETc irrigation level with paired-row planting method), respectively, with the exception of plant height. However, the average plant height (cm) recorded from the I100N treatment plot was not significantly different from the I100P treatment plot. Moreover, it was found that the effect of treatment interactions on both yield and yield components of green pepper was found to be highly significant (p < 0.01). A 50% reduction in irrigation level caused a reduction in yield of about 48.3 and 74.4% under the normal and paired-row planting methods, respectively, whereas, a 25% reduction in irrigation level caused a reduction in yield of about 22.8 and 47.7% under the same planting methods. Under both deficit irrigation levels (I50 and I75), the normal planting method gave higher total yield and yield components of green pepper than the paired-row planting method. Yield response factor (ky) values of 0.96 and 1.57 were determined for the normal and paired-row planting methods, respectively, suggesting utmost precautions when using the paired-row planting in areas with limited water supply. The results revealed that full irrigation water supply under paired-row planting method (I100P) could be used for the production of green pepper in an area with no water shortage. Moreover, it was found that the average yields recorded from the I75 under the paired-row planting method is fairly greater than the national average.  相似文献   

14.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

15.
Irrigation frequency is one of the most important factors in drip irrigation scheduling, and a proper irrigation frequency can establish moderate moist and oxygen conditions in the root zone throughout the crop period. Field experiments on the effects of irrigation frequency on radish growth and water use were carried out in 2001 and 2002. The experiment included six irrigation frequencies: once every day, once every 2 days, once every 3 days, once every 4 days, once every 6 days and once every 8 days. There was no significant difference among the six treatments on radish development and yield, but significant differences in radish roots distribution and market quality were found. Radishes irrigated once every 3 days had well-developed roots throughout the crop period, the lowest cracking rate and the least number of radishes of Grade 3. The observation results of lysimeter in 2002 showed that radish evapotranspiration decreased as irrigation frequency decreased, and the general changing tendency of 2-day ET of high irrigation frequency was related to that of 2-day evaporation. It is recommended that radish irrigation frequency should be once every 3 days and the irrigation amount should be estimated according to the evaporation of 20 cm diameter pan in the North China Plain.  相似文献   

16.
A 3-year experiment was conducted in an extremely dry and saline wasteland to investigate the effects of the drip irrigation on salt distributions and the growth of cotton under different irrigation regimes in Xinjiang, Northwest China. The experiment included five treatments in which the soil matric potential (SMP) at 20 cm depth was controlled at −5, −10, −15, −20, and −25 kPa after cotton was established. The results indicated that a favorable low salinity zone existed in the root zone throughout the growing season when the SMP threshold was controlled below −25 kPa. When the SMP value decreased, the electrical conductivity of the saturation paste extract (ECe) in the root zone after the growing season decreased as well. After the 3-year experiment, the seed-cotton yield had reached 84% of the average yield level for non-saline soil in the study region and the emergence rate was 78.1% when the SMP target value was controlled below −5 kPa. The average pH of the soil decreased slightly after 3 years of cultivation. The highest irrigation water use efficiency (IWUE) values were recorded when the SMP was around −20 kPa. After years of reclamation and utilization, the saline soil gradually changed to a moderately saline soil. The SMP of −5 kPa at a depth of 20 cm immediately under a drip emitter can be used as an indicator for cotton drip irrigation scheduling in saline areas in Xinjiang, Northwest China.  相似文献   

17.
循环曝气地下滴灌的温室番茄生长与品质   总被引:2,自引:0,他引:2  
循环曝气滴灌可以大幅度提高灌溉水掺气比例,有效改善普通地下滴灌引起的黏质型土壤根区间歇性缺氧环境,提高作物生产力.以河南省中牟县黄河淤积黄黏土为供试土壤,以温室番茄为供试对象,研究循环曝气地下滴灌对番茄生理及品质的影响.结果表明,与普通地下滴灌(对照处理)相比,相同灌溉定额条件下曝气处理番茄果实前5次产量提高了29.15%;番茄的水分利用效率提高了20.72%.曝气处理气孔导度提高了30.51%,植物的生长活力得到增强.番茄果实维生素C含量提高了13.25%,可溶性固形物含量提高了8.62%,糖酸比提高了22.05%,而总酸含量和硬度分别下降了15.50%和11.19%.曝气处理最大根长增加了16.75%,根冠质量之比提高了25.81%.综合分析表明,曝气滴灌可显著促进黄黏土中番茄的生长,促进番茄果实成熟,有效提高作物产量,改善番茄品质.  相似文献   

18.
种植密度对滴灌马铃薯生长、产量的影响   总被引:1,自引:0,他引:1  
为了了解耕培土滴灌条件下种植密度对马铃薯生长、产量以及水分利用效率的影响.试验共设密度分别为7.28×104 株/hm2(RS25),6.67×104 株/hm2(RS35),5.55×104 株/hm2(CK)3个处理.结果表明:随着种植密度的增加,株高、茎粗、干物质积累量以及商品薯率均有降低的趋势;产量、水分利用效率随种植密度的增加表现出先增大后减少,其中RS35处理产量和水分利用效率均表现最高,分别达到47 325 kg/hm2和12.05 kg/m3;在马铃薯品质方面,种植密度对马铃薯粗蛋白含量的影响不具有统计学意义;淀粉和维生素C随着密度的大幅增加而降低,其中RS25处理的淀粉较CK降低了5.57%,RS25处理的维生素C较CK降低了7.96%,同时RS35与CK处理不具有统计学意义.综上所述,种植密度为6.67×104 株/hm2的RS35处理马铃薯高产优质,且水分利用效率最高,为黑龙江地区滴灌马铃薯较为适宜的种植密度.  相似文献   

19.
In 2005 and 2006, a study was conducted to determine the effect of subsurface and surface drip irrigation systems and to determine optimum irrigation water using six different irrigation levels imposed on muskmelon (Cucumis Melo L. cv. Ananas F1) under semi-arid climatic conditions. Irrigation treatments received 0, 25, 50, 75, 100, and 125% of class A pan evaporation rates. In 2005, average yield from subsurface and surface drip irrigation systems ranged from 16.2 (I 0) to 31.1 (I 75) t ha−1 and from 16.2 (I 0) to 43.8 (I 75) t ha−1, respectively. While in 2006, fruit yields for the same systems ranged from 8.2 (I 0) to 40.4 (I 75) t ha−1 and from 8.2 (I 0) to 38.9 (I 100) t ha−1. Regression analysis of the yield data indicated no significant (P > 0.05) difference between years and irrigation systems. The highest muskmelon yields from subsurface and surface drip irrigation systems were obtained at 83 and 92% of class A pan. Bigger fruits were obtained with optimum irrigation amounts for both of the irrigation systems. However, there was no clear indication of irrigation water amounts on total soluble solid and flesh thickness of muskmelon fruits.  相似文献   

20.
Summary Cotton (Gossypium hirsutum L.), although known to be one of the most salt tolerant crops, shows a significant reduction in plant size and yield when grown on highly saline soils. A field plot study was therefore conducted to determine the feasibility of increasing yield on highly saline soils by increasing population density by decreasing the distance between rows. Three row widths and four salinity levels were imposed on a nonsaline Pachappa fine sandy loam (mixed, thermic, Mollic Haploxerall). Canopy closure, plant height, earliness, and several yield components were measured. A significant yield increase was obtained at all salinity levels by decreasing the distance between rows from 102 to 86 or 71 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号