首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Spain, the Ministry of Industry is implementing actions for analyzing the energy efficiency of Water User Associations (WUAs) by using energy indicators and proposing measures to improve the use of energy. The main objective of this work was to develop tools to improve energy efficiency in WUAs. These tools were validated by utilizing them in the energy analysis of 15 WUAs located in Castilla-La Mancha Region (Spain) during the 2007 irrigation season. These tools were also utilized for the proposal of measures to improve the use of energy. The proposed measures were monitored and evaluated in 7 of the 15 WUAs during the 2008 irrigation season. The developed tools were integrated into a Decision Support System for performing energy analysis and for proposing measures of energy efficiency improvement. In most of the study cases, an improvement of the energy efficiency after the implementation of the proposed measures was detected, with an average energy saving of the 10.2%.  相似文献   

2.
3.
This study attempts to quantify a figure of merit (appropriateness) for various options of energy technologies feasible for a prespecified task. Within the framework of rural energy development, various attributes are identified, relatively weighted and quantified for a group of energy technologies including renewable energy sources. Based on the data for Indian conditions, it is found that windmills designed to respond to low wind speeds of the order of 12 km/h and very carefully optimised for cost reduction are likely to be most appropriate within the group of alternatives considered in this study. This conclusion, however, holds only for irrigation from shallow wells (10–15 m deep) in small farms (size 1–2 ha).  相似文献   

4.
针对基于混合储能系统的插电式混合动力汽车在SOC维持阶段的能量管理策略优化问题,以最佳燃油经济性为目标,设计了基于实值遗传算法的控制参数优化方法,得到了发动机工作转矩、电池电流分配系数、纯电行驶最高车速及电池SOC工作范围的最优控制参数。仿真结果表明,设计的能量管理策略控制参数优化方法能在维持SOC平衡的前提下有效提高车辆的燃油经济性,且有利于电池充放电性能和使用寿命的提升。  相似文献   

5.
Much of inland Australia has been in perpetual drought since 1997 except during 2010 when above average rainfall occurred. It has been the worst drought since 1788 when European settlement began. Water scarcity poses a serious threat to the sustainability of the irrigated agriculture in major irrigation systems across the Murray-Darling Basin (MDB). There is a need for water-saving measures and a structured approach to assess water loss in earthen supply channels. This paper presents such an approach to assess and reduce seepage losses for improving irrigation efficiencies. Main elements of this approach are the following: field measurements, hydrologic modelling, potential options for seepage reduction, economic analysis and financing water-saving investments. Using data from two irrigation systems in the southern MDB, a case is made for reducing seepage water losses in irrigation supply channels in a cost-effective manner using low-cost technologies. Increasing the level of security for investments in water-saving programs provides incentives to key stakeholders to achieve water-saving targets. Considering the value of water recovered from reducing seepage loss at irrigation system level, this study demonstrates how reducing just one component (seepage) from the total water losses in irrigation systems can help improve water supplies as well as the environmental flows. Potential options for financing infrastructure improvement for saving irrigation water are proposed and discussed.  相似文献   

6.
Various indicators are used for evaluating the performance of different aspects of an irrigation system, and assessments also differ in terms of the types of performance indicators used. This paper describes a GIS-based assessment system which utilizes a new concept and evaluated the inadequacy of a widely used Relative Water Supply (RWS) concept to characterize the irrigation delivery performance for a rice irrigation system as the season advances. Development of this GIS-based assessment system resulted in the creation of new indicators, viz., the Rice Relative Water Supply (RRWS), Cumulative Rice Relative Water Supply (CRRWS) and Ponding Water Index (PWI). These indicators were determined from field tests and evaluated in a Malaysian Tanjung Karang Rice Irrigation Scheme (TAKRIS). The RWS concept was found to be inaccurate for characterizing the oversupply condition on irrigation deliveries for rice irrigation; and difficult to correctly quantify the oversupply condition for irrigation supplies. Besides, it was found that the RRWS indicator can distinctly characterize the oversupply condition for RRWS > 1.0 and undersupply condition for RRWS < 1.0 on irrigation delivery for any given period. A value of 1.0 for RRWS indicates an irrigation delivery that matches perfectly the actual field water demand. This study presents a cumulative RRWS plot that provides important information on irrigation supplies for any given time interval for management decisions. An increasing slope in the actual CRRWS curve with CRRWS = 1.0, means that irrigation supply can be slightly curtailed in the next period. On the other hand, if the slope is negative, supply has to be increased. If a computed CRRWS line follows the CRRWS = 1.0 line, it means that irrigation deliveries are perfectly matched with the field water demand. A graphical user-interface was developed for structuring the assessment tool within an ArcGIS platform. The system can instantly provide information on the uniformity of water distribution and the shortfall or excess, and provides vital information in terms of decisions that need to be made for the next period. The system helps to maintain continuous updating of input and output databases on real field conditions. Results are displayed on the computer screen together with color-coded maps, graphs and tables in a comprehensible form. The system is likely to be adopted for evaluating various water allocation scenarios and water management options. It can also be used as an analytical and operational tool for irrigation managers.  相似文献   

7.
The development of a role playing exercise for training of irrigation professionals in the management of small holder irrigation schemes is described. The exercise places participants in the position of either agency staff or farmers. As farmers participants are dependent on irrigation water supplies from the agency managed run-of-the-river irrigation system. As agency staff participants are responsible for water allocation between competing demands on the main system. The exercise develops interaction between the participants as they trade in water and negotiate for irrigation supplies.The exercise develops an understanding of the issues involved in managing an irrigation system, though not only on technical matters such as water allocation policy, yield response to water and performance assessment. The exercise also creates an awareness of the whole system, in particular the importance of communication between agency staff and farmers, and between farmers themselves.The Irrigation Management Game is the copyright of the author, Professor Ian Carruthers of Wye College, University of London and consulting engineers Mott MacDonald, Cambridge, UK.  相似文献   

8.
Summary The energy requirements for manufacturing irrigation equipment were evaluated from a survey of a number of factories and workshops in Israel.Based on the results obtained and the life span of the components, the annual amortization of energy by high-pressure (overhead sprinklers), medium-pressure (undertree sprinklers and sprayers) and low-pressure (drip lines) irrigation systems was calculated for citrus orchards and cotton crops as irrigated in Israel. For citrus orchards a low-pressure sprayer system amortized 1.5 GJ ha–1 y–1 more energy than a medium-pressure undertree sprinkler system, and 2.7 GJ ha–1 y–1 more than a high-pressure, overhead sprinkler system. For irrigating a cotton crop, the low-pressure drip system used 6.8 GJ ha–1 y–1 more embodied energy than the movable, high-pressure overhead sprinkler system.The annual energy invested in irrigation water conveyance through the National Water Carrier, at the current hydraulic pressure of 500 kPa at the farm gate, varies for a cotton crop from 20 to 45 GJ ha–1 y–1 in the northern region and from 70 to 215 GJ ha–1 y–1 in the southern region of Israel, when irrigated with 4,050 m3 ha–1. For a citrus orchard this energy input varies from 60 to 75 GJ ha–1 y–1 in the central region and from 120 to 375 GJ ha–1 y–1 in the southern regions, when irrigated with 7,200 m3 ha–1. For obtaining the same yield in the south as in the north, the energy input for water conveyance has to be increased by 12% in the case of a cotton crop and by 7% in the case of a citrus orchard. Thus, in the north the annual energy amortization of a dripline irrigation system amounts to one third of that expended on water conveyance but in the south amounts to one-eighteenth or less, indicating the large regional dependency of energy inputs for irrigation.Calculations show that the reduction in energy requirement for water conveyance needed by irrigation systems operating at lower pressures compensates for their higher energy losses in system amortization. For example, in citrus irrigation the substitution of medium-pressure undertree sprinkler systems for high-pressure overhead sprinkler systems was calculated to save 8% of the total energy expenditure for water conveyance to the farm gate. This would amount to a saving of 7 GJ ha–1 y–1 for citrus in the central region and of 8 GJ ha–1 y–1 in the south. For cotton the substitution of low pressure dripline systems for high-pressure overhead sprinkler systems could save 16% of the total energy expenditure for pressurized water conveyance. This would amount to a saving of 8 GJ ha–1 y–1 in the northern region increasing to 10 GJ ha–1 y–1 in the south, taking into account a higher irrigation water requirement.Contribution from the Agricultural Research Organization, Bet Dagan, Israel. No. 1589-E, 1985 series  相似文献   

9.
Control engineering approaches may be applied to irrigation management to make better use of available irrigation water. These methods of irrigation decision-making are being developed to deal with spatial and temporal variability in field properties, data availability and hardware constraints. One type of control system is advanced process control which, in an irrigation context, refers to the incorporation of multiple aspects of optimisation and control. Hence, advanced process control is particularly suited to the management of site-specific irrigation. This paper reviews applications of advanced process control in irrigation: mathematical programming, linear quadratic control, artificial intelligence, iterative learning control and model predictive control. From the literature review, it is argued that model-based control strategies are more realistic in the soil–plant–atmosphere system using process simulation models rather than using ‘black-box’ crop production models. It is also argued that model-based control strategies can aim for specific end of season characteristics and hence may achieve optimality. Three control systems are identified that are robust to data gaps and deficiencies and account for spatial and temporal variability in field characteristics, namely iterative learning control, iterative hill climbing control and model predictive control: from consideration of these three systems it is concluded that the most appropriate control strategy depends on factors including sensor data availability and grower’s specific performance requirements. It is further argued that control strategy development will be driven by the available sensor technology and irrigation hardware, but also that control strategy options should also drive future plant and soil moisture sensor development.  相似文献   

10.
Energy productivity, the quantity of a given agricultural product per unit of energy required for its production, is proposed as a measure of the utilisation of energy in industrialised agricultural systems. It should replace energy ratio, which is shown to be inadequate as such a measure.  相似文献   

11.
Improvement of irrigation management in areas subjected to periods of water scarcity requires good knowledge of system performance over long time periods. We have conducted a study aimed at characterizing the behaviour of an irrigated area encompassing over 7000 ha in Southern Spain, since its inception in 1991. Detailed cropping pattern and plot water use records allowed the assessment of irrigation scheme performance using a simulation model that computed maximum irrigation requirements for every plot during the first 15 years of system operations. The ratio of irrigation water used to maximum irrigation requirements (Annual Relative Irrigation Supply, ARIS) was well below 1 and oscillated around 0.6 in the 12 years that there were no water supply restrictions in the district. The ARIS values varied among crops, however, from values between 0.2 and 0.3 for sunflower and wheat, to values approaching 1 for cotton and sugar beet. Farmer interviews revealed some of the causes for the low irrigation water usage which were mainly associated with the attempt to balance profitability and stability, and with the lack of incentives to achieve maximum yields in crops subsidized by the Common Agricultural Policy (CAP) of the European Union. The response to water scarcity was also documented through interviews and demonstrated that the change in crop choice is the primary reaction to an anticipated constraint in water supply. Water productivity (value of production divided by the volume of irrigation water delivered; WP) in the district was moderate and highly variable (around 2€ m−3) and did not increase with time. Irrigation water productivity (increase in production value due to irrigation divided by irrigation water delivered) was much lower (0.65€ m−3) and also, it did not increase with time. The lack of improvement in WP, the low irrigation water usage, and the changes in cropping patterns over the first 15 years of operation indicate that performance trends in irrigated agriculture are determined by a complex mix of technical, economic, and socio-cultural factors, as those that characterized the behaviour of the Genil-Cabra irrigation scheme.  相似文献   

12.
Closed conduit irrigation systems are designed to respond to moisture requirements and permit water application at different required rates. The formulation of these requirements allows the engineer to select one of the many possibilities of the water system layouts. However, the requirement that the cost of the system for a given set of operational conditions should be minimal is not always included in the design because of the difficulties in selecting the most economic layout among the many alternatives.The main parameters characterizing pipe irrigation systems are presented and discussed. A trade-off among the irrigation system components for various layouts is presented in a case study and discussed, emphasizing the complexity of the decision-making procedure.  相似文献   

13.
The Yucatán Peninsula has the largest reserve of water in Mexico. It is generally believed that groundwater is of good quality although its agricultural quality has been scarcely studied. The aims of this study were to identify and characterize zones with distinctive groundwater qualities for agricultural use in Yucatán. Water samples were collected at 113 supply wells. The concentrations of Ca2+, Mg2+, Na+, K+, HCO3, SO42−, NO3, Cl and the electric conductivity (EC) were determined. Sodium adsorption ratio (SAR), potential salinity (PS) and effective salinity (ES) were also calculated. A geostatistical analysis by kriging interpolation was performed. ES, PS and SAR as well as Na+, EC, Cl, SO42−, and Ca2+ were selected to make maps, in accordance with the values of semivariogram and values of cross-validation. The map of the ES was taken as the base to make the map of zones of agricultural quality groundwater. The quality of karstic groundwater in the state of Yucatán cannot be recommended for agriculture in Zones I (EC and ES), II (EC, Chlorides, PS and ES) and III (EC, sulfates and ES); in Zones IV and V the water is of medium quality and in the Zone VI, water is considered good for agricultural use. This information will be relevant in decision-making for government's agricultural and environmental planning.  相似文献   

14.
Two field studies were conducted on the west side of the San Joaquin Valley of California to demonstrate the potential for integrated management of irrigation and drainage systems. The first study used a modified cotton crop coefficient to calculate the irrigation schedule controlling the operation of a subsurface drip system irrigating cotton in an area with saline groundwater at a depth of 1.5 m. Use of the coefficient resulted in 40% of the crop water requirement coming from the groundwater without a loss in lint yield. The second study evaluated the impact of the installation of controls on a subsurface drainage system installed on a 65 hectare field. As a result of the drainage controls, 140 mm less water was applied to the tomato crop without a yield loss. A smaller relative weight of tomatoes classified as limited use, was found in the areas with the water table closest to the soil surface.  相似文献   

15.
Investing in irrigation: Reviewing the past and looking to the future   总被引:2,自引:0,他引:2  
This article gives a brief review of the development and current situation in global irrigation, and looks at the drivers affecting irrigation performance, development and modernization. The article concludes that the options for new developments are limited, and that future investment will need to be more precisely targeted to specific niches in different agroecological and economic contexts. The paper notes the powerful implications of global climatic change on irrigation through changes in hydrology and water supply that, in conjunction with (1) continued demand for cheap food to satisfy continuously growing populations and changing dietary preferences (projected to 2050) and (2) increasing competition for high reliability water from higher value economic sectors, indicate irrigation performance and the productivity of agricultural water use must further improve, and are also likely to become more targeted at higher value enterprises. Improving management, through better institutions and better technology will require constant adaptation and finessing, with no silver bullets currently on the horizon.  相似文献   

16.
In many countries today, irrigation systems have been transferred to the water user associations (WUAs). Accordingly, it is believed that the performance of the irrigation systems is dependent on the performance of the WUAs.In this study, the performance of participatory irrigation management (PIM) over time is assessed with regard to the Kestel WUA serving a wide area of Turkey's Aegean coast. Data relating to the WUA is obtained from both the State Hydraulic Works and WUAs’ own records. In addition, two surveys have been carried out with the members of the WUA with an 8-year interval between them. Data have been analyzed within the framework of selected irrigation performance criteria and indicators. The non-parametric Mann-Whitney U test was used to compare the perceptions of the farmers on the WUA at different survey periods. A Logit model was estimated to evaluate the relationship between the irrigation problems and the level of satisfaction from the WUA.The performance of the WUA with the indicators of utility, productivity, sustainability and financial efficiency was found to be positive; while the performance of adequacy was identified as poor. The farmers were generally satisfied of the WUA's operation, with their level of satisfaction improving over time. On the other hand, the farmers were not fully convinced that they had input with the system management. The initial design of the channel system and its maintenance were identified to be the key factors affecting user satisfaction.Overall, the Kestel WUA may be considered a successful example, thus supporting a promising future for PIM. Yet improved control and farmer education is needed for a superior performance of all indicators; and further enhanced farmer participation in management should be achieved in order to raise the level of farmer satisfaction.  相似文献   

17.
The irrigation performance of the Office du Niger in Mali, a large-scale rice-based irrigation scheme, was analysed with the use of remote sensing technology. The major advantage of remote sensing derived data over field measured data is that it provides system-wide, spatially distributed and objective information. Four irrigation performance indicators, entirely based on remote sensing, were applied at different organisational levels of the system. The surface energy balance algorithm for land model was applied to high-resolution Landsat images to calculate rice production and water consumption spatially. These maps were used to analyse the productivity of water, the uniformity of water consumption and head-/tail-enders issues at the level of the system, the five administrative zones and smaller management units (casiers). The sustainability of the system was assessed using a long-term time series of the normalised difference vegetation index. The results were discussed and interpreted with the irrigation managers of the Office du Niger. The analysis provided new insights in the performance of the system such as existing head–tail patterns in water consumption and rice yields.  相似文献   

18.
In the Yucheng region along the lower reach of the Yellow River, current border irrigation systems in all three irrigation districts have low irrigation performances with the applied depth per irrigation event >150 mm, and application efficiency <65 %. It is often difficult to change irrigation practices, and rates of adoption are usually slow for China’s small-scale farmers. This study emphasizes the feasibility of optimizing border dimensions in border irrigation taking into consideration the existing irrigation conditions and farmers’ methods of irrigation practice. The performances of current border irrigation systems and improved systems were evaluated using agricultural irrigation survey data, field experimental data, and a simulation model. The irrigation conditions, that is, inflow rate, border dimensions, and relative cutoff distance, in the irrigation districts were found to be diverse. However, after border dimensions were optimized through simulation and field testing, it was determined that the applied depth per irrigation event could be decreased by an average of 49 mm, and the application efficiency could be increased on average by 26.7 % in the three irrigation districts. The annual potential amount of water savings among the three districts was calculated to be approximately 5,551 × 104 m3 in the Yucheng region. Optimizing border dimensions is a practical technology for small-scale farming practices in the irrigation districts along the lower Yellow River.  相似文献   

19.
This study was conducted on an irrigated area of southern Italy to analyze the current operation of a large-scale irrigation delivery system and the effects of the operation procedures on crop irrigation management and aquifer salinity increase. The area is characterized by relatively high levels of groundwater salinity in the summer that are probably due to intensive groundwater pumping by farmers during periods of peak irrigation demand, with the resulting seawater intrusion. Two alternative delivery schedules, namely the rotation delivery schedule and the flexible delivery schedule, referred to as RDS and FDS, respectively, were simulated using a soil-water balance model under different combinations of crop, soil and climatic conditions. The first set of simulations concerned the farm irrigation management constrained by the rotational delivery used by the local water management organization. The second scenario simulated the farm irrigation schedule most commonly used by growers in the area for maximizing crop yields. Based on crop irrigation management under RDS and FDS, two alternative operational scenarios were also developed at the scheme level and then compared for evaluation. Winter and summer salinity maps of the aquifer were developed by interpolating salinity measurements of the groundwater samples collected during the 2006 irrigation season. From these maps, a close relationship can be inferred among delivery schedule, aquifer exploitation and salinity increase, which justifies the need for implementing FDS that might reduce the groundwater demand for irrigation.  相似文献   

20.
The importance of farmer participation in system design and management has been emphasized in previous studies. The purpose of this study was to identify the factors affecting farmer participation in irrigation management using survey research. The study was conducted in Doroodzan Dam Irrigation Network in Fars province, Iran. Multistage stratified random sampling was used to collect data from 270 farmers as the research sample. Results reveal that farmers’ attitudes toward participation in irrigation management, attitudes toward personnel of the State Water Authority and the Agricultural Extension Service Centers (AESCs), family size, the problem perception, dependence on the dam for water, and educational background have influenced their participation in irrigation management. By contrast, contact with information sources, animal units, sociability, age and agricultural experience did not affect farmers’ participation. Moreover, based on farmers’ perspectives, unequal water distribution among farms, dissatisfaction with Water Authority operators and high water fees and charges were the main problems and obstacles toward farmer participation in irrigation management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号