首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of biocompatible polymer nanofibers is valuable, due to their use as a cover for burns and as a replacement for bandage because of their antimicrobial properties. In this study, electrospinning of chitosan(Ch) and nanofibers synthesis with antibacterial properties was investigated. Nanofibers with antibacterial properties were synthesized by electrospun of Ch/poly(L-lactide)(PLA)/Imipenem(Imi) polymer solution. The results showed that the optimized ratio of Ch/PLA polymer solution was ratio of 50:50 and Ch 2 wt% and PLA 10 wt% polymer solution was the best weight percentage for nanofiber preparation. Also, the average diameter of Ch/PLA/Imi nanofibers was 143 nm and measured with ImageJ software. Afterwards, the antibacterial properties of Imi as additives (with different percentages) was studied in the polymer solution. The scanning electron microscopy (SEM) images and antibacterial tests were showed that the electrospun of Ch/PLA/Imi polymeric nanofibers were effective against Gram negative bacteria Escherichia coli (E. coli) and inhibited growth of E. coli. The growth and viability percentage of fibroblast cells with nanofibers in αMEM culture are at desirable levels after 6 days.  相似文献   

2.
Biodegradable edible sub-micron electrospun zein fibers were prepared using acetic acid as solvent. The solution concentration at three levels: 22, 26 and 30 w/v %, the electrospinning voltage at three levels: 10, 20 and 30 kV, the solution flow rate at three levels: 4, 8 and 12 ml/h and the distance between needle tip and collector at three levels: 10, 15 and 20 cm were studied. Central composite design (CCD) was utilized to modeling the effect of electrospinning parameters of zein solution on average fiber diameters and the data were analyzed using response surface methodology (RSM). Coefficient of determination, R2, of fitted regression model was higher than 0.9 for response. The analysis of variance table showed that the lack of fit was not significant for response surface model at 95 %. Therefore, the model for response variable was highly adequate. Results also indicated that the solution concentration had significant influence (P<0.0001) on morphology and diameter of fibers. By increasing the solution concentration, uniform and bead-free fibers were obtained. As the solution concentration was increased, the average fiber diameters were also increased. Furthermore, the electrospinning voltage had significant effect (P<0.0001) on average fiber diameters. By increasing the electrospinning voltage, the average fiber diameters increased. The solution flow rate and the distance between needle tip and collector had no significant influence on the average fiber diameters. According to model optimization, the minimum average fiber diameter of electrospun zein fiber is given by following conditions: 24 w/v % zein concentration, 10 kV of the applied voltage, 10 cm of needle tip to collector distance, and 4 ml/h of solution flow rate.  相似文献   

3.
In this work, electrospinning of poly(lactic acid) (PLA), chitosan and their blends has been investigated, and nanofibers with a diameter ranging from 90 nm to 1.9 microns were produced and used as carriers for immobilization of the phospholipase A1. A strong influence of chitosan (CS) and the solvent trifluoroacetic acid (TFA) on the morphology, distribution of the nanofibers diameter and on their hydrophobicity was observed. The yield of phospholipase A1 (PLA1) on non-woven fibers was evaluated using the method of Bradford. Their activities and their reutilisability were assessed titrimetrically using soybean lecithin as substrate. The results showed that the degree of immobilization on the non-woven fibers of pure PLA and mixtures PLA/CS4 and PLA/SC6 are 73, 54, 45 % respectively and can be reused up to 4 cycles without significant loss of enzyme activity. Moreover, a remarkable improvement of the activity of phospholipase A1 on non-woven based on pure PLA fibers was observed, indicating that most of the enzymes were probably in their active form.  相似文献   

4.
Nanoscaled PVA fibers were prepared by electrospinning. This paper described the electrospinning process, the processing conditions, fiber morphology, and some potential applications of the PVA nano-fibers. PVA fibers with various diameters (50–250 nm) were obtained by changing solution concentration, voltage and tip to collector distance (TCD). The major factor was the concentration of PVA solution which affected the fiber diameter evidently. Increasing the concentration, the fiber diameter was increased, and the amount of beads was reduced even to 0%. The fibers were found be efficiently crosslinked by glyoxal during the curing process. Phosphoric acid was used as a catalyst activator to reduce strength losses during crosslinking. Scanning electron micrograph (SEM) and differential scanning calorimetric (DSC) techniques were employed to characterize the morphology and crosslinking of PVA fibers. It was found that the primary factor which affected the crosslinking density was the content of chemical crosslinking agent.  相似文献   

5.
Fabrication of Ceftazidime (CTZ) loaded silk fibroin/gelatin (SF/GT) nanofibers (NFs) without the loss of structure and bioactivity of CTZ was demonstrated by electrospinning method. The structure, morphology and mechanical properties of the electrospun SF/GT nanofibrous mats were characterized using FT-IR, SEM and DSC. The drug release profile of different electrospun fibers was analyzed using spectrophotometric method, and also diffusion method was applied to assess the antibacterial effect of NFs. Cell viability was evaluated by MTT assay. The results show that the average diameter of drug loaded NFs at the optimum polymer to drug feeding ratio (10:1) was 276.55±35.8 nm, while increasing the feeding ratio to 1:1 increases the average diameter to 825.02±70.3 nm. FT-IR of drug loaded NFs was revealed that CTZ was successfully encapsulated into NFs while viability study approved cytocompatibility of SF/GT NFs. CTZ was released from NFs during 6 h, and formation of inhibition zone in diffusion test demonstrated the antibacterial effect of drug loaded NFs. Altogether, the CTZ loaded SF/GT NFs can improve the drug effectiveness particularly in the prevention of post-surgical adhesions and infections for wound dressing.  相似文献   

6.
Polylactic acid (PLA) fine fibers and multi walled carbon nanotube (MWCNT) reinforced PLA fine fiber composites were developed utilizing a centrifugal spinning process. Chloroform and chloroform combined with dimethylformamide (DMF) were used to prepare solutions with varying concentrations of PLA and MWCNTs. The optimum spinning conditions to produce PLA fibers and its composites were determined. The morphology of the fibers was analyzed using scanning electron microscopy. In addition, X-ray diffraction analysis and thermo-physical characterization was conducted using thermogravimetric analysis and differential scanning calorimetry. PLA fibers with an average diameter of 481 nanometers and PLA/MWCNT fibers with an average diameter of 358 nanometers were obtained. A decrease in the crystallinity of the fibers was observed when compared to bulk PLA values.  相似文献   

7.
The concept of phase separation was coupled with electrospinning to induce polyacrylonitrile (PAN) and polystyrene (PS) bicomponent electrospun fibers that, upon removal of the phase-separated PS domains by solvent extraction, became nanoporous. Electrospinning of PAN (Mw 150 kDa) with 5 % w/w PS (Mw 250 kDa) at a 10 % w/w total concentration in N,N-dimethylformamide (DMF) produced fibers with stable morphology and average diameters from 1130±680 to 890±340 nm by FESEM. The nanoporous fibers made from a 95/5 w/w PAN/PS bicomponent precursor had internal pores of about 20∼110 nanometers. Pore sizes of the porous PAN fibers were decreased to approximately ∼25 nm after oxidation and carbonization thermal treatment because of fiber shrinkage during the thermal treatment. The fibers retained a high density of pores after the thermal treatment.  相似文献   

8.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

9.
Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electrospun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.  相似文献   

10.
PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly (ɛ-caprolactone) (LPCL), and high molecular weight poly (ɛ-caprolactone) (HPCL) were prepared by melt blending and spinning for bioabsorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect ofin vitro degradation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solution at pH 7.4 and 37°C for 1–8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of 5 wt%, HPCL contents of 35 wt%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about 93.5% even at hydrolysis time of 2 weeks.  相似文献   

11.
The synthesis of titanium dioxide nanofibers with 200–300 nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from 600 °C to 1000 °C.  相似文献   

12.
本研究以聚乙烯醇(PVA)和壳聚糖(CTS)为基材,甘油作为增塑剂,以茶多酚(TP)为功能性添加剂制备无污染、可降解且具有抗氧化功能的活性包装材料TP-CTS/PVA复合膜,分析TP浓度对复合膜机械性能、抗氧化能力、抑菌能力等理化性质的影响,研究复合膜与包装相关性能的影响,以期提高复合膜的综合性能。将其应用于圣女果的保鲜,测定其在贮存期间理化指标及微生物指标,进一步将不同TP浓度的复合膜涂抹于新鲜圣女果表面,分析圣女果在贮存期间的感官品质、腐烂率、失重率、可溶性糖、可滴定酸等指标的变化,系统研究复合膜对圣女果的保鲜效果。结果表明:以TP为功能性添加剂共混CTS和PVA制备的复合膜兼具抗氧化和抑菌效果;随着TP浓度增加,复合膜的颜色逐渐变深,TP浓度为1.5%时,复合膜的水溶性最低(19.85±0.64)%,此时复合膜的抗张强度呈最大值(13.19±0.77)MPa;当TP浓度增大,其对Escherichia coliStaphylococcus aureus的抑菌能力也不断增强,能有效抑制细菌生长; TP浓度为2.0%时,复合膜对DPPH自由基清除率达到最大值(38.53±0.91)%;采用复合膜涂覆对圣女果能减少水分蒸腾、延缓果蔬机体衰老从而起到良好的保鲜效果,涂膜能有效延缓圣女果的腐烂和失水变质的现象,表明TP-CTS/PVA复合膜能改善果蔬的保鲜货架期和商品价值;在相同贮存时间内,当用TP浓度为1.50%复合膜涂抹圣女果时,圣女果的感官评价得分、失重率、腐烂率、可滴定酸含量、可溶性糖含量等各项指标较其他TP浓度试验组效果更好。研究表明,当TP浓度为1.5%~2.0%时制备的TP-CTS/PVA复合膜其抑菌性、耐水性、抗氧化性、以及保鲜性能等各项指标较为均衡,将其实际应用于生产中可根据需求调整TP浓度。本研究目的为探索开发抗菌抗氧化功能型复合膜和功能型包装材料替代塑料包装材料的可能性,为同时解决食品保鲜与环境污染问题提供依据。  相似文献   

13.
PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly(ε-caprolactone) (LPCL), and high molecular weight poly(ε-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable filament sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by1H-NMR, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreased by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at 220 °C for 30–60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three polymers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.  相似文献   

14.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

15.
In this study, Polylactic Acid (PLA) nonwoven fabric and thermoplastic polyurethane (TPU) honeycomb air cushion (TPU-HAC) were employed to form an impact resistant layer for functional knee pads. PLA nonwoven fabric has low manufacture cost and flexibility of the honeycomb air cushion improved the quality of functional knee pad sold in the market. This study focused on the strength of PLA nonwovens and the impact resistance of TPU honeycomb air pads. The PLA fibers and low-melting-point (low-Tm) PLA fibers are used as raw materials to fabricate PLA nonwoven fabric. The PLA fibers and low-melting-point PLA fibers were mixed at weight ratios of 10, 20, 30, 40, and 50 %. PLA nonwoven fabric and TPU-HAC materials were combined in a sandwich structure to protect against impact. Impact resistance was evaluated using a falling-weight impact-resistance machine. Experimental findings indicate that changing various layers can improve the impact resistance of the sandwich structure of the TPU-HAC materials. A TPU-HAC layer with a thickness of 2/8/10 mm optimized the impact resistance. In 25 J falling-weight impact test, the TPU-HAC layer 2/8/10 mm provides an impact resistance of 2932 N; the PLA/TPU-HAC composite had the best impact resistance; 2516 N. PLA nonwoven fabric had the best mechanical properties with low-Tm PLA fibers at 30 % weight. The impact resistance achieved using above combination of materials met the level 2, range 3 impact values mentioned in EN 14120 standards.  相似文献   

16.
Phytoncides are volatile organic compounds released from trees and plants and are well known for their natural antibacterial activity. In this study, emulsion electrospinning was used to encapsulate phytoncide in the core of nanofibers, with the aim of developing environmentally friendly, functional nanofibers with a sustained release of the encapsulated component. Core/sheath structured phytoncide/poly(vinyl alcohol) nanofibers were successfully prepared by emulsion electrospinning using an ordinary single-nozzle electrospinning setup. An oil-in-water emulsion of an aqueous solution of poly(vinyl alcohol) (as the aqueous phase) and phytoncide (as the oil phase) was used to prepare the core/sheath structured nanofibers. Nanocomposite fibers were electrospun under various spinning conditions and emulsion formulations to find the suitable processing conditions for fabricating nanofibers with core/sheath structures. The resulting nanofibers exhibited a well-aligned core/sheath structure with fiber diameters of 250-350 nm. The release profile of phytoncide from the core of nanofibers over a 21 day period showed that phytoncide was released in a sustained manner over 14 days. The core/sheath structured phytoncide/poly(vinyl alcohol) nanofibers exhibited 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, indicating that the encapsulated phytoncide in the fiber provided strong antimicrobial effects.  相似文献   

17.
Novel composite nanofibrous materials of poly(vinylidene fluoride) (PVDF) or poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were prepared by conjunction of electrospinning and electrospraying techniques. Simultaneous electrospinning of concentrated solution of PVDF or PVDF-HFP and electrospraying of suspension of ZnO in diluted PVDF or PVDF-HFP solution enable the preparation of materials consisting of fibers on which ZnO was deposited on the fibers’ surface (design type “on”). These fibrous materials were compared with materials consisting of PVDF or PVDF-HFP fibers in which ZnO was incorporated in the fibers (design type “in”) and which were obtained by one-pot electrospinning of a suspension of ZnO nanoparticles in concentrated PVDF or PVDF-HFP solution. The fiber morphology and the presence of ZnO “in” or “on” the fibers were observed by scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). The effect of the used technique on the type, size and shape of the obtained structures was discussed. The fibrous mats were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), contact angle measurements and mechanical tests as well. It was found that the decoration of fibers with ZnO resulted in increase of their thermal stability and hydrophobicity. The microbiological tests showed that the materials of design type “on” possessed strong antibacterial activity against the pathogenic microorganism Staphylococcus aureus. The results suggest that, due to their antibacterial activity, the obtained composite materials are suitable for wound dressing applications.  相似文献   

18.
Electrical conductive nanocomposite fibers were prepared with polyaniline (PANI), polyacrylonitrile (PAN) and multi-walled carbon nanotubes (MWCNTs) via electrospinning. The morphology and electrical conductivity of the PANI/PAN/MWCNTs nanocomposite fibers were characterized by scanning electron microscope (SEM) and Van De Pauw method. Electrical conductivity of nanocomposite fibers increased from 1.79 S·m?1 to 7.97 S·m?1 with increasing the MWCNTs content from 3.0 wt% to 7.0 wt%. Compared with PANI/PAN membranes, the mechanical property of PANI/PAN/MWCNTs nanocomposites fiber membranes decreased. The microwave absorption performance of composite films was analyzed using waveguide tube, which indicated that with the thickness increasing the value of RL reduced from ?4.6 to ?5.9 dB.  相似文献   

19.
Application of electrospun nanofibrous scaffolds has received immense attention in tissue engineering. Fabrication of scaffolds with appropriate electrical properties plays a key role in neural tissue engineering. Since fibers orientation in the scaffolds affects the growth and proliferation of the cells, this study aimed to prepare aligned electrospun conductive nanofibers by mixing 1 %, 10 % and 18 % (w/v) doped polyaniline (PANI) with polycaprolactone (PCL)/poly lactic-coglycolic acid (PLGA) (25/75) solution through the electrospinning process. The fibers diameter, hydrophilicity and conductivity were measured. In addition, the shape and proliferation of the nerve cells seeded on fibers were evaluated by MTT cytotoxicity assay and scanning electron microscopy. The results revealed that the conductive nanofibrous scaffolds were appropriate substrates for the attachment and proliferation of nerve cells. The electrical stimulation enhanced neurite outgrowth compared to those PLGA/PCL/PANI scaffolds that were not subjected to electrical stimulation. As polyaniline ratio increases, electric stimulation through nanofibrous PLGA/PCL/PANI scaffolds results in cell proliferation enhancement. However, a raise more than 10 % in polyaniline will result in cell toxicity. It was concluded that conductive scaffolds with appropriate ratio of PANI along with electrical stimulation have potential applications in treatment of spinal cord injuries.  相似文献   

20.
Electrospun composite fibers of poly-lactic acid (PLA), chitosan (Ch) and paclitaxel (PTX) were fabricated for surface covering of a polymeric prototype PLA stent by means of single nozzle electrospinning approach to prepare a low cytotoxicity drug-eluting stent. Different concentrations of the drug (40 %, 60 %, 80 %, 100 % and 120 %) and chitosan (3 %, 5 %, 7 % and 9 %) were incorporated to reach the optimum composite fibers. The electrospun composite fibers were subjected to detailed analyses including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile test, MTT assay, cell culture and in vitro drug release. Results have confirmed a proper physical encapsulation of PTX in the polymeric matrix in which no chemical bonding was detected between the polymers and the drug. Among the fabricated composite fibers, specimens including 40 % and 60 % drug also exhibited an excellent cytotoxicity and controlled drug release. SEM images have proved the effect of paclitaxel in resisting cell adhesion and propagation on the fibers. Findings from this study suggest a novel polymer/drug coating that could be potentially applicable in surface covering of polymeric stents e.g. PLA stents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号